2020 Who Wants to Be a Mathematician Round One Qualifying Test KEY

1. What is the perimeter (in inches) of a square that has area 9 square inches?
a. 8
b. 10
c. 12
c.
d. 16
2. The graph of which of the following is perpendicular to the line $y+3 x=7$?
a. $y-3 x=7$
b. $x-3 y=7$
b.
c. $3 x-y=7$
d. $x+3 y=7$
3. Let $T=\sin (\cos (\pi / 2))$ (where $\pi / 2$ is measured in radians). Then
a. $T=0$
a.
b. $0<T \leq 1 / 2$
c. $1 / 2<T<1$
d. $T=1$
4. Sue rolls two fair six-sided dice (with faces numbered 1-6) and computes their sum, while Diane rolls a single fair dodecahedral die (with faces numbered 1-12). Which of the following numbers has the property that Sue and Diane are equally likely to roll that number?
a. 8
b. 9
c. 10
c.
d. 11
5. A positive integer is called square-free if it is not divisible by any perfect square greater than 1 . Suppose m and n are square-free integers greater than 1 , with $m \neq n$. Which of the following is not possible?
$\begin{array}{llll}\text { a. } m n \text { is square-free and composite } & \text { b. } m / n \text { is prime } & \text { c. } m / n \text { is square-free and composite }\end{array}$
d. $\sqrt{m n}$ is rational
d.
6. Let $f(x)=5 x^{3}(2 x+3)^{4}$ and $g(x)=50 x^{5}(8 x-4)^{2}$. Which of the following is closest to $f\left(10^{6}\right) \div g\left(10^{6}\right)$?
a. 0.025
b. 0.25
c. 2.5
d. 25
a.
7. The graph of the equation $(x+2)^{2}+(y-3)^{2}=12$ contains points in all quadrants except quadrant
a. 1
b. II
c. III
d. IV
d.
8. A, B, C, D, E, F, G, and H represent eight different digits selected from $\{1,2, \ldots, 9\}$. If $(A+B) /(C+D)+(E+F) /(G+H)$ is as large as possible, which digit is not used?
a. 1
b. 2
c. 4
d. 5
d.
9. Suppose x is an integer satisfying $\log _{3}(9 x)+\log _{9}(3 x)=7$. What is the ones digit of x ?
a. 3
b. 5
c. 7
d. 9
c.
10. How many ordered pairs of positive integers (m, n) are there such that $m^{2} n^{5}=20^{20}$?
a. 15
b. 20
c. 30
d. 40
a.
