TikZ tutorials

Jennifer Brown, California State University Channel Islands

April 19, 2024

This is a series of tutorials to show how to use TikZ to create professional-quality mathematical diagrams,
graphs, and illustrations. The drawings in the projects will be most relevant to mathematics students
and researchers, but the techniques are useful in any kind of technical illustration.

These tutorials are aimed at readers who have a basic knowledge of ITEX but are beginners at TikZ,
and who want to produce drawings that incorporate more than just the very basics (lines, circles, etc.).
Each tutorial is a project with code blocks that can be run in Overleaf. I am assuming that the reader
has access to either an Overleaf account or to IXTEX on their own machine. If you're new to IATEX,
then I highly suggest getting yourself an Overleaf account and working through the Learn LaTeX in 30
Minutes tutorial.

If you’re comfortable with the material in these tutorials and want to learn more, the definitive resource
for TikZ is the PGF/TikZ Manual. For more inspiration, a quick search will produce many examples of
beautiful illustrations done with TikZ.

An important preliminary: in your own Overleaf I¥TEX document (where you’ll be
copying and modifying the code chunks in these projects), remember to put the command
\usepackage{tikz} in your preamble — after the \documentclass{article} and before the
\begin{document}.

The projects, and some things you’ll learn by doing them

1. Project 1: parabola. The tikzpicture environment; the draw command for lines and arrows;
the plot command; basic colors; fancy colors and the xcolor package; commenting your TikZ
code.

2. Project 2: bipartite graph. Planning pictures on paper; helplines; using nodes for vertices of
graphs and for text; the shapes.geometric library; TikZ styles.

3. Project 3: a field extension diagram. TikZ’s layered layout graph drawing algorithm and
the LualATEX engine; placing text in nodes when using the graph drawing algorithms; “by-hand”
adjustments to graphs.

4. Project 4: inclined plane with apple. Including, re-sizing, and rotating images in TikZ
pictures; the arrows.meta library; coordinate transformations with PGF.

Project 1: parabola

For our first project, we’ll be using TikZ to make a nice version of this hand-drawn sketch of a parabola:

Let’s start by making the z- and y-axes. The code block

\begin{tikzpicture}
\draw (-3,0) -- (3,0);
\draw (0,-3) -- (0,3);
\end{tikzpicture}

generates the picture below:

(The format in these tutorials will be to first display, verbatim, the code used to generate a picture, and
then to display the resulting picture. You should copy and paste the code blocks into your own document
to see how they work!)

A few things to notice about that first block of code above:

TikZ pictures need to be made inside the TikZ environment:
\begin{tikzpicture} ..\end{tikzpicturel}.

Commands in TikZ, such as the \draw command, are like commands in IXTEX — they begin with
backslashes.

The two dashes, -—, mean that we are using the straight line path operation with the \draw
command. (There are other path operations too; we’ll see others later.)

We specify the starting and ending points for each straight line by listing the points as ordered
pairs.

At the end of every line of TikZ commands, we have to put a semicolon.

Note that the picture above isn’t centered on the page; it’s put just at the place where a new paragraph
would be put. If you want your picture to be centered (and you don’t need to keep track of lots of
pictures that might all need to be numbered as figures), you can just put it inside a displayed math
environment (that is, inside \[..\1), like this:

\ [

\begin{tikzpicture}
\draw (-3,0) -- (3,0);

\draw (0,-3) -- (0,3);
\end{tikzpicture}
\]

Notice that the tikzpicture environment works inside or outside of math mode. T’ll do it outside of
math mode for now.

An important aside: Play around with these drawings and this code! Copy and paste the
code blocks into your own IATEX document, and then try messing with it. Change the colors,
make a solid line dashed, scale your picture up or down, .. If you don’t know how to do
something, check out the TikZ manual at tikz.dev, or see if someone has posted a similar
question on StackOverflow or StackExchange. The very best way to learn TikZ (and many
other things besides) is to take a basic model and mess around with it to see how it works. If
you’re worried that you might mess up an important document that you might have to turn
in for a class, make yourself a “scratch” document and use it for experimentation.

Next, let’s add some arrows to our axes. TikZ has lots of fancy arrows, but to do basic ones, just put
[->] (or [<-1, or [<->]) after the basic \draw command. Let’s say we just want arrows pointing up
from the positive y-axis and right from the positive z-axis.

\begin{tikzpicture}
\draw[->] (-3,0) -- (3,0);
\draw[->] (0,-3) -- (0,3);
\end{tikzpicture}

TikZ is not very picky about spaces; the following code produces the same picture. (I'll usually use
spacing in the example code just to make things easier to read, though.)

\begin{tikzpicture}
\draw[->](-3,0)--(3,0);

\draw[->] (0,-3)--(0,3);
\end{tikzpicture}

Next, let’s add the parabola y = 2 to our picture.

\begin{tikzpicture}

\draw [->] (-3,0) —— (3,0);

\draw [->] (0,-3) -- (0,3);

\draw [smooth, samples=100, domain=-1.5:1.5] plot(\x, {(\x)"2)});
\end{tikzpicture}

There are a few new options in the \draw command here; let’s look at each of them.

e In order to draw this parabola, TikZ is plotting a bunch of points (100, in this case) and joining
them together. If you set the sample size to be small enough, you’ll start to notice the graph
getting choppy-looking.

o the smooth option means that the points get joined together with smooth curves, rather than
straight lines.

e The domain option lets you set the smallest and largest x-value of plotted points. I set them to be
+ 1.6 because that would make the y-values come nearly to the top of our axes (since 1.6 = 2.56
and our y-axis goes to 3), but this is simply personal preference.

Next, the parabola: plot (\x, {(\x)~2)}) tells TikZ that the z-values, denoted \x, should get squared
in order to produce the y-values. The symbol \x should go inside round parentheses when you specify how
y-values should get computed, and the entire y-value should go inside curly braces. Another example:
if, instead of y = 2, we wanted to plot y = 323 — 4z, we would replace plot (\x, {(\x)~2)}) with
plot (\x, {3*(\x)"3 - 4x(\x)})

This next graph isn’t really part of the picture we set out to draw in this first project, but it shows

the effect of shrinking the sample size and using the default (straight-line) connections between points.
It also demonstrates how to plot multiple graphs in the same picture, and how to change colors as an
option to the draw command.

\begin{tikzpicture}

\draw [->] (-3,0) -- (3,0);

\draw [->] (0,-3) -- (0,3);

\draw [smooth, samples=100, domain=-1.6:1.6] plot(\x, {(\x)"2)});
\draw [green, smooth, samples=5, domain=-1.6:1.6] plot(\x, {(\x)"2)});
\draw [red, samples=5, domain=-1.6:1.6] plot(\x, {(\x)"2)});
\end{tikzpicture}

An aside about colors: base IATEX as used in Overleaf has basic colors, like red and brown, built-in. If
you want access to a bunch of additional fancy colors, you can use the xcolor package (together with
an option). For example, by putting \usepackage [dvipsnames]{xcolor} in the preamble, you get 68
more named colors, such as BrickRed and RawSienna.

Important: you need to load the xcolor package (with its option) before you load tikz! For example,
to load xcolor with the dvipsnames option, you need to write

\usepackage [dvipsnames]{xcolor}
\usepackage{tikz}

in that order. See Overleaf’s page on “Using colours in LaTeX” for details about the xcolor package.
For even fancier colors and more control over shading (using varying saturation, for example), you can
use the xxcolor package. See the PGF/TikZ Manual’s page on “Extended Color Support” for details.

Getting back to our basic picture of the parabola y = 22: the next thing we’d like to do is to add a
label to it. We’ll do this by adding a node to our picture. A node, in TikZ, is a specified location where
things like labels or shapes can go. In this case, I put the text y = 2, in math mode, centered at the
point (2.0,1.8) in the plane. (Again, this was just personal preference — that location looked about right
to me. You should play around with the location of the label until it suits you.)

\begin{tikzpicture}

\draw [->] (-3,0) -- (3,0);

\draw [->] (0,-3) —- (0,3);

\draw [smooth, samples=100, domain=-1.6:1.6] plot(\x, {(\x)"2)});
\node at (2.0,1.8) {$y=x"2%};

\end{tikzpicture}

Note that the math mode text in the node needs to be enclosed in dollar signs as usual, and also that
the entire text at the node needs to be enclosed in curly braces.

Almost done! There is one more thing you should do, and it’s not going to show up in your picture, but
it is nonetheless very important: Comment your TikZ code. This is part of best practice when you're
doing any kind of coding. You need to explain what you’re doing with each piece of code so that your
collaborators, or you six months from now, know what’s going on in case they, or you, need to modify
or debug something.

Commenting in the tikzpicture environment is done the way it’s usually done in WTEX, with a % sign.
Here is how I might comment our parabola picture:

% a picture of the parabola y=x"2
\begin{tikzpicture}

% the x-axis, with an arrow pointing right
\draw [->] (-3,0) -- (3,0);

% the y-axis, with an arrow pointing up
\draw [->] (0,-3) -- (0,3);

% the parabola y=x"2, from -1.6 to 1.6,

% using sample size = 100 points

% and joining points smoothly

\draw [smooth, samples=100, domain=-1.6:1.6] plot(\x, {(\x)"2)});

% the label y=x"2
\node at (2.0,1.8) {$y=x"2$};
\end{tikzpicture}

If you’ve made it this far, congratulations! Now go back, if you haven’t already, and play around with the
code blocks (copy and paste them into your own Overleaf document) to get an idea of how the commands
you’ve seen in this first project work.

Then, when you’re ready, test your understanding by completing the following exercises. NOTE: There
is no one “correct” solution for any of these exercises. The idea is to make a TikZ picture that does what
the exercise says it should, and you need to be the judge of whether or not your picture “works”. The
exercises for a particular project will always be doable using the commands and options introduced in
that project or previous ones, but there might be other (possibly better) ways to do them too. If you're
not satisfied with a picture, it’s OK to set it aside for now, and come back to it as you learn more.

EXERCISES FOR PROJECT 1
1. Make a square with its corners at (—1,1), (1,1), (1,-1), and (-1, —1).

2. Make a yellow diamond with its corners at (0, 1), (1,0), (0,—1), and (—1,—0). Center the picture
on the page horizontally.

