CENTRAL IDEMPOTENTS IN GROUP RINGS

D. S. PASSMAN

Let $K[G]$ denote the group ring of a finite group G over a field K of characteristic $p > 0$. If $\alpha = \sum_{x \in G} a_x \in K[G]$ we let the support of α be $\text{Supp } \alpha = \{x \in G | a_x \neq 0\}$. A well-known result of Osima [2, p. 178] gives the explicit form for the central idempotents in $K[G]$ and in particular shows that their support consists of p'-elements of G. For most applications only the latter fact is needed. The proof of this result is character theoretic in nature and essentially requires lifting $K[G]$ to a group ring over some p-adic field. In this paper we give an elementary character-free proof of

Theorem. Let e be a central idempotent in $K[G]$. Then $\text{Supp } e$ consists of p'-elements.

We require the following few facts:

1. Let P be a p'-subgroup of G and let s denote the natural projection $s: K[G] \rightarrow K[C(P)]$. Then s induces a ring homomorphism, the Brauer homomorphism, from $Z(K[G])$ into $Z(K[C(P)])$ [1, Satz 7A].

2. Let S denote the subspace of $K[G]$ spanned by all elements of the form $a \beta - \beta a$ with $a, \beta \in K[G]$. Then for $a_1, a_2, \ldots , a_m \in K[G]$ we have

$$(a_1 + a_2 + \cdots + a_m)^p \equiv a_1^p + a_2^p + \cdots + a_m^p \pmod{S}$$

(see [1, Satz 3A]).

3. Let S be as above and let x be a central element of G of order a power of p. If $a \in S$ then $x \in \text{Supp } a$ (see [1, Satz 3B]).

Note that (3) above is merely the simple observation that if $x, y, z \in G$ and if x is central in $K[G]$ then $x \in \text{Supp } (yz-zy)$.

We now proceed to prove the theorem. Suppose z is an element of $\text{Supp } e$ which is not a p'-element and write $z = xy = yx$ where $x \neq 1$ has order a power of p and where q, the order of y, is prime to p. Let $P = \langle x \rangle$. Then by (1), $s(e)$ is a central idempotent in $K[C(P)]$ and $z \in \text{Supp } s(e)$. Thus it clearly suffices to assume that x is central in G.

Choose integer n with $p^n \geq |G|$ and with $p^n \equiv 1 \pmod{q}$ and set $\alpha = y^{-1}e$. If $\alpha = \sum_{g \in G} a_g g$ then by (2) $\alpha^p \equiv \sum (a_g)^p g^p \pmod{S}$.

Received by the editors February 7, 1969.

1 Research supported in part by NSF Contract GP-8023.
Now $p^n \geq |G|$ so g^p is a p'-element and hence by (3), $x \in \text{Supp } \alpha^p$.

On the other hand since e is a central idempotent and since $p^n \equiv 1 \pmod{q}$ we have $\alpha^p = (y^{-1})^p e^p = y^{-1}e = \alpha$. Since, by definition of α, $x \in \text{Supp } \alpha$, this is a contradiction and the result follows.

We remark that this proof holds for group rings $R[G]$ where R is any commutative ring with 1 satisfying $pR = 0$ and it yields the same result. In fact R need not even be commutative since $1 \in R$ implies immediately $Z(R[G]) \subseteq Z(R)[G]$. In addition this proof will also handle the twisted group rings $K'[G]$ once the following simple observation is made.

(4) Let Z be a central p-subgroup of G. Then $K'[Z]$ is central in $K'[G]$.

With this fact, (1) and (3) carry over easily to the twisted case.

The author would like to thank Professor Walter Feit for his helpful suggestions.

References

Yale University