Skip to Main Content
Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On linearly coupled relaxation oscillations


Authors: Jacques Bélair and Philip Holmes
Journal: Quart. Appl. Math. 42 (1984), 193-219
MSC: Primary 58F10; Secondary 34C15, 34E15, 70K05
DOI: https://doi.org/10.1090/qam/745099
MathSciNet review: 745099
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the dynamical behavior of a pair of linearly coupled relaxation oscillators. In such systems vastly different time scales play a crucial rôle, and solutions may be viewed as consisting of portions of slow drift linked by rapid jumps. This feature enables us to reduce the analysis from four dimensional phase space to that of a two dimensional system with discontinuous but well determined behavior at certain points on the phase plane. We determine the existence and stability of periodic motions for identical oscillators and oscillators with an uncoupled frequency ratio of $1:\omega$. We give additional details on nonperiodic motions for the special case of $\omega = 2$.


References [Enhancements On Off] (What's this?)

    Bélair [1983a], Phase locking in linearly coupled relaxation oscillators, Ph. D. Thesis, Cornell Univ. Bélair [1983b], Une application de l’analyse nonstandard dans l’etude d’oscillateurs de relaxation, preprint Benoit, J.—L. Callot, F. Diener and M. Diener [1980], Chasse au canard, IRMA
  • Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989
  • M. L. Cartwright and J. E. Littlewood, On non-linear differential equations of the second order. I. The equation $\ddot y-k(1-y^2)y+y=b\lambda k\;{\rm cos} (\lambda t+a), k$ large, J. London Math. Soc. 20 (1945), 180–189. MR 16789, DOI https://doi.org/10.1112/jlms/s1-20.3.180
  • Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338
  • Martin Davis, Applied nonstandard analysis, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Pure and Applied Mathematics. MR 0505473
  • J. E. Flaherty and F. C. Hoppensteadt, Frequency entrainment of a forced van der Pol oscillator, Studies in Appl. Math. 58 (1978), no. 1, 5–15. MR 499449, DOI https://doi.org/10.1002/sapm19785815
  • —P. Gollub, T. O. Brunner and B. G. Danly [1978], Periodicity and chaos in coupled nonlinear oscillators, Science 200, 48–50
  • J. Grasman and M. J. W. Jansen, Mutually synchronized relation oscillators as prototypes of oscillating systems in biology, J. Math. Biol. 7 (1979), no. 2, 171–197. MR 648978, DOI https://doi.org/10.1007/BF00276928
  • Grasman, H. Nijmeijer and E. J. M. Velig [1982], Singular perturbations and a mapping on an interval for the forced van der Pol relaxation oscillator (preprint TW 221/82, Mathematisch Centrum, 413 Kruislaan, Amsterdam)
  • J. Grasman, E. J. M. Veling, and G. M. Willems, Relaxation oscillations governed by a Van der Pol equation with periodic forcing term, SIAM J. Appl. Math. 31 (1976), no. 4, 667–676. MR 432975, DOI https://doi.org/10.1137/0131059
  • John Guckenheimer, Bifurcations of dynamical systems, Dynamical systems (C.I.M.E. Summer School, Bressanone, 1978) Progr. Math., vol. 8, Birkhäuser, Boston, Mass., 1980, pp. 115–231. MR 589591
  • J. Haag, Étude asymptotique des oscillations de relaxation, Ann. Sci. École Norm. Sup. (3) 60 (1943), 35–64, 65–111 (French). MR 0014538
  • Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Pure and Applied Mathematics, Vol. 60. MR 0486784
  • J. Kevorkian and Julian D. Cole, Perturbation methods in applied mathematics, Applied Mathematical Sciences, vol. 34, Springer-Verlag, New York-Berlin, 1981. MR 608029
  • Norman Levinson, A second order differential equation with singular solutions, Ann. of Math. (2) 50 (1949), 127–153. MR 30079, DOI https://doi.org/10.2307/1969357
  • Mark Levi, Qualitative analysis of the periodically forced relaxation oscillations, Mem. Amer. Math. Soc. 32 (1981), no. 244, vi+147. MR 617687, DOI https://doi.org/10.1090/memo/0244
  • Robert Lutz and Michel Goze, Nonstandard analysis, Lecture Notes in Mathematics, vol. 881, Springer-Verlag, Berlin-New York, 1981. A practical guide with applications; With a foreword by Georges H. Reeb. MR 643624
  • Reeb [1974], Seance-debat sur l’ Analyse Non-standard, Gazette des Mathematicians 8, 8–14 Robinson [1974], Nonstandard analysis, 2nd edition, American Elsevier, New York
  • J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publishers, Inc., New York, N.Y., 1950. MR 0034932
  • ---[1980], Periodic forced vibrations of systems of relaxation oscillators, Comm. Pure Math. 33, 215–240 Stroyan and W. A. J. Luxembourg [1975], Introduction to the theory of infinitesimals, Academic Press, New York
  • Floris Takens, Constrained equations; a study of implicit differential equations and their discontinuous solutions, Mathematisch Institut, Rijksuniversiteit, Groningen, 1975. Report ZW-75-03. MR 0478236
  • van der Pol [1926], On relaxation-oscillations, Phil. Mag., 7th Ser. 2, 978–992 van der Pol and J. van der Mark [1928], The heartbeat considered as a relaxation oscillator, and an electrical model of the heart, Phil. Mag., 7th Ser. 6, 763–775
  • E. C. Zeeman, Differential equations for the heartbeat and nerve impulse, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 683–741. MR 0342207

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 58F10, 34C15, 34E15, 70K05

Retrieve articles in all journals with MSC: 58F10, 34C15, 34E15, 70K05


Additional Information

Article copyright: © Copyright 1984 American Mathematical Society