3. Make a picture similar to our final parabola picture, except change the function to y = —x3+2x—5.
Adjust the axes as needed. Include a label with the equation of the function.

4. Make a picture showing the graphs of the functions y = 22 — 2 and y = —22 4+ 1 on the same set
of axes. Color the y = 22 — 2 graph red and the y = —22 + 1 graph blue. Include a label for each
graph showing its equation.

Project 2: bipartite graph

For this project, when I mention “graphs”, I'm talking about the sort you’d see in a discrete math class,
with vertices and edges, rather than the sort you’d see in a calculus class. We're going to use TikZ to
draw the following bipartite graph:

TikZ has several different ways of making graphs. The one you will see in this project is the most
intuitive: we will simply tell TikZ where to put vertex dots and edge lines by specifying coordinates
in the plane. (In a later project, we’ll see another way to draw graphs, using TikZ’s graph-drawing
algorithms and a different IATEX engine; it’s more powerful but less intuitive.)

In this method, you need to some paper-and-pencil work up front in order to figure out where, on the
plane, the vertices and edges of your graph should be located. As a rule of thumb, try to make your
scale such that you're dealing with integer values fairly near the origin, like (4,2), rather than decimal
values far from the origin, like (572.0043, —82.009). This is just to make life easier for yourself; it’s not a
hard-and-fast requirement. You can always re-scale your picture to fit it where it needs to go, and you
can also fine-tune the placement of elements of your picture after you've got the basic picture done.

s C[/ff“) 3)

When you are making pictures by specifying coordinates for where things go, it’s helpful to have TikZ
draw some gridlines so that you can see if you're placing elements as you specified in your hand-drawn

picture. To do this, you use help lines as an argument to the \draw function, and use the grid path
operation. TikZ will draw a grid (at integer values) in a rectangle whose lower left corner is the first
point and whose upper right corner is the second point. I chose to have a grid containing all of the z-
and y-values that I will need in my picture, plus a little wiggle room for adding labels.

\begin{tikzpicture}
\draw [help lines] (-1,-4) grid (5,4);
\end{tikzpicture}

Next, let’s add the edges, since we’ve already seen how to do that in Project 1: we use the \draw command.
For example, to draw the edge that goes from (0,2) to (4, 3), we’d write \draw (0,2) -- (4,3);.

/
\

7R~

Remember to comment your code! The little note
% help lines (comment out when done)

reminds me that I should put a % sign in front of the help lines command when I'm satisfied with my
picture. If we do that right now, the picture looks like this:

\begin{tikzpicture}

% help lines (comment out when done)
% \draw [help lines] (-1,-4) grid (5,4);

% edges from vertex a
\draw (0,2) -- (4,3);
\draw (0,2) -- (4,1);
\draw (0,2) -- (4,-3);

% edges from vertex b
\draw (0,0) -- (4,1);
\draw (0,0) -- (4,-1);

% edges from vertex c
\draw (0,-2) -- (4,3);
\draw (0,-2) -- (4,1);

\end{tikzpicture}

We'll put the help lines back for now. The next element we need is little dots at the vertices of our graph.
The little dots will be drawn at a node. A node in TikZ is a thing placed at a particular place. That’s
a pretty broad description, but a node is a very flexible object: it can contain some text, an equation in
math mode, a shape, or some complicated combination of these. For our purposes, we want to put nodes
at each location where a vertex should be, and put a little solid black circle at each of these nodes:

\node [circle, fill, inner sep=2pt] at (0,2) {};

This would place a little dot at (0,2), where vertex a is. We’ll see a bit later in this project what the
various arguments to the node mean, and how they can be modified to adjust the appearance of the
vertices in the picture.

(A Technical Aside: we're using a little trick here. Strictly speaking, a node in TikZ is a specification
of a place to put text, but you can also specify a background for the text. If your “background” is the
shape that you actually want to position at the node, you can make the text empty so that only the
background — that is, the shape — shows up. This is what we’ll do to draw the vertices.)

Before we start placing the vertices in the graph, let’s see how to modify the size of the little dots. In
the picture below, the first dot is the one whose code I write above:

\node [circle, fill, inner sep=2pt] at (0,2) {};

The first two arguments to the node command, circle and f£ill, tell TikZ to make a filled-in circle.
The default color is black. The next argument, inner sep=2pt, tells TikZ how big to make the dot. (To
be precise, it tells it how much space to put between the text — which is empty — and the edge of the
dot.) Finally, the ordered pair (this is (0,2) in our example) tells TikZ where to put the node; and the
empty brackets {} tells it that the spot that would ordinarily be occupied by text is to be empty (see
the Technical Aside above).

For comparison, below are some dots and dot-like things that can be drawn by varying the basic dot shape
above. TikZ has two built-in shapes for nodes: circle and rectangle. To get additional shapes, we
can load a library called shapes.geometric using the command \usepgflibrary{shapes.geometric}
Some of our dots are in fancy colors. Back in the preamble, we put \usepackage [dvipsnames]{xcolor}
to load the dvipsnames colors from the xcolor package; and we loaded this package before we loaded
TikZ, as discussed in Project 1.

° [) . ° [| *
Once we're satisfied with our vertex shape, we could place it at vertex a, like this:

\begin{tikzpicture}

% help lines (comment out when done)
\draw [help lines] (-1,-4) grid (5,4);

% edges from vertex a
\draw (0,2) -- (4,3);
\draw (0,2) -- (4,1);
\draw (0,2) -- (4,-3);

% edges from vertex b
\draw (0,0) -- (4,1);
\draw (0,0) -- (4,-1);

% edges from vertex c
\draw (0,-2) -- (4,3);
\draw (0,-2) -- (4,1);

% dot at vertex a
\node [circle, fill, inner sep=2pt] at (0,2) {};

\end{tikzpicture}

/
\

Then we could repeat the command
\node [circle, fill, inner sep=2pt] at (0,2) {};

for the six other vertices in our graph (changing (0,2) to the appropriate coordinate). — But then what
if, later, we decide that we wanted that little circle to be a bit bigger? or smaller? or purple? We would

10

then need to go back and alter seven different occurrences of this command in order to make the desired
changes. This is a recipe for frustration and error.

Enter TikZ styles. A style is a series of arguments — in this case, to a node — that you name and declare
either in the preamble, or just at the beginning of your current picture. In this project, the style for
the vertices is going to be declared at the beginning of each picture — right after the beginning of the
tikzpicture environment. However, if you're going to be using a style in multiple places throughout
a document, it’s best to declare it in the preamble (and to make a comment at the beginning of each
picture where it’s used, saying that the style is used and what it’s called). I'm going to declare a style
called vertex:

\begin{center}
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]
\end{center}

(Note that declaring a style, just by itself, doesn’t produce any output.) This command is simply taking
all of the arguments we had inside the node command and packaging them inside a new argument called
vertex. Now we're going to declare our vertex style at the beginning of the picture, delete the

\node [circle, fill, inner sep=2pt] at (0,2) {};

command, and use the vertex style instead to put a vertex at a.

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% help lines (comment out when done)
\draw [help lines] (-1,-4) grid (5,4);

% edges from vertex a
\draw (0,2) -- (4,3);
\draw (0,2) -- (4,1);
\draw (0,2) -- (4,-3);

% edges from vertex b
\draw (0,0) -- (4,1);
\draw (0,0) -- (4,-1);
% edges from vertex c
\draw (0,-2) -- (4,3);
\draw (0,-2) -- (4,1);

% dot at vertex a
\node [vertex] at (0,2) {};

\end{tikzpicture}

11

/1

Now we just put a node in the vertex style at all of the other vertices, adjusting the coordinates as
appropriate.

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% help lines (comment out when done)
\draw [help lines] (-1,-4) grid (5,4);

% edges from vertex a
\draw (0,2) -- (4,3);
\draw (0,2) -- (4,1);
\draw (0,2) -- (4,-3);

% edges from vertex b
\draw (0,0) -- (4,1);
\draw (0,0) -- (4,-1);

% edges from vertex c
\draw (0,-2) -- (4,3);
\draw (0,-2) —— (4,1);

% dot at vertex a
\node [vertex] at (0,2) {};

% dot at vertex b
\node [vertex] at (0,0) {};

% dot at vertex c
\node [vertex] at (0,-2) {};

% dot at vertex d
\node [vertex] at (4,3) {};

% dot at vertex e
\node [vertex] at (4,1) {};

12

% dot at vertex f
\node [vertex] at (4,-1) {};

% dot at vertex g
\node [vertex] at (4,-3) {};

\end{tikzpicture}

/
\

7R~

N

AL NN

Our graph is looking almost complete! The only thing we’re missing is the labels a, b, etc. on the
vertices. The simplest way to do this is to put a node with the vertex label at the same coordinates
where the little dots went — only offset, either to the left or the right. For example, to get the letter a
(in math mode) to appear just to the left of where the vertex dot for a is, we can add the command
\node [left] at (0,2) {a};. (To make it easy for me to find, I've put that command right below
where we put the command for the vertex at a.)

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% help lines (comment out when done)
\draw [help lines] (-1,-4) grid (5,4);

% edges from vertex a
\draw (0,2) -- (4,3);
\draw (0,2) -- (4,1);
\draw (0,2) -- (4,-3);

% edges from vertex b
\draw (0,0) -- (4,1);
\draw (0,0) -- (4,-1);

% edges from vertex c
\draw (0,-2) —- (4,3);
\draw (0,-2) -- (4,1);

% dot at vertex a
\node [vertex] at (0,2) {};

13

% label at vertex x
\node [left] at (0,2) {al};

% dot at vertex b
\node [vertex] at (0,0) {};

% dot at vertex c
\node [vertex] at (0,-2) {};

% dot at vertex d
\node [vertex] at (4,3) {};

% dot at vertex e
\node [vertex] at (4,1) {};

% dot at vertex f
\node [vertex] at (4,-1) {};

% dot at vertex g
\node [vertex] at (4,-3) {};

\end{tikzpicture}

/
\

7R~

N

AL NN

If we are satisfied about where the label is going, we can do the same thing for all of the vertex labels —
that is, place them at the same node where the vertex dot went, only offset to the right or the left. In
order that the labels don’t get mixed up with the edges, I'm putting the labels a, b, and ¢ to the left of
their respective vertices; and I'm putting the labels d, e, f, and g to the right.

