CONVEX MATRIX FUNCTIONS

WILLIAM WATKINS

Abstract. The purpose of this paper is to prove convexity properties for the tensor product, determinant, and permanent of hermitian matrices.

Let C^n be the vector space of all complex n-tuples with the usual inner product (\cdot, \cdot) and let H_n be the set of all n by n hermitian matrices. A matrix A in H_n is nonnegative if $(Ax, x) \geq 0$ for all x in C^n. If A and B are in H_n, we write $A \geq B$ if $A - B$ is nonnegative. A function f from H_n to H_m is monotone if $A \geq B$ implies $f(A) \geq f(B)$, and convex if $f(\lambda A + (1-\lambda)B) \leq \lambda f(A) + (1-\lambda)f(B)$, for all $0 \leq \lambda \leq 1$.

Löwner [6] introduced the case where f is induced by a real valued function and $m=n$. Other authors [2], [4], [5] have analysed this case further.

Example [9]. The inverse function is convex on the set of all invertible, nonnegative matrices in H_n.

Example [4]. The square root function is monotone on the set of all nonnegative matrices in H_n.

Some work has been done on the case where $m=1$. That is, f is a function from H_n to the real numbers. For example, Marcus and Nikolai [8] have shown that each member of a class of generalized matrix functions is monotone. This class of functions contains the determinant and permanent. For other results of this type see [1].

In order to state the convexity property for the tensor product, let m_1, \cdots, m_r be r positive integers. It is well known [10, p. 268] that, for x_i, y_i in C^{m_i}, $i=1, \cdots, r$, the decomposable tensors $x_1 \otimes \cdots \otimes x_r$ and $y_1 \otimes \cdots \otimes y_r$ in C^N, $N=m_1 \cdots m_r$, satisfy

$$(x_1 \otimes \cdots \otimes x_r, y_1 \otimes \cdots \otimes y_r) = (x_1, y_1) \cdots (x_r, y_r).$$

If A_i is an m_i by m_i matrix ($i=1, \cdots, r$), then the tensor product $\otimes^r A_i$ is an N by N matrix satisfying

$$\otimes^r A_i(x_1 \otimes \cdots \otimes x_r) = A_1x_1 \otimes \cdots \otimes A_rx_r,$$

for x_i in C^{m_i} ($i=1, \cdots, r$).

Received by the editors June 15, 1973.

© American Mathematical Society 1974
Theorem 1. If A_i and B_i are matrices in H_m with $0 \leq B_i \leq A_i$, $i = 1, \ldots, r$, and $0 \leq \lambda \leq 1$, then

$$\otimes^r (\lambda A_i + (1 - \lambda) B_i) \leq \lambda \otimes^r A_i + (1 - \lambda) \otimes^r B_i.$$

Definition (Generalized matrix function). Let S_n denote the permutation group on n letters and let G be a subgroup of S_n with irreducible character $\chi: G \rightarrow \mathbb{C}$. For each $n \times n$ complex matrix $A = (a_{ij})$, define

$$d(A) = \sum_{\sigma} \chi(\sigma) \prod_{i=1}^{n} a_{\sigma_i, i} \quad \text{(sum } \sigma \text{ in } G).$$

The function d depends on both the subgroup G and its character χ. If $G = S_n$ and $\chi(\sigma)$ is the sign of σ, then d is the determinant function. If $G = S_n$ and $\chi \equiv 1$, then d is the permanent function. For a fuller explanation see [7].

Theorem 2. If A and B are matrices in H_n with $0 \leq B \leq A$ and $0 \leq \lambda \leq 1$, then

$$d(\lambda A + (1 - \lambda) B) \leq \lambda d(A) + (1 - \lambda)d(B).$$

Corollary. If A and B are matrices in H_n with $0 \leq B \leq A$ and $0 \leq \lambda \leq 1$, then

$$\det(\lambda A + (1 - \lambda) B) \leq \lambda \det A + (1 - \lambda)\det B$$

and

$$\text{per}(\lambda A + (1 - \lambda) B) \leq \lambda \text{per } A + (1 - \lambda)\text{per } B.$$

Proofs.

