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A CONVERSE TO DYE’S THEOREM

GREG HJORTH

Abstract. Every non-amenable countable group induces orbit inequivalent
ergodic equivalence relations on standard Borel probability spaces. Not every
free, ergodic, measure preserving action of F2 on a standard Borel probability
space is orbit equivalent to an action of a countable group on an inverse limit
of finite spaces. There is a treeable non-hyperfinite Borel equivalence relation
which is not universal for treeable in the ≤B ordering.

1. Introduction

We show a converse to a consequence of the final strengthening of Dye’s theorem
proved by Ornstein and Weiss.

Definition. An equivalence relation E is said to be standard if it is defined on a
standard Borel probability space (X,B, µ), it is Borel as a subset of X×X , and all
its equivalence classes are countable. It is said to be measure preserving if for any
measurable A,B ⊂ X and for any measurable bijection ϕ : A→ B included in the
graph of E (xEϕ(x) all x) we have µ(A) = µ(B). It is ergodic if any E-invariant
set is either null or conull.

Two such equivalence relations, E on (X,B, µ), F on (Y, C, ν), are said to be
orbit equivalent if there is a measure preserving bijection

ψ : X → Y

such that almost everywhere we have

x1Ex2 ⇔ ψ(x1)Fψ(x2).

An equivalence relation E on a standard Borel probability space (X,B, µ) is
said to be induced by a countable group G if there is a Borel, measure preserving,
ergodic, and almost everywhere free action of G on X such that E equals the
corresponding equivalence relation EG. Any such EG will necessarily be standard,
measure preserving, and ergodic.

Theorem 1.1 (Dye; see [5], [6]). Any two ergodic, standard, measure preserving
equivalence relations induced by Z are orbit equivalent.

Theorem 1.2 (Ornstein, Weiss; see [14], [3]). If G is a countably infinite amenable
group, then any two ergodic, standard, measure preserving equivalence relations
induced by G are orbit equivalent.
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Theorem 1.3 (Connes, Weiss; Schmidt; see [4], [17]). If G is countable, non-
amenable and without property T , then there are at least two orbit inequivalent
ergodic, standard, measure preserving equivalence relations induced by actions of
G.

Theorem 1.4. If G is countably infinite with property T , then there are continuum
many orbit inequivalent ergodic, standard, measure preserving equivalence relations
induced by actions of G.

Corollary 1.5. A countable group is amenable if and only if it induces only one
orbit equivalence relation considered up to orbit equivalence.

The argument, which answers a question raised by Schmidt in 3.10 of [18], was
inspired by certain constructions from [15].

We also consider another structural consequence of Dye’s work, who in the course
of the proof of his theorem provided a normal form for the orbit equivalence relations
induced by groups such as Z. Any measurable equivalence relation induced by Z

can be represented as an orbit equivalence relation arising by a kind of inverse limit
of actions of Z on finite spaces. While it is unreasonable to hope that the specifics
of Dye’s construction, with Z acting by the odometer map as in [5], could provide
a canonical model for non-amenable equivalence relations, it does seem to have
been open whether arbitrary measure preserving standard ergodic E may allow
themselves to be presented as arising from this kind of inverse limit of actions on
finite spaces.

We formalize the notion of modular in Section 3 to capture this idea, and go onto
show that in general F2 can induce measurable equivalence relations which are not
modular in this sense. It turns out that the mixing properties of the Bernoulli
shift of F2 on 2F2, in direct contrast to the Bernoulli shifts of amenable groups,
are somehow “remembered” at the level of orbit equivalence, and do not allow
themselves to be modeled by a modular equivalence relation.

This argument turns out to give information in the context of Borel reducibility.
In answer to a question of Jackson, Kechris, and Louveau:

Theorem 1.6. There is a countable treeable Borel equivalence relation which is not
hyperfinite and does not Borel reduce every other countable treeable Borel equiva-
lence relation.