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% help lines (comment out when done)
\draw [help lines] (-1,-4) grid (5,4);

% edges from vertex a

\draw (0,2) -- (4,3);
\draw (0,2) -- (4,1);

14

\draw (0,2) -- (4,-3);

% edges from vertex b
\draw (0,0) -- (4,1);
\draw (0,0) -- (4,-1);

% edges from vertex c
\draw (0,-2) -- (4,3);
\draw (0,-2) -- (4,1);

% dot at vertex a

\node [vertex] at (0,2) {};
% label at vertex a

\node [left] at (0,2) {al};

% dot at vertex b

\node [vertex] at (0,0) {};
% label at vertex b

\node [left] at (0,0) {b};

% dot at vertex c

\node [vertex] at (0,-2) {};
% label at vertex a

\node [left] at (0,-2) {c};

% dot at vertex d

\node [vertex] at (4,3) {};

% label at vertex d

\node [right] at (4,3) {d};

% dot at vertex e

\node [vertex] at (4,1) {};

% label at vertex e

\node [right] at (4,1) {e};

% dot at vertex f

\node [vertex] at (4,-1) {};

% label at vertex f

\node [right] at (4,-1) {$£$};

% dot at vertex g

\node [vertex] at (4,-3) {I};
% label at vertex g

\node [right] at (4,-3) {g};

\end{tikzpicture}

/1

N,

f
%
AV

Let’s see what our picture looks like without the help lines.

(comment out when done)? Let’s do that.)

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% help lines (comment out when done)
% \draw [help lines] (-1,-4) grid (5,4);

% edges from vertex a
\draw (0,2) -- (4,3);
\draw (0,2) -- (4,1);
\draw (0,2) -- (4,-3);

% edges from vertex b
\draw (0,0) -- (4,1);
\draw (0,0) -- (4,-1);

% edges from vertex c
\draw (0,-2) -- (4,3);
\draw (0,-2) —— (4,1);

% dot at vertex a

\node [vertex] at (0,2) {};
% label at vertex a

\node [left] at (0,2) {a};

% dot at vertex b

\node [vertex] at (0,0) {};
% label at vertex b

\node [left] at (0,0) {b};

% dot at vertex c

\node [vertex] at (0,-2) {};
% label at vertex a

\node [left] at (0,-2) {c};

16

(Remember the comment % help lines

% dot at vertex d

\node [vertex] at (4,3) {};

% label at vertex d

\node [right] at (4,3) {d};

% dot at vertex e

\node [vertex] at (4,1) {3};

% label at vertex e

\node [right] at (4,1) {e};

% dot at vertex f

\node [vertex] at (4,-1) {};
% label at vertex f

\node [right] at (4,-1) {$£f$};

% dot at vertex g

\node [vertex] at (4,-3) {};
% label at vertex g

\node [right] at (4,-3) {g};

\end{tikzpicture}

d
a

e
b

f
c

g

Now for a little fine-tuning. I don’t know about you, but to me, the labels seem just a bit too close to
the vertices they’re labeling. (You might disagree, but bear with me.) There is an easy way to adjust
“by hand” the placement of text around nodes: we add an offset. When we write

\node [left] at (0,2) {a};
the offset of the left position is Opt by default; it would be the same if we wrote
\node [left=0pt] at (0,2) {a};

Now let’s do a few little TikZ pictures to see how just this one vertex with its one label would look if we
adjust the offset a little. Don’t forget to include our vertex style, or else the code blocks below won’t
compile.

Offset = Opt:

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

17

% dot at vertex a

\node [vertex] at (0,2) {};

% label at vertex a, offset = 0
\node [left=0pt] at (0,2) {al};
\end{tikzpicture}

a®

Offset = 1pt:

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% dot at vertex a

\node [vertex] at (0,2) {};

% label at vertex a, offset =1
\node [left=1pt] at (0,2) {a};
\end{tikzpicture}

a®

Offset = 2pt:

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% dot at vertex a

\node [vertex] at (0,2) {};

% label at vertex a, offset = 2
\node [left=2pt] at (0,2) {a};
\end{tikzpicture}

ae

Offset = 3pt:

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% dot at vertex a

\node [vertex] at (0,2) {};

% label at vertex a, offset = 3
\node [left=3pt] at (0,2) {a};
\end{tikzpicture}

a @

Offset = 4pt:

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

18

% dot at vertex a

\node [vertex] at (0,2) {};

% label at vertex a, offset = 4
\node [left=4pt] at (0,2) {a};

\end{tikzpicture}

a @

To me, the offset by 4pt looks the best. If you disagree, feel free to alter it. Now just insert that
=4pt offset after each left or right argument to the vertex label nodes. The offset is not an absolute
direction; it’s just a distance that modifies (in this case) either the left or the right argument to the
node. This means that we don’t have to do anything different with our labels that are to the right of
their vertices than we do for those that are placed to the left of their vertices.

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% help lines (comment out when done)
% \draw [help lines] (-1,-4) grid (5,4);

% edges from vertex a
\draw (0,2) -- (4,3);
\draw (0,2) -- (4,1);
\draw (0,2) -- (4,-3);

% edges from vertex b
\draw (0,0) -- (4,1);
\draw (0,0) -- (4,-1);

% edges from vertex c
\draw (0,-2) -- (4,3);
\draw (0,-2) —— (4,1);

% dot at vertex a

\node [vertex] at (0,2) {};

% label at vertex a

\node [left=4pt] at (0,2) {a};

% dot at vertex b

\node [vertex] at (0,0) {};

% label at vertex b

\node [left=4pt] at (0,0) {b};

% dot at vertex c

\node [vertex] at (0,-2) {};

% label at vertex a

\node [left=4pt] at (0,-2) {c};

% dot at vertex d

\node [vertex] at (4,3) {};

% label at vertex d

\node [right=4pt] at (4,3) {d};

% dot at vertex e
\node [vertex] at (4,1) {};

19

% label at vertex e
\node [right=4pt] at (4,1) {e};

% dot at vertex f

\node [vertex] at (4,-1) {};

% label at vertex f

\node [right=4pt] at (4,-1) {$£$};

% dot at vertex g

\node [vertex] at (4,-3) {I};

% label at vertex g

\node [right=4pt] at (4,-3) {gl};

\end{tikzpicture}

d
a

e
b

f
c

g

I think this looks like our original hand-drawn picture! Feel free to go back and do some of your own
fine-tuning. When you're ready, test your understanding with these exercises.

EXERCISES FOR PROJECT 2

1. Make a grid of help lines with the lower left corner of the rectangular grid at (—2,—2) and the
upper right corner at (2,2). Using the vertex style developed in this project (modified if you like),
put a dot at each non-origin intersection point of the help lines. Put a noticeably different sort of
dot at the origin.

2. Modify the final graph picture in this project so that there is an additional edge from a to f, but
no edge from b to e.

3. Modify the final graph picture in this project by adding an additional vertex h at (4, —5), and give
it edges to ¢ and b.

4. Modify the final graph picture in this project by defining and using a new vertex style, called
vertex2, that makes dots that are about half the size as the ones in the vertex style and are also
green. (If you’d like to use something fancier than green, see the “Using colors in LaTeX” page in
the Overleaf help documentation for a list of available xcolor colors. Be sure you've loaded the
appropriate xcolor option before loading TikZ in your preamble.)

5. Draw a picture of K3 3, the complete bipartite graph from 3 vertices to 3 vertices, using ingredients
from the code in the block for our final graph picture in this project.

Project 3: field extension diagram

20

In this project, we introduce TikZ’s graph drawing algorithms, and demonstrate how you can use them
to create “nice-looking” diagrams without having to place each element of the diagram by hand as we did
in previous projects. We'll recreate this field extension diagram (such as you might see in an Abstract
Algebra class):

0 (2, Jz)

IR

NEE O(VT) O Gz

h \
\‘\\.
- -
First off, we are going to need to change IATEX engines. (A IATEX engine is a compiler. I'm not sure why
it’s called an engine in this context, but it’s a common usage.) Pictures that use TikZ’s graph drawing
packages need to be compiled with the Lual&ATEX engine. If you try to compile any of the pictures in

this project with the pdfIATEX engine, it may or may not throw an error, but the pictures will definitely
not look right.

Switching IATEX engines in Overleaf is just a matter of finding a dropdown menu — see this help page:
https://www.overleaf.com/learn/how-to/Changing_compiler

(Briefly: click on the Menu icon at the top left of the page, find the “Compiler” menu under “Settings”,
and set it to “LuaLaTeX”.)

If you are using a IATEX editor on your own machine, you will also need to switch compilers, but there
will be a different way to do it. For example, in TeXstudio, you put into your preamble the following
“magic comment” (with the % sign!):

% !'TeX program = lualatex
If you're using a different editor, there may be a different magic comment.

By the way, as far as I've been able to tell, you can just use the Lual&TEX engine all the time; it can
deal with everything that pdfIATEX can. There might be some very subtle differences in the pdf file, but
nothing very noticeable.

What you will notice, if you use the graph drawing packages very much, is that pictures using these
packages can take a relatively long time to compile. If you are working on a document that has
mostly “ordinary” IKITEX with a few pictures, you can comment out the pictures temporarily if you
are working on a non-picture part of the document. For this, load the verbatim package by putting
\usepackage{verbatim} in your preamble. Then, to comment out a block of code, enclose the stuff to
be commented within \begin{comment} ... \end{comment}

We are going to draw our field extension diagram using the Layered Layouts library (see the page
https://tikz.dev/gd-layered from the PGF/TikZ Manual for much more about this library and the
algorithm behind it). To use this library, we include all of the following in our preamble:

\usepackage{pgfplots}
\usetikzlibrary{arrows.meta,graphs,graphdrawing}
\usegdlibrary{layered}

One more thing to include in the preamble:
\pgfplotsset{compat=1.183}

This is for a backwards-compatibility issue that may cause a warning (though not an actual error) upon
compiling.

