Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Noncommutative Motives

About this Title

Gonçalo Tabuada, Massachusetts Institute of Technology, Cambridge, MA

Publication: University Lecture Series
Publication Year: 2015; Volume 63
ISBNs: 978-1-4704-2397-1 (print); 978-1-4704-2627-9 (online)
DOI: https://doi.org/10.1090/ulect/063
MathSciNet review: MR3379910
MSC: Primary 14A22; Secondary 14C15

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References
  • Yves André and Bruno Kahn, Construction inconditionnelle de groupes de Galois motiviques, C. R. Math. Acad. Sci. Paris 334 (2002), no. 11, 989–994.
  • —, Nilpotence, radicaux et structures monoïdales, Rend. Sem. Mat. Univ. Padova 108 (2002), 107–291, With an appendix by Peter O’Sullivan.
  • —, Erratum: “Nilpotency, radicals and monoidal structures” [Rend. Sem. Mat. Univ. Padova 108 (2002), 107–291], Rend. Sem. Mat. Univ. Padova 113 (2005), 125–128.
  • Shimshon A. Amitsur, Generic splitting fields of central simple algebras, Ann. of Math. (2) 62 (1955), 8–43.
  • Yves André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses], vol. 17, Société Mathématique de France, Paris, 2004.
  • Joseph Ayoub, L’algèbre de Hopf et le groupe de Galois motiviques d’un corps de caractéristique nulle, I, J. Reine Angew. Math. 693 (2014), 1–149.
  • —, L’algèbre de Hopf et le groupe de Galois motiviques d’un corps de caractéristique nulle, II, J. Reine Angew. Math. 693 (2014), 151–226.
  • Arend Bayer, Semisimple quantum cohomology and blowups, Int. Math. Res. Not. (2004), no. 40, 2069–2083.
  • Alexander A. Beĭlinson, Coherent sheaves on $\textbf {P}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69.
  • Marcello Bernardara, A semiorthogonal decomposition for Brauer-Severi schemes, Math. Nachr. 282 (2009), no. 10, 1406–1413.
  • Andrew J. Blumberg, David Gepner, and Gonçalo Tabuada, $K$-theory of endomorphisms via noncommutative motives, available at arXiv:1302.1214(v1). To appear in Trans. Amer. Math. Soc.
  • —, A universal characterization of higher algebraic $K$-theory, Geom. Topol. 17 (2013), no. 2, 733–838.
  • —, Uniqueness of the multiplicative cyclotomic trace, Adv. Math. 260 (2014), 191–232.
  • Franziska Bittner, The universal Euler characteristic for varieties of characteristic zero, Compos. Math. 140 (2004), no. 4, 1011–1032.
  • Alexey I. Bondal and Mikhail M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183–1205, 1337.
  • —, Framed triangulated categories, Mat. Sb. 181 (1990), no. 5, 669–683.
  • Alexey I. Bondal, Michael Larsen, and Valery A. Lunts, Grothendieck ring of pretriangulated categories, Int. Math. Res. Not. (2004), no. 29, 1461–1495.
  • Andrew J. Blumberg and Michael A. Mandell, Localization theorems in topological Hochschild homology and topological cyclic homology, Geom. Topol. 16 (2012), no. 2, 1053–1120.
  • Roman Bezrukavnikov, Ivan Mirković, and Dmitriy Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math. (2) 167 (2008), no. 3, 945–991, With an appendix by Roman Bezrukavnikov and Simon Riche.
  • Marcello Bernardara, Matilde Marcolli, and Gonçalo Tabuada, Some remarks concerning Voevodsky’s nilpotence conjecture, available at arXiv:1403.0876(v3).
  • Alexey I. Bondal and Dmitri O. Orlov, Semiorthogonal decomposition for algebraic varieties, available at arXiv:alg-geom/9506012.
  • —, Derived categories of coherent sheaves, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 47–56.
  • Mikhail V. Bondarko, Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), J. K-Theory 6 (2010), no. 3, 387–504.
  • Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975).
  • William Browder, Algebraic $K$-theory with coefficients $\mathbf {Z}/p$, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), I, Lecture Notes in Math., vol. 657, pp. 40–84.