Here we say that E Borel reduces F if there is a Borel function between their
respective fields with x1Ex2 if and only if θ(x1)Fθ(x2); roughly speaking, the
quotient space from E Borel injects into the quotient space from F . We say that
an equivalence relation is hyperfinite if it can be written as the increasing union
of Borel equivalence relations with finite classes; equivalently (see [13]) that it is
induced by a Borel action of Z. We say that E is treeable if there is an acyclic Borel
graph on its field whose connected components form the E-equivalence classes;
equivalently, there is a collection of partial Borel bijections which generate E and
allow no non-trivial loops.

2. Orbit equivalence relations induced by Kazhdan groups

Notation. We generally write U(H), or U∞(H) when we know H to be infinite
dimensional, for the group of unitary transformations of a Hilbert space H.
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Definition. Let

π : G→ U(H)
g �→ πg

be a unitary representation of a group G. This representation is said to have almost
invariant unit vectors if for all ε > 0 and F ⊂ G finite there is some ζ ∈ H with
||h|| = 1 and ||ζ − πg(ζ)|| < ε all g ∈ F .

Definition. A discrete group G is said to be Kazhdan or to have property T if any
unitary representation π : G → U(H) with almost invariant unit vectors has an
outright invariant unit vector – that is to say, some ζ ∈ H with ||ζ|| = 1 and

πg(ζ) = ζ

for all g ∈ G.

Possible references for the subject of Kazhdan groups are given by [9] and [22].
We mention two apparent strengthenings of the definition which in fact turn out
to be equivalent. In both cases the proofs are routine and can be left as exercises
for the reader.

Proposition 2.1. G has property T if and only if there is some finite F ⊂ G and
ε > 0 such that whenever π : G → U(H) is a unitary representation with some
ζ ∈ H having ||πg(ζ) − ζ|| < ε for all g ∈ F , then π has an invariant unit vector.

Proposition 2.2. G has property T if and only if for all δ > 0 there is some finite
F ⊂ G and ε > 0 such that whenever π : G → U(H) is a unitary representation
with some ζ ∈ H having ||πg(ζ)− ζ|| < ε for all g ∈ F , then π has an invariant unit
vector η with ||η − ζ|| < δ.

One natural example of a Kazhdan group is the collection of three by three
integer coefficient matrices with determinant one. More generally, at every n ≥ 3
the group SLn(Z) is Kazhdan.

In say Chapter 7 of [22] one can find an extended discussion of theorems to
the effect that certain kinds of discrete subgroups of certain kinds of Lie groups
will, under the appropriate conditions, be Kazhdan. As with Kazhdan’s original
proof for SL3(Z), the proofs are analytical in flavor, turning on the topological
properties of the ambient Lie group. More recently Andre Zuk in [21] has obtained
purely combinatorial proofs that certain discrete groups have property T. Indeed
he even shows that in some suitably statistical sense most finitely generated groups
in an indicated class are Kazhdan.

In this section we prove that all countably infinite Kazhdan groups have contin-
uum many free, ergodic, measure preserving actions on standard Borel spaces up to
orbit equivalence. This theorem was previously known from [8] for certain special
classes of property T groups; for instance it was known for SL3(Z). The first proof
that there is at least some countable group with continuum many actions can be
found in [2], and builds on work by McDuff in the theory of operator algebras. Our
proof is more elementary than these previous arguments.

Definition. Let E be a standard, measure preserving equivalence relation on
(X,B, µ) and let G be a countable group.

We then set C(E,G) to be the collection of all measurable

α : E → G
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such that almost everywhere
(i) if y ∈ [x]E , then α(y, x) = 1G if and only if y = x;
(ii) if y, z ∈ [x]E , then α(z, y)α(y, x) = α(z, x);
(iii) for all g ∈ G there exists y ∈ [x]E with α(y, x) = g.

We identify α1, α2 ∈ C(E,G) if they agree almost everywhere.

Remark. We can think of C(E,G) as the space of possible ways to arrange a free
action and measurable action of G on X with EG = E.

In the case that Γ induces E, we can identify C(E,G) with the cocycles from
X × Γ → G which are appropriately “one-to-one” and “onto”.