21

Our field extension diagram is basically a graph, but instead of little dots for vertices, we have nodes
where we’ll be putting some text in math mode. For example, the top node in the picture will contain
the text Q(v/2,v/3). Since we’ll be using the Blackboard Bold font mathbb, for the rational numbers Q,
we need to include the amssymb package in our preamble:

\usepackage{amssymb}

Let’s get drawing! First we're going to create a prototype diagram to make sure the diagram’s shape is
how we want it. In order to avoid a lot of clutter, we’re first going to call the nodes a through e:

l\
\'/

We start by declaring that we’re going to be using one of TikZ’s graph drawing algorithms by using the
\graph [---] command. In the square brackets go the graph drawing library we’ll be using — for this
project, it’s layered layout. Then between the curly braces we’ll put our edges that will connect the
vertices a through e. Note that the code below doesn’t generate any output; we're just telling TikZ what
kind of graph we’d like to draw.

\begin{tikzpicture}
\graph [layered layout]{

3
\end{tikzpicture}

The Layered Layout algorithm, as the name suggests, will arrange nodes into layers. The default is that
the layers will be horizontal. Layers are kind of like levels in a tree diagram, but there is no requirement
that the graphs be trees. For our picture, the first level is the node a = Q(v/2, \/?:) This node is
connected by edges to three nodes on the second level, b, c, and d. Also, the edges are just plain edges,
without any arrows. We tell TikZ all of this with the command

a —— {b, c, d};

Each of the nodes b, ¢, and d on the second level is connected by an edge to the single vertex on the
third level, e:

{b: c, d} -- e,

That’s it — there are no more levels, and we’ve told TikZ about all of the nodes and edges. Let’s put
these two commands, a -- {b, ¢, d}; and {b, c, d} -- e;, into our graph:

\begin{tikzpicture}
\graph [layered layout]{
a -—- {b, c, d};

{b, c, d} —- e;

3

\end{tikzpicture}

b/i\d
N1/

22

This graph is isomorphic to the one we want; only the text in the nodes needs to be changed. Placing
text in a node when using TikZ’s graph drawing algorithms is done in a different way from what we’ve
seen before: you don’t place text between curly braces; instead, you place it in double quotes " --- ".
You need to tell TikZ explicitly that you're in math mode, too. In the next picture, we’ve replaced our
temporary labels a through e with the fields Q(v/2,v/3) etc. Pro tip: type out all of your complicated
math or other node text in a separate place — a plain text document in another tab, for example — and
copy/replace the temporary labels one by one.

\begin{tikzpicture}

\graph [layered layout] {

"$\mathbb{Q} (\sqrt{2}, \sqrt{3})$" --

{"$\mathbb{Q} (\sqrt{2})$", "$\mathbb{Q} (\sqrt{6})$",
"$\mathbb{Q} (\sqrt{3})$"};

{"$\mathbb{Q} (\sqrt{2})$", "$\mathbb{Q}(\sqrt{6})$",
"$\mathbb{Q} (\sqrt{3})$"}

-- "\mathbb{Q}";

3

\end{tikzpicture}

Q(v2,v3)
PN
Qv2) QW6 Q)

~N
Q

At this point, we could say we’re done with this project: we have a TikZ picture that looks a lot like our
hand-drawn field extension diagram.

However, there are some more things to talk about. First off: although in this case TikZ made its picture
just like we imagined it should be — with all of the layers like in our picture, and all of the nodes within
each layer in the same order — this doesn’t always happen. The algorithm behind TikZ’s Layered Layout
library might have its own ideas about what the “best” way to draw a diagram is. Sometimes it creates
a graph that, while isomorphic to the one you drew by hand, looks quite different from what you had in
mind. If this happens, sometimes there are tweaks you can make to “fix” TikZ’s version of the graph.
Sometimes, though, you basically just have to accept TikZ’s version, or resign yourself to placing all of
the vertices and edges by hand.

(Note: if you (1) are running I¥TEX on your own machine, not through Overleaf, and (2) are a fairly
confident programmer, then it’s actually possible to alter or add to the Lua files that underlie TikZ’s
graph drawing algorithms. I don’t think this is possible on Overleaf, and anyway it’s not for the faint of
heart, so I won’t discuss this option here.)

To give an example of what I'm talking about, let’s go back to our prototype diagram with its letters a
through e at the nodes.

\begin{tikzpicture}
\graph [layered layout]{
a —= {b, ¢, d};

{b, c, d} —- e;

3
\end{tikzpicture}

b/i\d
N%

What if we’d written e == {b, ¢, d}; instead of {b, c, d} -- e;? This would still specify the same
graph, up to isomorphism, but it makes a big difference in the appearance of our graph:

23

\begin{tikzpicture}
\graph [layered layout]{
a -- {b, c, d};

e —— {b, c, d};

3

\end{tikzpicture}

IRA
b ¢ d
We’ve confused TikZ into thinking that nodes a and e should be on the same level. In general, if you put
an edge x -- y; in your graph, it should be the case that x is on a higher level than y. However, it is

possible to tell TikZ explicitly which nodes go together on a level using the command { [same layer]

o

\begin{tikzpicture}
\graph [layered layout]{
a -- {b, c, d};

e — {b, c, d};

{ [same layer] a };

{ [same layer] b, c, d };
{ [same layer] e };
}s;
\

end{tikzpicture}

/\\
\\/

TikZ will automatically adjust horizontal and vertical spacing within the graph to accommodate espe-
cially long node text:

\begin{tikzpicture}

\graph [layered layout]{

a -- {b, "the quick red fox jumped over the lazy brown dog", d};
{b, "the quick red fox jumped over the lazy brown dog", d} -- e;
s

\end{tikzpicture}

a

wdmd

However, it’s also possible to make adjustments to the spacing by hand. Note: the following commands
won’t change how the Layered Layout groups and orders the layers. Also, in general, TikZ’s graph
drawing algorithms treat such “by-hand” adjustments as suggestions; they might not get honored in the
graph that is produced. Finally, in general, TikZ’s graph drawing algorithms already do a very good
job of setting up graphs and diagrams to be nicely spaced and readable. It’s best not to mess with its
choices much unless you have a good reason.

Adjustments

1. You can control how close together nodes on the same level are using the sibling distance
argument to the graph command. (Nodes on the same level are called “sibliings”.)

24

2. You can control the vertical space between levels using the level distance argument to the graph
command.

3. You can orient the graph vertically using the command vertical = x to y where x and y are
nodes that you want to place vertically relative to each other. The rest of the graph will then orient
itself relative to x and y.

4. You can alter the position of a node using the nudge command.
The following variations on our prototype diagram illustrate how these adjustments work.
1. Change sibling distance:

\begin{tikzpicture}

% nodes on the same level are spaced farther apart
\graph [layered layout, sibling distance=2cm] {

a -- {b, c, d};

{b, c, d} —- e;

s
\end{tikzpicture}

2. Change level distance:

\begin{tikzpicture}

% layers are spaced farther apart

\graph [layered layout, level distance=2cm] {
a - {b, c, d};

{b, c, d} —- e;

s
\end{tikzpicture}
a
b c d
e

3. Orient the graph vertically ...
(a) .. so that the orientation of the original graph flips:

\begin{tikzpicture}

% graph is oriented vertically

% (levels are vertical)

\graph [layered layout, vertical = b to d] {
a - {b, c, d};

{b, c, d} -- e;

3

\end{tikzpicture}

25

N,

N

(b) .. so that the orientation of the original graph is preserved:

\begin{tikzpicture}

% graph is oriented vertically

% (levels are vertical)

\graph [layered layout, vertical' = b to d] {
a -—- {b, c, d};

{b, c, d} -- e;

3
\end{tikzpicture}

S\,

N/

4. Nudge a node:

\begin{tikzpicture}

% node e is nudged a bit off-center
\graph [layered layout]{

a —— {b, c, d};

{b, ¢, d} -- el[nudge=(left:3mm)];
s

\end{tikzpicture}

(There are more options for tweaking the graph produced by TikZ’s graph drawing algorithms; see the
PGF/TikZ Manual’s Chapter 28: “Using Graph Drawing in TikZ” for details.)

EXERCISES FOR PROJECT 3

1. Alter our basic prototype diagram by increasing the spacing between nodes on the same level and
decreasing the spacing between levels (by how much is up to you). Here, for reference, is that basic
prototype diagram and the code that produced it:

\begin{tikzpicture}
\graph [layered layout] {
a —— {b, c, d};

{b, c, d} —- e;

s

\end{tikzpicture}

26

a
AN
b ¢ d
NI
2. Create the following diagram in TikZ:
o
c
IN/

e\ Y Y
b < o
—_| /
A
3. Create the following diagram in TikZ:
{sx™ ey AT

SN

(s K57 (v (vsH (s

(This is the subgroup lattice of Dy, the dihedral group of symmetries of a square. r denotes a
reflection, and s is a rotation by 7.)

4. (Could be challenging) Recreate the following diagram, to the extent possible:

27

QG V2

//:

Q(CV2) QCPV2) Q((PV2) Q(V2) @

X % \\

QGv2 Q(V2) Q(i,v2) QUL+i)V2) Q((1-i)V2)

\//l\\/
\J/

This is the diagram on the cover of the first edition of Dummit and Foote’s Abstract Algebra. You
may find it tricky to make TikZ reproduce the diagram exactly, but you should at least reproduce
an isomorphic graph that preserves levels horizontally (though not necessarily the order of the
nodes within levels) and has no more than a few edge-crossings.

Note: TikZ’s Layered Layout algorithm uses a heuristic to try and minimize edge crossings while
keeping to the rule that edges go more or less directly to their destinations, without becoming too
long or winding. It doesn’t always produce a graph with the minimum possible number of edge
crossings subject to this constraint, though.

Project 4: inclined plane diagram with apple

In this project, we are going to draw this free-body diagram of an apple sliding down an inclined plane:

... only we're going to include this photograph of an actual apple:

I found a photograph of an apple on an almost-white background and cropped it a bit so that it will
appear to be resting on its base on the inclined plane later.

28

First, as we did in Project 2, we mark the (z,y) coordinates of the important pieces of the picture:

(0 ©)
A

Some paper-and-pencil (and calculator) work was required to find these coordinates:

o I decided to use a 3-4-5 right triangle, oriented as in my hand-drawn picture and with vertex A at
the origin. That gave me points B and C.

e Then I decided to put the apple so that its z-coordinate was 2.5, or % Since the line joining points

Aand Cisy = %x, this meant that the y-coordinate of point D is % . g = %. Note: TikZ doesn’t
care whether you enter coordinates as decimals or fractions: putting the coordinates of point D as
(2.5, 1.875) is fine, and so is (5/2, 15/8).

e I decided that point E should be at height %, and it should be on the same vertical line as point

. . 5 1
D, so its coordinates are (3, 3).

e To find the coordinates of point F', I first found the equation of the line through D(%, %) perpen-
dicular to the line y = %x. This turns out to be y = —%x + %. Then I found the line through
E(%7 %) parallel to the line y = %x. This came out to be y = 3z — %. Then I found the point of

79 199

intersection of these two lines. This was (gz, 555), so that was where point F' went.