  • Alain Bruguières, Tresses et structure entière sur la catégorie des représentations de $\textrm {SL}_N$ quantique, Comm. Algebra 28 (2000), no. 4, 1989–2028.
  • Marcello Bernardara and Gonçalo Tabuada, Chow groups of intersections of quadrics via homological projective duality and (Jacobians of) noncommutative motives, available at arXiv:1310.6020(v3).
  • —, From semi-orthogonal decompositions to polarized intermediate Jacobians via Jacobians of noncommutative motives, available at arXiv:1305.4687(v2). To appear in Mosc. Math. J.
  • —, Relations between the Chow motive and the noncommutative motive of a smooth projective variety, available at arXiv:1303.3172(v4). To appear in J. Pure Appl. Algebra.
  • Alexey I. Bondal and Michel van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258.
  • Gianni Ciolli, On the quantum cohomology of some Fano threefolds and a conjecture of Dubrovin, Internat. J. Math. 16 (2005), no. 8, 823–839.
  • Guillermo Cortiñas, Excision, descent, and singularity in algebraic $K$-theory, available at arXiv:1313.1639(v2). To appear in Proceedings of the International Congress of Mathematicians, Seoul, 2014.
  • Denis-Charles Cisinski and Gonçalo Tabuada, Non-connective $K$-theory via universal invariants, Compos. Math. 147 (2011), no. 4, 1281–1320.
  • —, Symmetric monoidal structure on non-commutative motives, J. K-Theory 9 (2012), no. 2, 201–268.
  • —, Lefschetz and Hirzebruch–Riemann–Roch formulas via noncommutative motives, J. Noncommut. Geom. 8 (2014), no. 4, 1171–1190.
  • Sebastian del Baño Rollin and Vicente Navarro Aznar, On the motive of a quotient variety, Collect. Math. 49 (1998), no. 2-3, 203–226, Dedicated to the memory of Fernando Serrano.
  • Pierre Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, pp. 111–195.
  • —, Catégories tensorielles, Mosc. Math. J. 2 (2002), no. 2, 227–248, Dedicated to Yuri I. Manin on the occasion of his 65th birthday.
  • Keith Dennis, In search of a new homology theory, unpublished manuscript (1976).
  • William G. Dwyer and Eric M. Friedlander, Étale $K$-theory and arithmetic, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 453–455.
  • —, Algebraic and etale $K$-theory, Trans. Amer. Math. Soc. 292 (1985), no. 1, 247–280.
  • Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982.
  • Vladimir Drinfeld, DG categories, talks at the Geometric Langlands seminar, University of Chicago, Fall 2002. Notes available at the webpage https://www.ma.utexas.edu/users/benzvi/GRASP/lectures/Langlands.html.
  • —, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691.
  • Daniel Dugger and Brooke Shipley, $K$-theory and derived equivalences, Duke Math. J. 124 (2004), no. 3, 587–617.
  • Boris Dubrovin, Geometry and analytic theory of Frobenius manifolds, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), no. Extra Vol. II, 1998, pp. 315–326.
  • Eric M. Friedlander, Étale $K$-theory. I. Connections with etale cohomology and algebraic vector bundles, Invent. Math. 60 (1980), no. 2, 105–134.
  • —, Étale $K$-theory. II. Connections with algebraic $K$-theory, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 231–256.
  • Boris L. Feĭgin and Boris L. Tsygan, Additive $K$-theory, $K$-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 67–209.
  • Thomas Geisser and Lars Hesselholt, Topological cyclic homology of schemes, Algebraic $K$-theory (Seattle, WA, 1997), Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 41–87.
  • Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, second ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
  • Sergey Gorchinskiy and Dmitri O. Orlov, Geometric phantom categories, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 329–349.
  • Vasily V. Golyshev, Minimal Fano threefolds: exceptional sets and vanishing cycles, Dokl. Akad. Nauk 424 (2009), no. 2, 151–155.
  • Thomas G. Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985), no. 2, 187–215.
  • Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2) 90 (1969), 496–541.
