Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The partition function modulo prime powers
HTML articles powered by AMS MathViewer

by Matthew Boylan and John J. Webb PDF
Trans. Amer. Math. Soc. 365 (2013), 2169-2206 Request permission

Abstract:

Let $\ell \geq 5$ be prime, let $m\geq 1$ be an integer, and let $p(n)$ denote the partition function. Folsom, Kent, and Ono recently proved that there exists a positive integer $b_{\ell }(m)$ of size roughly $m^2$ such that the module formed from the $\mathbb {Z}/\ell ^m\mathbb {Z}$-span of generating functions for $p\left (\frac {\ell ^bn + 1}{24}\right )$ with odd $b\geq b_{\ell }(m)$ has finite rank. The same result holds with “odd” $b$ replaced by “even” $b$. Furthermore, they proved an upper bound on the ranks of these modules. This upper bound is independent of $m$; it is $\left \lfloor \frac {\ell + 12}{24}\right \rfloor$.

In this paper, we prove, with a mild condition on $\ell$, that $b_{\ell }(m)\leq 2m - 1$. Our bound is sharp in all computed cases with $\ell \geq 29$. To deduce it, we prove structure theorems for the relevant $\mathbb {Z}/\ell ^m\mathbb {Z}$-modules of modular forms. This work sheds further light on a question of Mazur posed to Folsom, Kent, and Ono.

References
  • Scott Ahlgren, Distribution of the partition function modulo composite integers $M$, Math. Ann. 318 (2000), no. 4, 795–803. MR 1802511, DOI 10.1007/s002080000142
  • Scott Ahlgren and Ken Ono, Congruence properties for the partition function, Proc. Natl. Acad. Sci. USA 98 (2001), no. 23, 12882–12884. MR 1862931, DOI 10.1073/pnas.191488598
  • George E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original. MR 1634067
  • George E. Andrews and F. G. Garvan, Dyson’s crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 167–171. MR 929094, DOI 10.1090/S0273-0979-1988-15637-6
  • A. O. L. Atkin, Proof of a conjecture of Ramanujan, Glasgow Math. J. 8 (1967), 14–32. MR 205958, DOI 10.1017/S0017089500000045
  • A. O. L. Atkin, Multiplicative congruence properties and density problems for $p(n)$, Proc. London Math. Soc. (3) 18 (1968), 563–576. MR 227105, DOI 10.1112/plms/s3-18.3.563
  • A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma _{0}(m)$, Math. Ann. 185 (1970), 134–160. MR 268123, DOI 10.1007/BF01359701
  • A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84–106. MR 60535, DOI 10.1112/plms/s3-4.1.84
  • E. Belmont, H. Lee, A. Musat, S. Trebat-Leder, $\ell$-adic properties of partition functions, preprint.
  • F. Calegari, A remark on a theorem of Folsom, Kent, and Ono, 2011, preprint.
  • Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
  • A. Folsom, Z. Kent, K. Ono. $\ell$-adic properties of the partition function, preprint.
  • Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR 1474964, DOI 10.1090/gsm/017
  • Nicholas M. Katz, $p$-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 69–190. MR 0447119
  • Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
  • Ken Ono, Distribution of the partition function modulo $m$, Ann. of Math. (2) 151 (2000), no. 1, 293–307. MR 1745012, DOI 10.2307/121118
  • Ken Ono, The web of modularity: arithmetic of the coefficients of modular forms and $q$-series, CBMS Regional Conference Series in Mathematics, vol. 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR 2020489
  • Ken Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, Current developments in mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 347–454. MR 2555930
  • S. Ramanujan, Congruence properties of partitions, Math. Z. 9 (1921), no. 1-2, 147–153. MR 1544457, DOI 10.1007/BF01378341
  • Nick Ramsey, Geometric and $p$-adic modular forms of half-integral weight, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 3, 599–624 (English, with English and French summaries). MR 2244225
  • Nick Ramsey, The half-integral weight eigencurve, Algebra Number Theory 2 (2008), no. 7, 755–808. With an appendix by Brian Conrad. MR 2460694, DOI 10.2140/ant.2008.2.755
  • Jean-Pierre Serre, Congruences et formes modulaires [d’après H. P. F. Swinnerton-Dyer], SĂ©minaire Bourbaki, 24e annĂ©e (1971/1972), Exp. No. 416, Lecture Notes in Math., Vol. 317, Springer, Berlin, 1973, pp. 319–338 (French). MR 0466020
  • Jean-Pierre Serre, Formes modulaires et fonctions zĂŞta $p$-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 191–268 (French). MR 0404145
  • H. P. F. Swinnerton-Dyer, On $l$-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 1–55. MR 0406931
  • G.N. Watson, Ramanujan’s Vermutung ĂĽber Zerfällungsanzahlen, J. Reine Angew. Math. 179 (1938), 97–128.
  • Y. Yang, Congruences of the partition function, Int. Math. Res. Not. (2010) doi: 10.1093/imrn/rnq194
Similar Articles
Additional Information
  • Matthew Boylan
  • Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
  • Email: boylan@math.sc.edu
  • John J. Webb
  • Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
  • Address at time of publication: Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109
  • Email: webbjj3@email.sc.edu, webbjj@wfu.edu
  • Received by editor(s): May 20, 2011
  • Received by editor(s) in revised form: September 7, 2011
  • Published electronically: October 25, 2012
  • Additional Notes: The first author thanks the National Science Foundation for its support through grant DMS-0901068.
  • © Copyright 2012 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 365 (2013), 2169-2206
  • MSC (2010): Primary 11F03, 11F11, 11F33, 11P83
  • DOI: https://doi.org/10.1090/S0002-9947-2012-05702-3
  • MathSciNet review: 3009655