First let’s draw the big triangle, the horizontal and vertical measuring bars, and the two little angle
markers.

We draw the big triangle with the \draw command, using the argument thick to make the sides of the
triangle a bit thicker than the default thickness. Note that we can draw all three sides of the big triangle
in a single \draw command:

\draw [thick] (0,0) -- (4,0) -- (4,3) —- (0,0);
accomplishes the same thing as

\draw [thick] (0,0) -- (4,0);
\draw [thick] (4,0) -- (4,3);
\draw [thick] (4,3) -- (0,0);

We do a similar thing for the little right triangle corner, only we don’t make the lines thick:
\draw (3.8,0) -- (3.8, .2) -- (4,.2);
A few words about the horizontal and vertical measuring bars for z and y:

e We drew a long line segment for each of these measuring bars, rather than drawing two short
segments for each. Later, we’ll place nodes with x and y there, and give each of them a white
background.

29

e Rather than draw the tiny endcaps for the x and y line segments “by hand”, we used an arrow
tip called Bar from the arrows.meta library, so we need to load this library first. (You could also
include the command \usetikzlibrary{arrows.meta} in the preamble.) This library has lots of
fancy, customizable arrow tips. See Section 16.5, Reference: Arrow Tips, from the TikZ Manual
for details.

Note the syntax for using a fancy arrow tip:

\draw [-{Bar}] (0,0) -- (1,0); produces —
\draw [{Bar}-] (0,0) -- (1,0); produces +—
\draw [{Bar}-{Bar}] (0,0) -- (1,0); produces +—

e We drew the x and y measurement bars at a distance of 0.3 from the horizontal and vertical legs,
respectively, of the big triangle, because ... it looked like the right distance. You should adjust your
measurement bars (and other details of the picture) to suit your taste.

To draw the little arc for the acute angle a, we first had to do a bit of trig: tan(a) = %, and « is an acute
angle, so a =~ 36.87°. Once we know this, we use the arc path in the draw command. The following
command tells TikZ to sweep out an arc of a circle with radius 0.5 centered at (0,0) from the starting
angle of 0 to the ending angle of 36.87°:

\draw[radius=0.5 cm] (0.5,0) arc [start angle=0, end angle=36.87];

Notice that this command did not actually specify that the center of the circle from which the arc came
is (0,0). This is implied: the point (0.5,0) is where the arc begins; the starting angle is 0; and the radius
is 0.5 cm. Then to get from the starting point to the center of the circle, we’d go “backwards” a distance
of 0.5 cm, putting us at (0,0).

As we did in Project 2, we’ll have TikZ draw a grid to help us make sure we're placing the components
of the picture where we intend to place them.

\begin{tikzpicture}
% load the arrows library
\usetikzlibrary{arrows.meta}

% help lines (comment out when done)
\draw [help lines] (-1,-2) grid (5,6);

% the triangle for the inclined plane
\draw [thick] (0,0) -- (4,0) -- (4,3) -- (0,0);

% the little right triangle corner
\draw (3.8,0) -- (3.8, .2) —— (4,.2);

% the x measuring bar
\draw [{Bar}-{Bar}] (0,-0.3) -- (4,-0.3);

% the y measuring bar
\draw [{Bar}-{Bar}] (4.3,0) —— (4.3,3);

% the little arc for the angle
\draw [radius = 0.5 cm] (0.5,0) arc
[start angle=0, end angle = 36.87];

\end{tikzpicture}

30

Next we’ll draw the force arrows: the downwards arrow for the force of gravity on the apple, and the
dotted lines for the components of the gravity force parallel and perpendicular to the inclined plane.
(The apple itself we’ll leave for last, and we can always re-size it.) I decided to have the downwards
(gravity) force arrow go from the apple straight down to where the z-coordinate is 0.5.

To draw the dotted lines, we first needed to do a bit of math. Since the apple will be at (3, 12), this

vertical arrow will go from (%, %5) to (g, %) The line parallel to the inclined plane is thefl ggoing to
have slope % and contain the point (%, %), S0 its equation is y = %x — 18—1. The line from the apple
perpendicular to the inclined plane must have slope —% and contain the point (%, %), so its equation is

=4z 12@ Finally, the point where these two lines intersect is (%, %g), and this is found by setting
3y — i = —ix + %. Notice that we can leave the coordinates of the endpoints of our lines as fractions

if we like; TikZ will do the calculation when it draws the line.

\begin{tikzpicture}
% load the arrows library
\usetikzlibrary{arrows.meta}

% help lines (comment out when done)
\draw [help lines] (-1,-2) grid (5,6);

% the triangle for the inclined plane
\draw [thick] (0,0) -- (4,0) -- (4,3) -- (0,0);

% the little right triangle cormer
\draw (3.8,0) -- (3.8, .2) -- (4,.2);

% the x measuring bar
\draw [{Bar}-{Bar}] (0,-0.3) -- (4,-0.3);

% the y measuring bar
\draw [{Bar}-{Bar}] (4.3,0) —— (4.3,3);

% the little arc for the angle
\draw [radius = 0.5 cm] (0.5,0) arc
[start angle=0, end angle = 36.87];

% the dashed line pointing about 5:00 from the apple
\draw [dashed, ->] (5/2,15/8) -- (79/25,199/200);

31

% the line pointing down from the apple
\draw [->] (2.5,15/8) -- (5/2,.5);

% the line parallel to the plane
\draw [dashed, ->] (79/25,199/200) -- (5/2,1/2);

\end{tikzpicture}

\
N\
\
-

L

Before we go any further: do those arrows on the little triangle look a little hard to see to you? They do
to me, so 'm going to make them look nicer. First of all, TikZ’s default arrow tip looks a bit curvy and
insubstantial for this picture. I want the arrow tips to be solid triangles. Looking through the section
16.5 Reference: Arrow Tips in the TikZ Manual, I find an arrow tip called Triangle. Here is what just
the little force arrow triangle looks like with the Triangle arrow tip substituted for the default one:

\[

\begin{tikzpicture}

% the dashed line pointing about 5:00 from the apple
\draw [dashed, -{Triangle}] (5/2,15/8) -- (79/25,199/200);

% the line pointing down from the apple
\draw [-{Triangle}] (2.5,15/8) -- (5/2,.5);

% the line parallel to the plane

\draw [dashed, -{Triangle}] (79/25,199/200) -- (5/2,1/2);
\end{tikzpicture}

\]

Now one of the arrows looks great, but the other two are on top of each other, making it hard to
distinguish them. One solution to this problem is to have one (or both) arrow stop just slightly short of
their destination. Here we’ve made the downwards-pointing arrow stop a distance of 0.1 above its usual
destination.

\ [
\begin{tikzpicture}
% the dashed line pointing about 5:00 from the apple

32

\draw [dashed, -{Triangle}] (5/2,15/8) -- (79/25,199/200);

% the line pointing down from the apple
\draw [-{Triangle}] (2.5,15/8) -- (5/2,.5+.05);

% the line parallel to the plane

\draw [dashed, -{Triangle}] (79/25,199/200) -- (5/2,1/2);
\end{tikzpicture}

\]

Another possible solution is to leave the arrows in their original positions but use a narrower arrow tip,
like Stealth:

\ [

\begin{tikzpicture}

% the dashed line pointing about 5:00 from the apple
\draw [dashed, -{Stealth}] (5/2,15/8) -- (79/25,199/200);

% the line pointing down from the apple
\draw [-{Stealth}] (2.5,15/8) -- (5/2,.5);

% the line parallel to the plane

\draw [dashed, -{Stealth}] (79/25,199/200) -- (5/2,1/2);
\end{tikzpicture}

\]

I like this option — using the Stealth tip — better, so I've incorporated it into our big picture below.

I’ve also inserted force arrow labels near the midpoints of the lines using the node command, as we did
in Project 1. I did some fine-tuning of the placement of the labels using the optional offset to the node
placement arguments. For example, the command

\node [below right] at (283/100, 299/400) {$F_{I|}$};

put the label Fj; a bit below and to the right of the point (%, %). In my opinion, this default

below right placement put the label a little too far from its line, so I inserted a negative offset:
\node [below right=-1pt] at (283/100, 299/400) {$F_{I[}$3};

(See Section 17.5.2, Basic Placement Options, in the Nodes and Edges chapter of the TikZ Manual for
more details.)

Here is what we have so far:

\begin{tikzpicture}
% load the arrows library
\usetikzlibrary{arrows.meta}

% help lines (comment out when done)
\draw [help lines] (-1,-2) grid (5,6);

% the triangle for the inclined plane

33

\draw [thick] (0,0) -- (4,0) -- (4,3) -- (0,0);

% the little right triangle corner
\draw (3.8,0) -- (3.8, .2) -- (4,.2);

% the x measuring bar
\draw [{Bar}-{Bar}] (0,-0.3) -- (4,-0.3);

% the y measuring bar
\draw [{Bar}-{Bar}] (4.3,0) -- (4.3,3);

% the little arc for the angle
\draw [radius = 0.5 cm] (0.5,0) arc
[start angle=0, end angle = 36.87];

% the dashed line pointing about 5:00 from the apple, and the label on it
\draw [dashed, -{Stealth}] (5/2,15/8) -- (79/25,199/200);
\node [above right=-2pt] at (283/100, 287/200) {F_{\perp}};

% the line pointing down from the apple, and the label on it
\draw [-{Stealth}] (2.5,15/8) -- (5/2,.5);
\node [left] at (5/2, 19/16) {F_g3};

% the line parallel to the plane, and the label on it
\draw [dashed, -{Stealth}] (79/25,199/200) -- (5/2,1/2);
\node [below right=-1pt] at (283/100, 299/400) {F_{I}};

\end{tikzpicture}

Now we just need to place the apple!

