2017-18 Who Wants to Be a Mathematician Round Two Test

1. What is the ones (units) digit of the sum $2^{2017}+3^{2017}+7^{2017}$? 2
2. Which of the following is largest?
a. $\sqrt[4]{101}$
b. $5-\sqrt{3}$
b.
c. $\sqrt{2}+\sqrt{3}$
d. $\sqrt{10}$
3. An emirp is a prime number that is also a different prime number when its digits are reversed (so for example, 107 is an emirp but 101 is not). How many emirps are there between 1 and 100?
4. Evaluate $\left|\frac{(1+\sqrt{3} i)^{8}}{(1-\sqrt{3} i)^{6}}\right|$ where $i=\sqrt{-1}$, and $|a+b i|=\sqrt{a^{2}+b^{2}}$.
5. Given that $\sum_{k=1}^{n} \log _{a}\left(k^{n}\right)=n$, find a in terms of $n($ where $n>1)$. n !
6. A googol is 1 followed by 100 zeroes. A googolplex is 1 followed by a googol zeroes. For what exponent n is googol ${ }^{\text {googol }}=$ googolplex ${ }^{n}$?100
7. What is the sum of the squares of the roots (zeroes) of $x^{4}-8 x^{3}+16 x^{2}-11 x+5$?
8. From each of the three corners of a 5-12-13 right triangle remove a sector of a circle of radius 2 (centered at the corresponding corner, as shown). What is the area of the resulting figure?

9. What is the remainder when 1000^{2018} is divided by 2018 ?
10. (Tie-breaker-for tie scores, the person closest to the correct answer wins the tie.)

What is the smallest value of n such that the number of primes less than or equal to n is 25,000 ?

