Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A heat flow approach to Onsager’s conjecture for the Euler equations on manifolds
HTML articles powered by AMS MathViewer

by Philip Isett and Sung-Jin Oh PDF
Trans. Amer. Math. Soc. 368 (2016), 6519-6537 Request permission

Abstract:

We give a simple proof of Onsager’s conjecture concerning energy conservation for weak solutions to the Euler equations on any compact Riemannian manifold, extending the results of Constantin-E-Titi and Cheskidov-Constantin-Friedlander-Shvydkoy in the flat case. When restricted to $\mathbb {T}^{d}$ or $\mathbb {R}^{d}$, our approach yields an alternative proof of the sharp result of the latter authors.

Our method builds on a systematic use of a smoothing operator defined via a geometric heat flow, which was considered by Milgram-Rosenbloom as a means to establish the Hodge theorem. In particular, we present a simple and geometric way to prove the key nonlinear commutator estimate, whose proof previously relied on a delicate use of convolutions.

References
  • Thierry Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1636569, DOI 10.1007/978-3-662-13006-3
  • Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
  • T. Buckmaster, Onsager’s conjecture almost everywhere in time, arXiv.org (2013).
  • T. Buckmaster, C. De Lellis, and L. Székelyhidi, Jr., Transporting microstructure and dissipative Euler flows, arXiv.org (2013).
  • A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy, Energy conservation and Onsager’s conjecture for the Euler equations, Nonlinearity 21 (2008), no. 6, 1233–1252. MR 2422377, DOI 10.1088/0951-7715/21/6/005
  • Peter Constantin, Weinan E, and Edriss S. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, Comm. Math. Phys. 165 (1994), no. 1, 207–209. MR 1298949
  • Antoine Choffrut, $h$-principles for the incompressible Euler equations, Arch. Ration. Mech. Anal. 210 (2013), no. 1, 133–163. MR 3073150, DOI 10.1007/s00205-013-0639-3
  • A. Choffrut, C. De Lellis, and L. Székelyhidi, Jr., Dissipative continuous Euler flows in two and three dimensions, Preprint. 2012.
  • C. De Lellis and L. Székelyhidi, Jr., The Euler equations as a differential inclusion, Annals of Mathematics (2009).
  • C. De Lellis and L. Székelyhidi, Jr., Dissipative continuous Euler flows, arXiv.org (2012).
  • C. De Lellis and L. Székelyhidi, Jr., Dissipative Euler Flows and Onsager’s Conjecture, arXiv.org (2012).
  • Jean Duchon and Raoul Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity 13 (2000), no. 1, 249–255. MR 1734632, DOI 10.1088/0951-7715/13/1/312
  • Gregory L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer, Phys. D 78 (1994), no. 3-4, 222–240. MR 1302409, DOI 10.1016/0167-2789(94)90117-1
  • Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1688256
  • P. Isett, Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time, arXiv.org (2012).
  • S. Klainerman and I. Rodnianski, A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal. 16 (2006), no. 1, 126–163. MR 2221254, DOI 10.1007/s00039-006-0551-1
  • L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6 (1949), no. Supplemento, 2 (Convegno Internazionale di Meccanica Statistica), 279–287. MR 36116
  • A. N. Milgram and P. C. Rosenbloom, Harmonic forms and heat conduction. I. Closed Riemannian manifolds, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 180–184. MR 42769, DOI 10.1073/pnas.37.3.180
  • Roman Shvydkoy, Lectures on the Onsager conjecture, Discrete Contin. Dyn. Syst. Ser. S 3 (2010), no. 3, 473–496. MR 2660721, DOI 10.3934/dcdss.2010.3.473
  • Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory. , Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0252961
  • Robert S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Functional Analysis 52 (1983), no. 1, 48–79. MR 705991, DOI 10.1016/0022-1236(83)90090-3
  • Hans Triebel, Theory of function spaces. II, Monographs in Mathematics, vol. 84, Birkhäuser Verlag, Basel, 1992. MR 1163193, DOI 10.1007/978-3-0346-0419-2
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 58J35, 35Q31
  • Retrieve articles in all journals with MSC (2010): 58J35, 35Q31
Additional Information
  • Philip Isett
  • Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
  • Email: isett@math.mit.edu
  • Sung-Jin Oh
  • Affiliation: Department of Mathematics, University of California Berkeley, Berkeley, California 94720
  • MR Author ID: 1060366
  • ORCID: setImmediate$0.8624889592195648$2
  • Email: sjoh@math.berkeley.edu
  • Received by editor(s): May 4, 2014
  • Received by editor(s) in revised form: August 25, 2015
  • Published electronically: November 17, 2015
  • Additional Notes: The second author is a Miller research fellow, and would like to thank the Miller Institute for support
  • © Copyright 2015 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 368 (2016), 6519-6537
  • MSC (2010): Primary 58J35, 35Q31
  • DOI: https://doi.org/10.1090/tran/6549
  • MathSciNet review: 3461041