Before we go any further, a NOTE: If all you want to do it to display a picture amongst your text,
there’s no need to use TikZ: INTEX’s graphicx package, which includes the includegraphics command,
is perfectly fine. There are a couple of situations where you’d want to use TikZ rather than TEX’s
graphicx package:

e Use TikZ when you are including a graphic within a TikZ picture (so that the graphic has to be
properly sized, spaced, layered, and rotated with respect to the rest of the picture), which is what
we’re doing here.

34

o Use TikZ when you wish to use masking (using an image to hide or reveal part of another image)
— as far as I know, this isn’t possible with just BTEX, although it might be in the future.

Now let’s talk about including images in TikZ pictures. My apple picture is called apple.png, and I've
saved it in the same directory on Overleaf as this present document.

Before I can use the apple picture in my TikZ picture, I need to declare the image at the size it’ll be used
in my TikZ picture. This I've done by putting \pgfdeclareimage [height=10mm] {the_apple}{applel}
in the preamble. (Note: you can also just include the image within the tikzpicture environment where
you're using it. I've declared it in the preamble here because I'll be using it in several different TikZ
pictures within the same document.)

o I've included the optional height argument in my declaration. By setting only the height and not
the width (or vice versa), I preserve the aspect ratio of the original picture. I chose 10mm for the
height after playing around with re-sizings of the apple compared to the inclined plane picture until
I found the size that looked right.

e the_apple is the nickname I'm giving to my apple picture — this is how I’ll refer to it within a
TikZ picture.

e apple is the actual name of the file with my apple picture in it — without the file extension.

Having declared the apple picture, I can use it in the tikzpicture environment. Here it is, at the size I
want it for the big picture, with no rotation:

\begin{tikzpicture}
\pgftext [at=\pgfpoint{Ocm}{O0cm}] {\pgfuseimage{the_apple}}
\end{tikzpicture}

Next I need to determine how much to rotate the apple. Some more paper-and-pencil work involving
similar triangles told me that I needed to rotate the apple by tan~'(2) ~ 36.87° anticlockwise from the
vertical (that’s the same angle measure as «), in order that it appear to be sliding on its base down
the inclined plane. That’s what the next command accomplishes .. only what TikZ is really doing is

a coordinate transformation. It’s rotating the entire plane anticlockwise by 36.87°. (See Section 25.3:
Coordinate Transformations in the TikZ Manual.)

\begin{tikzpicture}
\pgftext[rotate=36.87, at=\pgfpoint{Ocm}{Ocm}]{\pgfuseimage{the_apple}}
\end{tikzpicture}

In the following command, the the at=\pgfpoint{5cm}{0cm}] part doesn’t actually move the resulting

picture 5 units to the right, as you might expect; the result looks exactly like the previous picture. This
is basically because there is nothing else for pgf to refer to when it places the image.

\begin{tikzpicture}
\pgftext[rotate=36.87, at=\pgfpoint{5cm}{0cm}]{\pgfuseimage{the_applel}}
\end{tikzpicture}

Now compare this with what happens when we place a sequence of apples at a distance of 5 cm from the
origin, with rotations about the origin of 0°, 15°, 30°, 45°, and 60°.

\begin{tikzpicture}
% the base apple, sitting at (0,0) with no rotation

35

\pgftext[rotate=0, at=\pgfpoint{Ocm}{Ocm}]{\pgfuseimage{the_applel}}
% distance = 5cm, rotation = 0

\pgftext[rotate=0, at=\pgfpoint{5cm}{0cm}]{\pgfuseimage{the_applel}}
% distance = 5cm, rotation = 15

\pgftext[rotate=15, at=\pgfpoint{5cm}{0cm}]{\pgfuseimage{the_apple}}
% distance = 5cm, rotation = 30

\pgftext[rotate=30, at=\pgfpoint{5cm}{O0cm}]{\pgfuseimage{the_apple}}
% distance = 5cm, rotation = 45

\pgftext[rotate=45, at=\pgfpoint{5cm}{Ocm}]{\pgfuseimage{the_apple}}
% distance = 5cm, rotation = 60

\pgftext[rotate=60, at=\pgfpoint{5cm}{Ocm}]{\pgfuseimage{the_apple}}
\end{tikzpicture}

' ' This would imply that to get the apple into the right place in our

inclined plane picture, we should give it a rotation of 36.87° and place it at a distance of d((0, 0), (2.5, %))
from the origin, like this:

\pgftext [rotate=36.87, at=\pgfpoint{3.125cm}{0cm}]{\pgfuseimage{the_apple}}

The problem with this is that it puts the line of the inclined plane going right through the apple. (Try
it in the finished picture below!)

What I actually did when I placed the apple was to eyeball it. The z-value 3.125 looked OK, but then I
needed to move the apple up and to the left. Fortunately, this was easy to do, because when pgf does
a rotation, it is really making a coordinate transformation. That is, having rotated 36.87°, we just need
to move it up or down with respect to that coordinate transformation. For example, in the command

\pgftext[rotate=36.87, at=\pgfpoint{3.15cm}{.5cm}]{\pgfuseimage{the_apple}},

the .5cm moves the apple “up” in the rotated coordinate system a distance of .5cm. This corresponds to
moving the apple in a direction perpendicular to the inclined plane by .5cm.

Finally, we placed the apple “first” in the picture so that it would be “under” the lines for the rest of
the inclined plane picture. (This is so that the picture wouldn’t cover up some of the width of the lines,
and so that the apple would appear to be resting on the inclined plane.)

\begin{tikzpicture}
% load the arrows library
\usetikzlibrary{arrows.meta}

% the apple
% (place it first so it goes underneath!)

\pgftext[rotate=36.87, at=\pgfpoint{3.15cm}{.5cm}]{\pgfuseimage{the_apple}}

% help lines (comment out when done)
%\draw [help lines] (-1,-2) grid (5,6);

% the triangle for the inclined plane

36

\draw [thick] (0,0) -- (4,0) -- (4,3) -- (0,0);

% the little right triangle corner
\draw (3.8,0) -- (3.8, .2) -- (4,.2);

% the x measuring bar, and the x label
\draw [{Bar}-{Bar}] (0,-0.3) -- (4,-0.3);
\node [below] at (2,-0.3) {x};

% the y measuring bar, and the y label
\draw [{Bar}-{Bar}] (4.3,0) -- (4.3,3);
\node [right] at (4.3,1.5) {y};

% the little arc for the angle,

% and the alpha label

\draw [radius = 0.5 cm] (0.5,0) arc
[start angle=0, end angle = 36.87];
\node [right] at (0.5,0.25) {α};

% the dashed line pointing about 5:00 from the apple, and the label on it
\draw [dashed, -{Stealth}] (5/2,15/8) -- (79/25,199/200);
\node [above right=-2pt] at (283/100, 287/200) {F_{\perp}};

% the line pointing down from the apple, and the label on it
\draw [-{Stealth}] (2.5,15/8) -- (5/2,.5);
\node [left] at (5/2, 19/16) {F_g3};

% the line parallel to the plane, and the label on it
\draw [dashed, -{Stealth}] (79/25,199/200) —-- (5/2,1/2);
\node [below right=-1pt] at (283/100, 299/400) {$F_{||}$};

\end{tikzpicture}

I think this is done! As usual, fine-tune it if you wish, and then try these exercises.

EXERCISES FOR PROJECT 4

1. Take a picture with your phone. Save it as a .jpg or.png file, upload it to Overleaf, and put it in
the same folder as the one where you're doing these exercises. Declare it at a convenient size, and
display it right-side up and then upside down.

2. Use TikZ to draw a square about 2 inches on a side. Put your picture from Problem 1 in the middle
of it (you may have to change the size at which you declare it).

3. Draw a square with vertices at each corner, and label them a, b, ¢, and d. Put fancy arrow tips
(from the arrows.meta library) on the lines so that they go clockwise around the square. Now you
have a directed graph on 4 vertices.

37

N

A -

If you want to have the arrows look as they do in the picture, with black lines and colored arrow
tips, like this , the syntax for that is \draw [-{Triangle[orangel}] (0,0) -- (1,0);
You can also adjust the size of the arrow tips with optional arguments for length and width:
\draw [-{Triangle[orange, length=3mm, width=3mm]}] (0,0) -- (1,0); produces

. Take the completed inclined plane / apple picture from this project and substitute your picture for
the apple. Rotate it so that it looks like it’s sliding down the plane, just like we did for the apple.

Possible solutions to exercises

Project 1: parabola, possible exercise solutions
. Make a square with its corners at (—1,1), (1,1), (1,—1), and (-1, —1).

\begin{tikzpicture}
\draw (-1,1) -- (1,1);
\draw (1,1) -- (1,-1);
\draw (1,-1) -- (-1,-1);
\draw (-1,-1) -- (-1,1);
\end{tikzpicture}

. Make a yellow diamond with its corners at (0,1), (1,0), (0,—1), and (—1,—0). Center the picture
on the page horizontally.

\[

\begin{tikzpicture}

\draw [yellow] (0,1) -- (1,0);
\draw [yellow] (1,0) -- (0,-1);
\draw [yellow] (0,-1) -- (-1,0);
\draw [yellow] (-1,0) -- (0,1);
\end{tikzpicture}

\]

. Make a picture similar to our final parabola picture, except change the function to y = —z3+2z+1.
Adjust the axes as needed. Include a label with the equation of the function.

38

\begin{tikzpicture}

\draw [->] (-3,0) -- (3,0);

\draw [->] (0,-2) -- (0,4);

\draw [smooth, samples=100, domain=-1.8:1.8] plot(\x, {-(\x)"3 + 2x(\x) +1});
\node at (2.6,2.3) {$y=-x"3 + 2x + 1$};

\end{tikzpicture}

y=—a3+2x+1

4. Make a picture showing the graphs of the functions y = 22 — 2 and y = —22 4+ 1 on the same set
of axes. Color the y = 22 — 2 graph red and the y = —22 + 1 graph blue. Include a label for each
graph showing its equation.

\begin{tikzpicture}

\draw [->] (-3,0) —— (3,0);

\draw [->] (0,-3) -- (0,3);

\draw [red, smooth, samples=100, domain=-2.1:2.1] plot(\x, {(\x)"2 -2});
\draw [blue, smooth, samples=100, domain=-1.9:1.9] plot(\x, {-(\x)"2 +11});
\node at (3.1,2.1) {$y=x"2-2%};

\node at (3.05,-2.2) {$y=-x"2+18};

\end{tikzpicture}

y=2x2-2

y=—a?+1

Project 2: bipartite graph, possible exercise solutions

1. Make a grid of help lines with the lower left corner of the rectangular grid at (—2,—2) and the
upper right corner at (2,2). Using the vertex style developed in this project (modified if you like),
put a dot at each non-origin intersection point of the help lines. Put a noticeably different sort of
dot at the origin.