  • Alexander Grothendieck, Les dérivateurs, manuscript available at the webpage http://webusers.imj-prg.fr/georges.maltsiniotis/groth/Derivateurs.html.
  • Henri Gillet and Christophe Soulé, Descent, motives and $K$-theory, J. Reine Angew. Math. 478 (1996), 127–176.
  • David Gepner and Victor Snaith, On the motivic spectra representing algebraic cobordism and algebraic $K$-theory, Doc. Math. 14 (2009), 359–396.
  • Henri Gillet and Christophe Soulé, Motivic weight complexes for arithmetic varieties, J. Algebra 322 (2009), no. 9, 3088–3141.
  • Davide Guzzetti, Stokes matrices and monodromy of the quantum cohomology of projective spaces, Comm. Math. Phys. 207 (1999), no. 2, 341–383.
  • Christian Haesemeyer, Descent properties of homotopy $K$-theory, Duke Math. J. 125 (2004), no. 3, 589–620.
  • Alex Heller, Homotopy theories, Mem. Amer. Math. Soc. 71 (1988), no. 383, vi+78.
  • —, Stable homotopy theories and stabilization, J. Pure Appl. Algebra 115 (1997), no. 2, 113–130.
  • Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003.
  • Christine E. Hood and John D. S. Jones, Some algebraic properties of cyclic homology groups, $K$-Theory 1 (1987), no. 4, 361–384.
  • Claus Hertling, Yuri I. Manin, and Constantin Teleman, An update on semisimple quantum cohomology and $F$-manifolds, Tr. Mat. Inst. Steklova 264 (2009), no. Mnogomernaya Algebraicheskaya Geometriya, 69–76.
  • Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999.
  • —, Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra 165 (2001), no. 1, 63–127.
  • Daniel Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006.
  • Vasiliĭ A. Iskovskih, Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 3, 516–562, 717.
  • —, Fano threefolds. II, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 3, 506–549.
  • Uwe Jannsen, Motives, numerical equivalence, and semi-simplicity, Invent. Math. 107 (1992), no. 3, 447–452.
  • Uwe Jannsen, Steven Kleiman, and Jean-Pierre Serre (eds.), Motives, Proceedings of Symposia in Pure Mathematics, vol. 55, Part 1, American Mathematical Society, Providence, RI, 1994.
  • Uwe Jannsen, Steven Kleiman, and Jean-Pierre Serre (eds.), Motives, Proceedings of Symposia in Pure Mathematics, vol. 55, Part 2, American Mathematical Society, Providence, RI, 1994.
  • Dmitry Kaledin, Motivic structures in non-commutative geometry, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 461–496.
  • Mikhail M. Kapranov, The elliptic curve in the s-duality theory and Eisenstein series for Kac-Moody groups, available at arXiv:0001005(v2).
  • —, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), no. 3, 479–508.
  • Max Karoubi, Homologie cyclique et $K$-théorie, Astérisque (1987), no. 149, 147.
  • Nikita A. Karpenko, Criteria of motivic equivalence for quadratic forms and central simple algebras, Math. Ann. 317 (2000), no. 3, 585–611.
  • —, Weil transfer of algebraic cycles, Indag. Math. (N.S.) 11 (2000), no. 1, 73–86.
  • Christian Kassel, Cyclic homology, comodules, and mixed complexes, J. Algebra 107 (1987), no. 1, 195–216.
  • Yujiro Kawamata, Derived categories of toric varieties, Michigan Math. J. 54 (2006), no. 3, 517–535.
  • Bernhard Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102.
  • —, On the cyclic homology of ringed spaces and schemes, Doc. Math. 3 (1998), 231–259 (electronic).
  • —, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999), no. 1, 1–56.
  • —, On triangulated orbit categories, Doc. Math. 10 (2005), 551–581.
  • —, On differential graded categories, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151–190.
  • Shun-Ichi Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), no. 1, 173–201.
  • Bruno Kahn and Marc Levine, Motives of Azumaya algebras, J. Inst. Math. Jussieu 9 (2010), no. 3, 481–599.
