2020 Who Wants to Be a Mathematician Round One Qualifying Test

1.	What is the perimeter (in inches) of a square that has area 9 square inches?				
	a. 8	b. 10	c. 12	d. 16	
2.	The graph of which of the following is perpendicular to the line $y + 3x = 7$?				
	a. $y - 3x =$	7 b. x -	-3y = 7	c. $3x - y = 7$	d. $x + 3y = 7$
3.	Let T = sin(co	$\mathrm{s}(^{\pi}/_{2}))$ (wher	e $\pi/_2$ is measu	red in radians). T	hen
	a. T = 0	b. 0 < T ≤ 1/2	c. 1/2	2 < T < 1	d. T = 1
4.	Sue rolls two fair six-sided dice (with faces numbered 1-6) and computes their sum, while Diane rolls a single fair dodecahedral die (with faces numbered 1-12). Which of the following numbers has the property that Sue and Diane are equally likely to roll that number?				
	a. 8	b. 9	c. 10	d. 11	
5.	A positive integer is called <i>square-free</i> if it is not divisible by any perfect square greater than 1. Suppose m and n are square-free integers greater than 1, with $m \neq n$. Which of the following is not possible?				
	a. mn is square-free and composite b. m/n is prime c. m/n is square-free and composite				
	d. \sqrt{mn} is rational				
6.	Let $f(x) = 5x^3(2x+3)^4$ and $g(x) = 50x^5(8x-4)^2$. Which of the following is closest to $f(10^6) \div g(10^6)$?				
	a. 0.025	b. 0.25	c. 2.5	d. 25	
7.	The graph of the equation $(x+2)^2 + (y-3)^2 = 12$ contains points in all quadrants except quadrant				
	a. I	b. II	c. III	d. IV	
8.	A,B,C,D,E,F,G, and H represent eight different digits selected from $\{1,2,,9\}$. If $(A + B)/(C + D) + (E + F)/(G + H)$ is as large as possible, which digit is not used?				
	a. 1 b. 2	c. 4 d. 5			
9.	Suppose x is an integer satisfying $\log_3(9x) + \log_9(3x) = 7$. What is the ones digit of x ?				
	a. 3	b. 5	c. 7	d. 9	
10.	How many ord	dered pairs of po	ositive integers (m, n) are there so	uch that $m^2 n^5 = 20^{20}$?
	a. 15	b. 20	c. 30	d. 40	