39

\begin{tikzpicture}

% vertex style for dots
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% grid lines
\draw[help lines] (-2,-2) grid (2,2);

% bottom row of dots (with y=-2)
\node [vertex] at (-2,-2) {};
\node [vertex] at (-1,-2) {};
\node [vertex] at (0,-2) {I};
\node [vertex] at (1,-2) {};
\node [vertex] at (2,-2) {};

% next row up of dots (with y=-1)
\node [vertex] at (-2,-1) {};
\node [vertex] at (-1,-1) {};
\node [vertex] at (0,-1) {};
\node [vertex] at (1,-1) {};
\node [vertex] at (2,-1) {};

% middle row up of dots (with y=0)

\node [vertex] at (-2,0) {};

\node [vertex] at (-1,0) {I};

% big red dot at (0,0)

\node [circle, red, fill, inner sep=4pt] at (0,0) {};
\node [vertex] at (1,0) {};

\node [vertex] at (2,0) {};

% next row up of dots (with y=1)
\node [vertex] at (-2,1) {I};
\node [vertex] at (-1,1) {I};
\node [vertex] at (0,1) {};
\node [vertex] at (1,1) {};
\node [vertex] at (2,1) {};

% top row up of dots (with y=2)
\node [vertex] at (-2,2) {};
\node [vertex] at (-1,2) {};
\node [vertex] at (0,2) {};
\node [vertex] at (1,2) {};
\node [vertex] at (2,2) {};

\end{tikzpicture}
® ® ® @ ®

2. Modify the final graph picture in this project so that there is an additional edge from a to f, but

40

no edge from b to e.

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% help lines (comment out when done)
% \draw [help lines] (-1,-4) grid (5,4);

% edges from vertex a
\draw (0,2) -- (4,3);
\draw (0,2) -- (4,1);
\draw (0,2) -- (4,-3);
\draw (0,2) -- (4,-1);

% edges from vertex b
\draw (0,0) -- (4,-1);

% edges from vertex c
\draw (0,-2) -- (4,3);
\draw (0,-2) -- (4,1);

% dot at vertex a

\node [vertex] at (0,2) {};

% label at vertex a

\node [left=4pt] at (0,2) {a};

% dot at vertex b

\node [vertex] at (0,0) {};

% label at vertex b

\node [left=4pt] at (0,0) {b};

% dot at vertex c

\node [vertex] at (0,-2) {7};

% label at vertex a

\node [left=4pt] at (0,-2) {c};

% dot at vertex d

\node [vertex] at (4,3) {};

% label at vertex d

\node [right=4pt] at (4,3) {d};

% dot at vertex e

\node [vertex] at (4,1) {};

% label at vertex e

\node [right=4pt] at (4,1) {e};

% dot at vertex f

\node [vertex] at (4,-1) {};

% label at vertex f

\node [right=4pt] at (4,-1) {f};

% dot at vertex g

\node [vertex] at (4,-3) {I};

% label at vertex g

\node [right=4pt] at (4,-3) {g};

41

\end{tikzpicture}

d
a

e
b

f
c

[

3. Modify the final graph picture in this project by adding an additional vertex h at (4, —5), and give
it edges to c and b.

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% help lines (comment out when done)
% \draw [help lines] (-1,-4) grid (5,4);

% edges from vertex a
\draw (0,2) -- (4,3);
\draw (0,2) -- (4,1);
\draw (0,2) -- (4,-3);

% edges from vertex b
\draw (0,0) -- (4,1);
\draw (0,0) -- (4,-1);
\draw (0,0) -- (4,-5);

% edges from vertex c

\draw (0,-2) -- (4,3);
\draw (0,-2) -- (4,1);
\draw (0,-2) -- (4,-5);

% dot at vertex a

\node [vertex] at (0,2) {};

% label at vertex a

\node [left=4pt] at (0,2) {a};

% dot at vertex b

\node [vertex] at (0,0) {};

% label at vertex b

\node [left=4pt] at (0,0) {b};

% dot at vertex c

\node [vertex] at (0,-2) {};

% label at vertex a

\node [left=4pt] at (0,-2) {c};

42

% dot at vertex d

\node [vertex] at (4,3) {};

% label at vertex d

\node [right=4pt] at (4,3) {d};

% dot at vertex e

\node [vertex] at (4,1) {};

% label at vertex e

\node [right=4pt] at (4,1) {e};

% dot at vertex f

\node [vertex] at (4,-1) {};

% label at vertex f

\node [right=4pt] at (4,-1) {$£$l};

% dot at vertex g

\node [vertex] at (4,-3) {I};

% label at vertex g

\node [right=4pt] at (4,-3) {g};

% dot at vertex h

\node [vertex] at (4,-5) {};

% label at vertex h

\node [right=4pt] at (4,-5) {h};

\end{tikzpicture}

d
a

e
b

f
c

g

h

4. Modify the final graph picture in this project by defining and using a new vertex style, called
vertex2, that makes dots that are about half the size as the ones in the vertex style and are also
green. (If you’d like to use something fancier than green, see the “Using colors in LaTeX” page in
the Overleaf help documentation for a list of available xcolor colors. Be sure you've loaded the
appropriate xcolor option before loading TikZ in your preamble.) You may want to adjust the
spacing between the labels and the vertices too.

\begin{tikzpicture}

% \usepackage [dvipsnames]{xcolor} is needed in preamble

43

% for the LimeGreen color

% vertex style to be used at vertex nodes
\tikzstyle{vertex2}=[circle, fill=LimeGreen, inner sep=1pt]

% help lines (comment out when done)
% \draw [help lines] (-1,-4) grid (5,4);

% edges from vertex a
\draw (0,2) -- (4,3);
\draw (0,2) -- (4,1);
\draw (0,2) -- (4,-3);

% edges from vertex b
\draw (0,0) -- (4,1);
\draw (0,0) -- (4,-1);

% edges from vertex c
\draw (0,-2) -- (4,3);
\draw (0,-2) -- (4,1);

% dot at vertex a

\node [vertex2] at (0,2) {};
% label at vertex a

\node [left] at (0,2) {a};

% dot at vertex b

\node [vertex2] at (0,0) {};
% label at vertex b

\node [left] at (0,0) {bl};

% dot at vertex c

\node [vertex2] at (0,-2) {};
% label at vertex a

\node [left] at (0,-2) {c};

% dot at vertex d

\node [vertex2] at (4,3) {I};
% label at vertex d

\node [right] at (4,3) {d};

% dot at vertex e

\node [vertex2] at (4,1) {};
% label at vertex e

\node [right] at (4,1) {e};

% dot at vertex f

\node [vertex2] at (4,-1) {};
% label at vertex f

\node [right] at (4,-1) {$£$};

% dot at vertex g

\node [vertex2] at (4,-3) {};
% label at vertex g

\node [right] at (4,-3) {g};

\end{tikzpicture}

44

g

5. Draw a picture of K3 3, the complete bipartite graph from 3 vertices to 3 vertices, using ingredients
from the code in the block for our final graph picture in this project.

\begin{tikzpicture}

% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=2pt]

% help lines (comment out when done)
% \draw [help lines] (-1,-3) grid (5,3);

% edges from vertex a
\draw (0,2) -- (4,2);
\draw (0,2) -- (4,0);
\draw (0,2) -- (4,-2);

% edges from vertex b
\draw (0,0) -- (4,2);
\draw (0,0) -- (4,0);
\draw (0,0) -- (4,-2);

% edges from vertex c

\draw (0,-2) -- (4,2);
\draw (0,-2) -- (4,0);
\draw (0,-2) -- (4,-2);

% dot at vertex a

\node [vertex] at (0,2) {};

% label at vertex a

\node [left=4pt] at (0,2) {a};

% dot at vertex b

\node [vertex] at (0,0) {};

% label at vertex b

\node [left=4pt] at (0,0) {b};

% dot at vertex c
\node [vertex] at (0,-2) {7};
% label at vertex a

\node [left=4pt] at (0,-2) {c};

% dot at vertex d

45

\node [vertex] at (4,2) {};
% label at vertex d
\node [right=4pt] at (4,2) {d};

% dot at vertex e

\node [vertex] at (4,0) {};

% label at vertex e

\node [right=4pt] at (4,0) {e};

% dot at vertex f

\node [vertex] at (4,-2) {I};

% label at vertex f

\node [right=4pt] at (4,-2) {$£$};

\end{tikzpicture}

a d
b e
c f

Project 3: a field extension diagram, possible exercise solutions

1. Alter our basic prototype diagram by increasing the spacing between nodes on the same level and
decreasing the spacing between levels (by how much is up to you). Here, for reference, is that basic
prototype diagram and the code that produced it:

\begin{tikzpicture}
\graph [layered layout] {
a —— {b, c, d};

{b, c, d} -- e;

s

\end{tikzpicture}

b////i\\\\d
N%

\begin{tikzpicture}

\graph [layered layout, sibling distance=3cm, level distance=0.5cm] {
a -- {b, c, d};

{b, c, d} -- e;

s

\end{tikzpicture}

46

—
\

2. Create the following diagram in TikZ:

a

\
b C
\
e

e\ /)
< e}
a /
If you list the edges going from bottom to top, you will probably find that TikZ draws a graph that
is isomorphic to the hand-drawn graph above, but with the order of the levels reversed — that is,
the tree produced grows downward (like a root system instead of a tree). This orientation is baked
into the algorithm that the Layered Layout uses; see https://tikz.dev/gd-layered for details.

You may also find that the ordering of nodes within a level is different from the hand-drawn picture
— see comment after the exercise 4. solution.

