

Western Michigan University

ADDENDUM TO SOME QUARTIC DIOPHANTINE EQUATIONS OF GENUS 3

L. J. MORDELL

I am indebted to Mr. K. Kloss of the Bureau of Standards, Washington, D. C., for many numerical instances of Theorem III applied to the equation

\[L^3x^3 + M^3y^3 + N^3z^3 = 0. \]

For example, when \(a = 7, b = 15, c = 23 \), we can take

\[
\begin{array}{ccccccc}
 p & q & r & L & M & N \\
 8280 & 4991 & 13335 & 12176 & 6473 & -3881 \\
 8280 & 16583 & 15855 & -20512 & 5297 & -353 \\
 11040 & 3703 & 14175 & 18208 & 10313 & -6073 \\
\end{array}
\]

These equations, which have no solutions, cannot be proved impossible by taking congruences mod 16.

St. Johns College, Cambridge, England