Definition. From now on fix an enumeration (gn)n∈N of the group G. For E as
above, and for α, β ∈ C(E,G) we let

dE(α, β) =
∑
n∈N

2−nµ({x : ∃y(α(y, x) = gn, β(y, x) �= gn)}

∪ {x : ∃y(β(y, x) = gn, α(y, x) �= gn)}).
C(E,G) equipped with this metric becomes a separable, complete metric space.

We will not need the completeness of the metric, but the separability plays a starring
role.

Fact 2.3. For E and G as above, C(E,G) has a countable dense subset.

Proof. Let us consider C0(E,G), the set of measurable

α : E → G

with |{y : α(y, x) = g}| < 2 for all g ∈ G, a.e. x ∈ X . Since C(E,G) is included
in C0(E,G) and the metric for the first extends to a metric for the second, it will
suffice to find a countable dense subset of C0(E,G).

For this purpose, let (fn)n∈N be a sequence of measurable injections with
(fn(x))n∈N enumerating [x]E almost everywhere. Let B0 ⊂ B be a countable
Boolean subalgebra which is dense with respect to the measure algebra, in the
sense that for all B ∈ B, ε > 0, there is some B0 ∈ B0 with µ(B∆B0) < ε. Then
consider the collection of all α ∈ C0(E,G) satisfying:

(i) for each g, the set of n with µ({x : α(fn(x), x) = g}) �= 0 is finite;
(ii) for each g, n, the set {x : α(fn(x), x) = g} is in B0;
(iii) for all sufficiently large n, {x : α(fn(x), x) = gn} = X .

The countability and density of this collection are routinely verified. �

Note that the metric dE depends on the choice of the enumeration (gn)n∈N of G.
In the observations which follow we will want to consider a single countable group
G in relation to various choices of E. We will think of a countable group as coming
with some fixed choice of an enumeration (gn)n∈N, and in each case use dE to refer
to the metric which arises on C(E,G) for that predetermined choice; we will not
specifically mention the enumeration.

Definition (compare [3]). For E a standard, measure preserving equivalence rela-
tion on (X,B, µ), let p1, p2 : E → X be the projections onto the first and second
coordinates. We then define a measure m on E by

m(B) =
∫

X

|p−1
1 [{x}] ∩B|dµ(x).
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Since E is measure preserving, we could as well have used the projection p2 in place
of p1 and obtained the same measure.

We then let U(E) be the collection of all unitary operators on the Hilbert space
L2(E,m) of square integrable f : E → C. Given α, β ∈ C(E,G) we define a unitary
representation

πα,β : G→ U(E),

g �→ πα,β
g

by
(πα,β

g (f))(x′, y′) = f(x, y)

where x′, y′ are defined by the specification that

α(x′, x) = g,

β(y′, y) = g.

In other words, if we use α and β in the obvious way to obtain actions

aα : G×X → X,

aβ : G×X → X,

and we take the induced measure preserving transformation

aα × aβ : G× E → E

given by
(aα × aβ)(g, (x, y)) = (aα(g, x), aβ(g, y)),

then in the usual manner we produce a representation of G in U(E).

Notation. In what follows, χ∆ : E → {0, 1} is the characteristic function of the
diagonal; so that χ∆(x, y) = 1 if x = y and 0 if x �= y.

Fact 2.4. Let G be a countably infinite group. For all ε > 0 and finite F ⊂ G, there
exists a δ > 0 such that for all standard, measure preserving E, all α, β ∈ C(E,G),
if dE(α, β) < δ, then

∀g ∈ F (||πα,β
g (χ∆) − χ∆|| < ε),

where || · || refers to the Hilbert space norm on L2(E,m). �

Lemma 2.5. Let G be a countably infinite group with property T.
Then there is a δ > 0 such that for all ergodic, standard, measure preserving E

on (X,B, µ) and all α, β ∈ C(E,G) with

dE(α, β) < δ,

there is a measurable bijection ϕ : X → X, ϕ ⊂ E, such that for the induced actions

aα : G×X → X,

aβ : G×X → X,

we have
aα(g, x) = ϕ−1(aβ(g, ϕ(x)))

almost everywhere.
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Proof. Since G has T , we may find ε > 0 and finite F ⊂ G such that whenever
π : G→ U∞(H) is a unitary representation and η ∈ H is a unit vector with

∀g ∈ F (||πg(η) − η|| < ε),

then there is a unit vector η0 ∈ H which is G-invariant and has

||η − η0|| < 10−2.