L

\begin{tikzpicture}

\graph [layered layout, sibling distance = 2cm] {
a —— {b, ¢, d};

c —- {e, £f};

e ——- {g, h, i};

3
\end{tikzpicture}

g h i

If you really do want this tree to grow from top to bottom just as in the hand-drawn picture, you
can list the edges from top to bottom, like this:

\begin{tikzpicture}
\graph [layered layout, sibling distance = 2cm] {
g "€

h -- e;

i--e;

e -- ¢;

f - c;

b -- a;

c - a;

d -- a;

};
\end{tikzpicture}

47

\ /
b N / d
\ /

3. Create the following diagram in TikZ:

h
:

» —O0

Dg
e |
{sy* dev NET

/\\\//\

(s %7 {ray (rs) (r's7

Ny

\begin{tikzpicture}
\graph [layered layout, sibling distance = 1.5cm,
level distance = 1.5cm] {"S_3" -- {"$\langle (1,2) \rangle$"

[nudge=(left:14mm)], "$\langle (1,3) \rangle$"[nudge=(left:13mm)],
"$\langle (2,3) \rangle$"[nudge=(left:13mm)],

"$\langle (1,2,3) \rangle$" [nudge=(up:7mm)]};

{"$\langle (1,2) \rangle$", "$\langle (1,3)

\rangle$", "$\langle (2,3) \rangle$", "$\langle (1,2,3) \rangle$"}
-- "$1g";

+

\end{tikzpicture}

Dg
N
(s,7%) (r) (rs,r?)

/\\\/ \

(s) (rs)

\/

4. (Could be challenging) Recreate the following diagram, to the extent possible:

48

QG V2

.

Q(CV2) Q(*V2) Q((’\‘f

f)d? \f)

QV2) Q(\‘/‘E)

@ f) QUL +9)V2) Q(1-i)V2)

\//l\\/
\J

This is the diagram on the cover of the first edition of Dummit and Foote’s Abstract Algebra. You
may find it tricky to make TikZ reproduce the diagram exactly, but you should at least reproduce
an isomorphic graph that preserves levels horizontally (though not necessarily the order of the
nodes within levels) and has no more than a few edge-crossings.

Note: TikZ’s Layered Layout algorithm uses a heuristic to try to minimize edge crossings while
keeping to the rule that edges go more or less directly to their destinations, without becoming too
long or winding. It doesn’t always produce a graph with the minimum possible number of edge

crossings subject to this constraint, though.

\begin{tikzpicture}

\graph [layered layout, level distance =

"$\mathbb{Q} (i, \sqrt[8]1{2})$" --
{"$\mathbb{Q} (\zeta \sqrt[8]1{2})$",
"$\mathbb{Q} (\zeta~3 \sqrt[8]1{2})$",
"$\mathbb{Q} (\zeta"2 \sqrt[8]{2})$",
"$\mathbb{Q} (\sqrt [8]{2}) $",
"$\mathbb{Q} (i, \sqrt[4]1{2})$"};
"$\mathbb{Q} (\zeta \sqrt[8]1{2})$" --
"$\mathbb{Q} (i \sqrt[4]1{2})$";
"$\mathbb{Q} (\zeta"3 \sqrt[8]{2})$" --
"$\mathbb{Q}(i \sqrt[4]1{2})$";
"$\mathbb{Q} (\zeta"2 \sqrt[8]1{2})$" --
"$\mathbb{Q} (\sqrt [4]1{2})$";
"$\mathbb{Q} (\sqrt [8]{2})$" --
"$\mathbb{Q} (\sqrt [4]{2})$";
"$\mathbb{Q} (i, \sqrt[4]{2})$" --
{"$\mathbb{Q} (i \sqrt[4]1{2})$",
"$\mathbb{Q} (\sqrt [4]1{2})$",
"$\mathbb{Q} (i, \sqrt{2})$",
"$\mathbb{Q} ((i+1) \sqrt[4]1{2})$",
"$\mathbb{Q}((i-1) \sqrt[4]1{2})$"};
"$\mathbb{Q} (i \sqrt[4]1{2})$" —-
"$\mathbb{Q} (\sqrt{2})$";
"$\mathbb{Q} (\sqrt [4]{2})$" --
"$\mathbb{Q} (\sqrt{2})$";
"$\mathbb{Q} (i, \sqrt{2})$" --
{"$\mathbb{Q} (\sqrt{2})$",

1.6cm, sibling distance = 2cm] {

"$\mathbb{Q}(i)$", "$\mathbb{Q}(\sqrt{-2})$"};

"$\mathbb{Q}((i+1) \sqrt[4]{2})$" --
"$\mathbb{Q} (\sqrt{-2})3$";
"$\mathbb{Q}((i-1) \sqrt[4]1{2})$" --

49

"$\mathbb{Q} (\sqrt{-2})$";

"$\mathbb{Q} (\sqrt{2})$" -- "\mathbb{Q}";
"$\mathbb{Q} () $" -- "$\mathbb{Q}$";
"$\mathbb{Q} (\sqrt{-2})$" --
"\mathbb{Q}";

};
\end{tikzpicture}

Q(i, v/2)

P N

QEV2) Q(¢*V2) QG v2) __ QY2 Q(V2)

N

(iv2) QV2) Q(,v2) Qi+1Vv2) Q(i-1)V2)
(

NN 7

Q(v2) Q(2) Q(v-2)

N7

Q

Project 4: inclined plane, possible exercise solutions

1. Take a picture with your phone. Save it as a .jpg or.png file, upload it to Overleaf, and put it in
the same folder as the one where you're doing these exercises. Declare it at a convenient size, and
display it right-side up and then — to the right of the original — upside down.

Note for this one that because we want the second cat picture to end up (1) upside-down and (2)
to the right of the original picture, we need to initially place the picture to the left of the original
picture, and then rotate it clockwise.

\begin{tikzpicture}

% declare the cat picture:

\pgfdeclareimage [height=10mm] {cat_pic}{Sophie}

% right-side-up cat:
\pgftext[at=\pgfpoint{Ocm}{Ocm}]{\pgfuseimage{cat_picl}}

% upside-down cat

\pgftext[rotate=-180, at=\pgfpoint{-5cm}{0cm}]{\pgfuseimage{cat_pic}}
\end{tikzpicture}

2. Use TikZ to draw a square about 2 inches on a side. Put your picture from Problem 1 in the middle
of it (you may have to change the size at which you declare it).

\begin{tikzpicture}

% declaring the cat at a bit bigger scale

\pgfdeclareimage [height=20mm] {cat_pic}{Sophie}

% the square

\draw (0,0) -- (3,0) -- (3,3) -- (0,3) -- (0,0);

% the cat
\pgftext[at=\pgfpoint{l.5cm}{1.5cm}]{\pgfuseimage{cat_pic}}

50

\end{tikzpicture}

—
B

. Draw a square with vertices at each corner, and label them a, b, ¢, and d. Put fancy arrow tips
(from the arrows.meta library) on the lines so that they go clockwise around the square. Now you
have a directed graph on 4 vertices.

a L

R ——

A S |

c

If you want to have the arrows look as they do in the picture, with black lines and colored arrow
tips, like this , the syntax for that is \draw [-{Triangle[orange]l}] (0,0) -- (1,0);
You can also adjust the size of the arrow tips with optional arguments for length and width:
\draw [-{Triangle[orange, length=3mm, width=3mm]}] (0,0) -- (1,0); produces —

\begin{tikzpicture}
% vertex style to be used at vertex nodes
\tikzstyle{vertex}=[circle, fill, inner sep=1pt]

% the square, with arrows

\draw [-{Triangle[orange, length=3mm, width=3mm]}] (0,0) -- (0,3);
\draw [-{Triangle[orange, length=3mm, width=3mm]}] (0,3) -- (3,3);
\draw [-{Triangle[orange, length=3mm, width=3mm]}] (3,3) -- (3,0);
\draw [-{Triangle[orange, length=3mm, width=3mm]}] (3,0) -- (0,0);

% vertices at cormers

\node [vertex] at (0,0) {};
\node [vertex] at (3,0) {};
\node [vertex] at (0,3) {};
\node [vertex] at (3,3) {};

% vertex labels

\node [above left] at (0,3) {a};
\node [above right] at (3,3) {b};
\node [below right] at (3,0) {cl};
\node [below left] at (0,0) {a};

\end{tikzpicture}
a b
d T

o1

4. Take the completed inclined plane / apple picture from this project and substitute your picture for
the apple. Rotate it so that it looks like it’s sliding down the plane, just like we did for the apple.

\begin{tikzpicture}
% load the arrows library
\usetikzlibrary{arrows.meta}

% the cat

\pgfdeclareimage [height=15mm] {cat_pic}{Sophie}

% (place it first so it goes underneath!)

\pgftext[rotate=36.87, at=\pgfpoint{3.1lcm}{.75cm}]{\pgfuseimage{cat_picl}}

% help lines (comment out when done)
%\draw [help lines] (-1,-2) grid (5,6);

% the triangle for the inclined plane
\draW [tthk] (O,o) - (4,0) - (4)3) - (O)O);

% the little right triangle cormer
\draw (3.8,0) -- (3.8, .2) —— (4,.2);

% the x measuring bar, and the x label
\draw [{Bar}-{Bar}] (0,-0.3) -- (4,-0.3);
\node [below] at (2,-0.3) {x};

% the y measuring bar, and the y label
\draw [{Bar}-{Bar}] (4.3,0) -- (4.3,3);
\node [right] at (4.3,1.5) {y};

% the little arc for the angle,

% and the alpha label

\draw [radius = 0.5 cm] (0.5,0) arc
[start angle=0, end angle = 36.87];
\node [right] at (0.5,0.25) {α};

% the dashed line pointing about 5:00 from the apple, and the label on it
\draw [dashed, -{Stealth}] (5/2,15/8) -- (79/25,199/200);
\node [above right=-2pt] at (283/100, 287/200) {F_{\perp}l};

% the line pointing down from the apple, and the label on it
\draw [-{Stealth}] (2.5,15/8) -- (5/2,.5);

\node [left] at (5/2, 19/16) {F_gl};

% the line parallel to the plane, and the label on it

\draw [dashed, -{Stealthl}] (79/25,199/200) -- (5/2,1/2);
\node [below right=-1pt] at (283/100, 299/400) {$F_{|[}$};

\end{tikzpicture}

92

The content of this document is licensed under the Creative Commons Attribution 4.0 International
License. https://creativecommons.org/licenses/by/4.0/

93