  • Maxim Kontsevich, Mixed noncommutative motives, talk at the Workshop on Homological Mirror Symmetry, Miami, 2010. Notes available at the webpage www-math.mit.edu/auroux/frg/miami10-notes.
  • —, Noncommutative motives, talk at the Institute for Advanced Study on the occasion of the $61^{\mathrm {st}}$ birthday of Pierre Deligne, October 2005. Video available at the webpage http://video.ias.edu/Geometry-and-Arithmetic.
  • —, Triangulated categories and geometry, course at ENS, Paris, 1998. Notes available at the webpage www.math.uchicago.edu/mitya/langlands.html.
  • —, Notes on motives in finite characteristic, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Inc., Boston, MA, 2009, pp. 213–247.
  • Alexander Kuznetsov and Alexander Polishchuk, Exceptional collections on isotropic Grassmannians, available at arXiv:1110.5607. To appear in J. Eur. Math. Soc. (JEMS).
  • Mikhail Khovanov and Paul Seidel, Quivers, Floer cohomology, and braid group actions, J. Amer. Math. Soc. 15 (2002), no. 1, 203–271.
  • Bruno Kahn and Ronnie Sebastian, Smash-nilpotent cycles on abelian 3-folds, Math. Res. Lett. 16 (2009), no. 6, 1007–1010.
  • Alexander Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, Adv. Math. 218 (2008), no. 5, 1340–1369.
  • Max Karoubi and Orlando Villamayor, $K$-théorie algébrique et $K$-théorie topologique. I, Math. Scand. 28 (1971), 265–307 (1972).
  • —, $K$-théorie algébrique et $K$-théorie topologique. II, Math. Scand. 32 (1973), 57–86.
  • Marc Levine, Tate motives and the vanishing conjectures for algebraic $K$-theory, Algebraic $K$-theory and algebraic topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 407, pp. 167–188.
  • —, Mixed motives, Mathematical Surveys and Monographs, vol. 57, American Mathematical Society, Providence, RI, 1998.
  • Valery A. Lunts and Dmitri O. Orlov, Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010), no. 3, 853–908.
  • Jean-Louis Loday, Cyclic homology, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998, Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili.
  • Valery A. Lunts, Lefschetz fixed point theorems for Fourier-Mukai functors and DG algebras, J. Algebra 356 (2012), 230–256.
  • Yuri I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77 (119) (1968), 475–507.
  • Teruhisa Matsusaka, The criteria for algebraic equivalence and the torsion group, Amer. J. Math. 79 (1957), 53–66.
  • J. Peter May, Picard groups, Grothendieck rings, and Burnside rings of categories, Adv. Math. 163 (2001), no. 1, 1–16.
  • Randy McCarthy, A chain complex for the spectrum homology of the algebraic $K$-theory of an exact category, Algebraic $K$-theory (Toronto, ON, 1996), Fields Inst. Commun., vol. 16, pp. 199–220.
  • Stephen A. Mitchell, $K(1)$-local homotopy theory, Iwasawa theory and algebraic $K$-theory, Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 955–1010.
  • Shigefumi Mori and Shigeru Mukai, Erratum: “Classification of Fano 3-folds with $B_2\geq 2$” [Manuscripta Math. 36 (1981/82), no. 2, 147–162], Manuscripta Math. 110 (2003), no. 3, 407.
  • —, Classification of Fano $3$-folds with $B_{2}\geq 2$, Manuscripta Math. 36 (1981/82), no. 2, 147–162.
  • Jacob P. Murre, Jan Nagel, and Chris A. M. Peters, Lectures on the theory of pure motives, University Lecture Series, vol. 61, American Mathematical Society, Providence, RI, 2013.
  • Alexander S. Merkurjev and Ivan A. Panin, $K$-theory of algebraic tori and toric varieties, $K$-Theory 12 (1997), no. 2, 101–143.
  • Yuri I. Manin and Maxim Smirnov, On the derived category of $\overline M_{0,n}$, Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013), no. 3, 93–108.
  • Matilde Marcolli and Gonçalo Tabuada, Noncommutative numerical motives, Tannakian structures, and motivic Galois groups, available at arXiv:1110.2438. To appear in J. Eur. Math. Soc. (JEMS).