Proof of Theorem 1. It is shown in [8] that if A_1, B_1 are in H_{m_1} and A_2, B_2 are in H_{m_2} with $0 \leq B_1 \leq A_1$ and $0 \leq B_2 \leq A_2$, then $A_1 \otimes A_2 \geq B_1 \otimes B_2$. Thus the right side of the identity

$$\lambda(A_1 \otimes A_2) + (1 - \lambda)(B_1 \otimes B_2) - \lambda(A_1 + (1 - \lambda)B_1) \otimes (A_2 - B_2)$$

is nonnegative. Theorem 1 follows by induction.

In order to prove Theorem 2, we develop ideas relating the tensor product to the generalized matrix function d.

For each σ in S_n, define an N by N ($N=n^n$) permutation matrix $P(\sigma)$ by

$$P(\sigma^{-1})x_1 \otimes \cdots \otimes x_n = x_{\sigma_1} \otimes \cdots \otimes x_{\sigma_n}$$

for all x_i in \mathbb{C}^n. Notice that $P(\sigma \mu) = P(\sigma)P(\mu)$. Define an N by N matrix T by

$$T = \frac{\chi(1)}{|G|} \sum_{\sigma} \chi(\sigma) P(\sigma) \quad \text{(sum } \sigma \text{ in } G).$$
It follows from the orthogonality relations for irreducible characters \[3, p. \text{219}\] that \(T \) is an idempotent. The matrix \(T \) is hermitian since the complex conjugate of \(\chi(\sigma) \) is \(\chi(\sigma^{-1}) \) and \(P(\sigma)^* = P(\sigma^{-1}) \). If \(A = (a_{ij}) \) is an \(n \times n \) matrix, then \(\otimes^n A \) commutes with each \(P(\sigma) \) and so it commutes with \(T \).

Let \(e_1, \ldots, e_n \) be the usual basis for \(\mathbb{C}^n \). Then,

\[
\begin{align*}
((\otimes^n A)T e_1 \otimes \cdots \otimes e_n, Te_1 \otimes \cdots \otimes e_n) &= (T^*(\otimes^n A)T e_1 \otimes \cdots \otimes e_n, e_1 \otimes \cdots \otimes e_n) \\
&= (T(\otimes^n A)e_1 \otimes \cdots \otimes e_n, e_1 \otimes \cdots \otimes e_n) \\
&= (TAe_1 \otimes \cdots \otimes Ae_n, e_1 \otimes \cdots \otimes e_n) \\
&= \frac{\chi(1)}{|G|} \sum_{\sigma} \chi(\sigma)(Ae_{\sigma 1} \otimes \cdots \otimes Ae_{\sigma n}, e_1 \otimes \cdots \otimes e_n) \\
&= \frac{\chi(1)}{|G|} \sum_{\sigma} \chi(\sigma) \prod_i (Ae_{\sigma i}, e_i) \\
&= \frac{\chi(1)}{|G|} d(A).
\end{align*}
\]

In the second inequality, notice that \(T^*(\otimes^n A)T = T(\otimes^n A) \), since \(T \) and \(\otimes^n A \) commute and \(T \) is a hermitian idempotent. If \(A \) and \(B \) are in \(H_n \) and \(0 \leq A \leq B \) and \(0 \leq \lambda \leq 1 \), then by Theorem 1 we have

\[
\otimes^n (\lambda A + (1 - \lambda)B) \leq \lambda \otimes^n A + (1 - \lambda) \otimes^n B.
\]

By comparing inner products

\[
((\otimes^n (\lambda A + (1 - \lambda)B)T e_1 \otimes \cdots \otimes e_n, Te_1 \otimes \cdots \otimes e_n)
\]

and

\[
((\lambda \otimes^n A + (1 - \lambda) \otimes^n B)T e_1 \otimes \cdots \otimes e_n, Te_1 \otimes \cdots \otimes e_n),
\]

we get \(d(\lambda A + (1 - \lambda)B) \leq \lambda d(A) + (1 - \lambda) d(B) \). The corollary consists of special cases.

References

5. F. Kraus, Über konvexe Matrixfunktionen, Math. Z. 41 (1936), 18–42.

Department of Mathematics, California State University, Northridge, California 91324