Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS 
This month's topics:
As Daniel Engber reported in the Chronicle of Higher Education for January 21, 2005, a team at the University of Bristol has used yarn and a crochet hook to build a model of the Lorenz manifold. This is the 2dimensional stable manifold of the origin in the Lorenz system
with the classic choice of parameters σ = 10, ρ = 28, and β = 8/3. According to Engber, Hinke Osinga and Bernd Krauskopf realized that the computer program they had devised for generating the Lorenz manifold could be adapted to produce a set of crocheting instructions. "Each computed point on the manifold translates to a type of crochet stitch. A mere 85 hours and 25,511 stitches later, the project was finished." Osinga and Krauskopf's work appeared in the fall issue of The Mathematical Intelligencer ; their preprint is available as a PDF file online. The crocheted Lorenz manifold struck the fancy of the international media, including the BBC (Mathematicians crochet chaos), CBC Radio (Crocheting Chaos), the Austrian ORF, and Channel One in Russia.
It could work." That's the end of Alessandra Stanley's review of the new TV series "Numb3rs," in the January 21 2005 New York Times. The plot line involves "Don, a decent, workaholic F.B.I. agent who turns to his math genius younger brother, Charlie" for help in tracking down a serial rapist. As Stanley tells it, "Charlie looks at a water sprinkler and has an Archimedean moment: he realizes that the same principle that allows him to track the path of drops to determine their point of origin could be applied to the distribution of crime scenes on a map." (She quotes one character as saying: "If this works, we'll have a whole new system of investigating criminal cases.") A more academic view was taken by NPR's "Math Guy" Keith Devlin, interviewed by Scott Simon on "Weekend Edition  Saturday" for January 22, 2004. Scott: "There's a scene where the mathematician brother is writing out a formula on the board. Firstly he seems to be listening to headbanging rock music and in addition to that he seems to be in the grip of a fever. Is that commonly what happens when mathematicians write out formulas?" Keith: "... Most people's impression of a mathematician, if that impression is of an elderly guy in a tweed suit and worn down shoes, they'd better walk around a university like Stanford or Cal Tech or MIT and just take a look. In fact when David Krumholtz was preparing for this role, he hung around Cal Tech for a while and just watched what he saw." On December 11, 2004, Jonathan Farley was interviewed on Air America's "So What Else Is News" by the program host, resident whizkid Marty Kaplan. Farley, currently a Visiting Scholar at Harvard, turns out to be a mathematician with a mission.
Inspired by the real and hypothetical mathematical derringdo evoked in "A Beautiful Mind," he has found an application of lattice theory to the war on terror. His problem is the structure of terror cells and what it takes to disrupt them. A current approach, he tells us, is to view a terrorist cell as a graph, "a picture where you've got a bunch of nodes or dots which represent the individuals, and then lines which connect individuals if they have some sort of communications link, or if they lived in the same flat in Hamburg at some time ..." Graphtheoretically, a cell is disrupted if the graph is disconnected. Farley noticed that with that kind of analysis "you're missing a key mathematical component of the terrorist network, namely its hierarchy. And that's where I come in, because my branch of mathematics, called lattice theory, deals with hierarchy and properties of order." Kaplan proposes a concrete example: suppose a cell has 15 people, "and the government has picked off 4 of them. To what degree can the government feel as though they have shut that cell down?" Farley explains that for a precise estimate you would need to know the structure of the cell, but he shows how, for a 15node binary tree, hierarchically ranked from top to bottom, the graphcalculation and the latticecalculation give very different answers. "If you've captured 4 guys you're pretty sure you've disrupted the cell, under the old way of thinking. But when you take the latticetheoretic perspective, you see that actually you only have a 33% chance of disrupting the cell in that case." He elaborates: "If 4 people have been captured at random, it might still be possible for terrorist plans to be passed on from the leader down to one of the people at the bottom, one of the eight foot soldiers, in which case you might have another September 11, you might have a shoebombing ..." And finally: "Mathematics won't help you catch the terrorists, but it will help you analyze how good a job you've done in the past." Farley's work has also been covered by Ivars Peterson in Science News Online (January 10, 2004). Tony Phillips 
Comments: Email Webmaster 
© Copyright
, American Mathematical Society