  • —, Unconditional noncommutative motivic galois groups, available at arXiv:1112.5422(v2). To appear in the proceedings of the conference Hodge Theory and Classical Algebraic Geometry in honor of Herb Clemens.
  • —, Kontsevich’s noncommutative numerical motives, Compos. Math. 148 (2012), no. 6, 1811–1820.
  • —, Jacobians of noncommutative motives, Mosc. Math. J. 14 (2014), no. 3, 577–594, 642.
  • —, Noncommutative Artin motives, Selecta Math. (N.S.) 20 (2014), no. 1, 315–358.
  • —, Noncommutative motives, numerical equivalence, and semi-simplicity, Amer. J. Math. 136 (2014), no. 1, 59–75.
  • —, From exceptional collections to motivic decompositions via noncommutative motives, J. Reine Angew. Math. 701 (2015), 153–167.
  • Fabien Morel and Vladimir Voevodsky, $\textbf {A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999), no. 90, 45–143 (2001).
  • Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001.
  • Dmitri O. Orlov, Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 4, 852–862.
  • Peter O’Sullivan, The structure of certain rigid tensor categories, C. R. Math. Acad. Sci. Paris 340 (2005), no. 8, 557–562.
  • David Pauksztello, Compact corigid objects in triangulated categories and co-$t$-structures, Cent. Eur. J. Math. 6 (2008), no. 1, 25–42.
  • Bjorn Poonen, The Grothendieck ring of varieties is not a domain, Math. Res. Lett. 9 (2002), no. 4, 493–497.
  • Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967.
  • —, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341.
  • Carl Riehm, The corestriction of algebraic structures, Invent. Math. 11 (1970), 73–98.
  • Oliver Röndigs, Markus Spitzweck, and Paul Arne Østvær, Motivic strict ring models for $K$-theory, Proc. Amer. Math. Soc. 138 (2010), no. 10, 3509–3520.
  • Raphaël Rouquier and Alexander Zimmermann, Picard groups for derived module categories, Proc. London Math. Soc. (3) 87 (2003), no. 1, 197–225.
  • Stefan Schwede, Spectra in model categories and applications to the algebraic cotangent complex, J. Pure Appl. Algebra 120 (1997), no. 1, 77–104.
  • Marco Schlichting, Negative $K$-theory of derived categories, Math. Z. 253 (2006), no. 1, 97–134.
  • Gonçalo Tabuada, $\Bbb A^1$-homotopy invariance of algebraic $K$-theory with coefficients and Kleinian singularities, available at arXiv:1502.05364(v2).
  • —, $\Bbb A^1$-theory of noncommutative motives, available at arXiv:1402.4432. To appear in J. Noncommutat. Geom.
  • —, Noncommutative mixed (Artin) motives and their motivic Hopf dg algebras, available at arXiv:1412.2294(v2).
  • —, Théorie homotopique des dg-catégories, author’s Ph.D. thesis. Available at arXiv:0710.4303.
  • —, Invariants additifs de DG-catégories, Int. Math. Res. Not. (2005), no. 53, 3309–3339.
  • —, Higher $K$-theory via universal invariants, Duke Math. J. 145 (2008), no. 1, 121–206.
  • —, Homotopy theory of spectral categories, Adv. Math. 221 (2009), no. 4, 1122–1143.
  • —, Generalized spectral categories, topological Hochschild homology and trace maps, Algebr. Geom. Topol. 10 (2010), no. 1, 137–213.
  • —, Matrix invariants of spectral categories, Int. Math. Res. Not. IMRN (2010), no. 13, 2459–2511.
  • —, On Drinfeld’s dg quotient, J. Algebra 323 (2010), no. 5, 1226–1240.
  • —, A simple criterion for extending natural transformations to higher $K$-theory, Doc. Math. 16 (2011), 657–668.
  • —, Universal suspension via noncommutative motives, J. Noncommut. Geom. 5 (2011), no. 4, 573–589.
  • —, The fundamental theorem via derived Morita invariance, localization, and $\Bbb A^1$-homotopy invariance, J. K-Theory 9 (2012), no. 3, 407–420.
  • —, Weight structure on Kontsevich’s noncommutative mixed motives, Homology Homotopy Appl. 14 (2012), no. 2, 129–142.
  • —, Chow motives versus noncommutative motives, J. Noncommut. Geom. 7 (2013), no. 3, 767–786.
  • —, Products, multiplicative Chern characters, and finite coefficients via noncommutative motives, J. Pure Appl. Algebra 217 (2013), no. 7, 1279–1293.
  • —, Additive invariants of toric and twisted projective homogeneous varieties via noncommutative motives, J. Algebra 417 (2014), 15–38.
  • —, Galois descent of additive invariants, Bull. Lond. Math. Soc. 46 (2014), no. 2, 385–395.
  • —, Voevodsky’s mixed motives versus Kontsevich’s noncommutative mixed motives, Adv. Math. 264 (2014), 506–545.
  • —, Witt vectors and $K$-theory of automorphisms via noncommutative motives, Manuscripta Math. 143 (2014), no. 3-4, 473–482.
  • —, $\Bbb A^1$-homotopy invariants of dg orbit categories, J. Algebra 434 (2015), 169–192.
  • —, Weil restriction of noncommutative motives, J. Algebra 430 (2015), 119–152.
  • Yuichiro Takeda, Complexes of exact Hermitian cubes and the Zagier conjecture, Math. Ann. 328 (2004), no. 1-2, 87–119.
  • Dmitry Tamarkin, What do dg-categories form?, Compos. Math. 143 (2007), no. 5, 1335–1358.
  • Robert W. Thomason, Algebraic $K$-theory and étale cohomology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 437–552.
  • —, Erratum: “Algebraic $K$-theory and étale cohomology” [Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 437–552], Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 4, 675–677.
  • Bertrand Toën, The homotopy theory of $dg$-categories and derived Morita theory, Invent. Math. 167 (2007), no. 3, 615–667.
  • Robert W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435.
  • Gonçalo Tabuada and Michel van den Bergh, Noncommutative motives of separable algebras, available at arXiv:1411.7970(v2).
  • —, Noncommutative motives of Azumaya algebras, J. Inst. Math. Jussieu 14 (2015), no. 2, 379–403.
  • Kazushi Ueda, Stokes matrices for the quantum cohomologies of Grassmannians, Int. Math. Res. Not. (2005), no. 34, 2075–2086.
  • Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque (1996), no. 239, xii+253 pp. (1997), With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis.
  • Vladimir Voevodsky, A nilpotence theorem for cycles algebraically equivalent to zero, Internat. Math. Res. Notices (1995), no. 4, 187–198 (electronic).
  • —, $\mathbf {A}^1$-homotopy theory, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), no. Extra Vol. I, 1998, pp. 579–604 (electronic).
  • —, Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188–238.
  • Claire Voisin, Remarks on zero-cycles of self-products of varieties, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 265–285.
  • Friedhelm Waldhausen, Algebraic $K$-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983), Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318–419.
  • André Weil, Variétés abéliennes et courbes algébriques, Actualités Sci. Ind., no. 1064 by Publ. Inst. Math. Univ. Strasbourg 8 (1946), Hermann & Cie., Paris, 1948.
  • —, Adeles and algebraic groups, Progress in Mathematics, vol. 23, Birkhäuser, Boston, Mass., 1982, With appendices by M. Demazure and Takashi Ono.
  • Charles A. Weibel, Homotopy algebraic $K$-theory, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 461–488.
  • —, The Hodge filtration and cyclic homology, $K$-Theory 12 (1997), no. 2, 145–164.
  • —, The $K$-book, Graduate Studies in Mathematics, vol. 145, American Mathematical Society, Providence, RI, 2013, An introduction to algebraic $K$-theory.
  • Jörg Wildeshaus, Notes on Artin-Tate motives, available at arXiv:0811.4551(v2).
  • Ernst Witt, Zyklische körper und algebren der characteristik $p$ vom grad pn. struktur diskret bewerteter perfekter körper mit vollkommenem restklassenkörper der charakteristik pn, J. Reine Angew. Math. 176 (1936), 126–140.