For this F ⊂ G and ε > 0 we choose δ > 0 as in Fact 2.4.
We then consider E as above, α, β ∈ C(E,G) with dE(α, β) < δ. By the assump-

tion on δ, ε, F , we may find G-invariant f ∈ L2(E,m) with

||χ∆ − f || < 10−2.

Consider then the set

Af = {x ∈ X |∃!y ∈ [x]E(|f(x, y) − 1| < 1
4
)}.

Since f is close to χ∆, Af is non-null. But then by ergodicity of action aα : G×X →
X we must have Af co-null.
G-invariance of f amounts to the assertion that for almost all (x, y) ∈ E and all

g ∈ G
f(x, y) = f(aα(g, x), aβ(g, x)).

Thus if we define ϕ : Af → X by ϕ(x) = y if and only if |f(x, y)− 1| < 1
4 , then this

equation implies
ϕ(x) = y ⇔ ϕ(aα(g, x)) = aβ(g, y),

which in turn gives
aα(g, x) = ϕ−1(aβ(g, ϕ(x)))

almost everywhere. �
Corollary 2.6. If E is an ergodic, standard, measure preserving, equivalence rela-
tion on (X,B, µ) and G is a property T group, then up to isomorphism1 there are at
most ℵ0 many free actions of G by measurable transformations on X which induce
E.

Proof. We may identify such actions with elements of C(E,G). The last lemma
asserts that the equivalence relation of isomorphism of action is open in C(E,G),
and so the corollary follows from the separability of this space. �
Corollary 2.7. If G is a countably infinite property T group, then it induces 2ℵ0

many orbit inequivalent ergodic, standard, measure preserving, equivalence rela-
tions.

Proof. Since the group G is not abelian-by-finite, and hence not type I (see [20]),
we may find

πγ : G→ U∞(Hγ),
γ ∈ 2ℵ0 , non-conjugate infinite dimensional irreducible unitary representations of
G. Following [22], 5.2.13, we may find corresponding ergodic actions of G on
standard Borel probability spaces (Xγ ,Bγ , µγ), with each induced representation
σγ : G → U∞(L2(Xγ , µγ)) having Hγ as a direct summand. The product of an

1Here we say that two actions of G are isomorphic if they are simultaneously conjugate: That
is to say, a, b : G × X → X are isomorphic actions if there is measure preserving ϕ : X ∼= X with
ϕ(a(g, ϕ−1(x))) = b(g, x) almost everywhere.
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ergodic action of an infinite group with a mixing action is still ergodic, so after
possibly taking the product of this action with the Bernoulli shift, of G acting on
{0, 1}G, we may assume that each action is free.

Then each induced representation σγ : G → U∞(L2(Xγ , µγ)) has only count-
ably many irreducible representations as direct summands, and is therefore only
isomorphic as a unitary representation to countably many other σκ’s; in particular
the original measure preserving action from which it derives is only isomorphic to
countably many others. Thus by 2.6 each such Eσγ is orbit equivalent to at most
countably many other such Eσα ’s. �

3. Non-modular equivalence relations induced by F2

In this section we formulate the notion of a modular equivalence relation, and
show that in general the free actions of F2 may induce non-modular actions.

The argument gives information in the context of Borel reducibility, and thus
in answer to question 6.4(A) from [13], we obtain in the following section a tree-
able countable Borel equivalence relation which is neither universal treeable nor
hyperfinite.

Very recently Damien Gaboriau and Sorin Popa have shown that any non-abelian
free group gives rise to continuum many non-orbit equivalent free actions. As far as
can be determined, their argument does not appear to provide insight at the level
of ≤B-reducibility, and it remains open whether F2, or any Fn (n = 2, 3, ...,ℵ0) has
more than two non-hyperfinite free Borel actions up to Borel reducibility.

There is a fair amount in the way of prefatory lemmas and definitions. We
need to distinguish the highly mixing actions of say the Bernoulli shift from those
actions which have generating sets for the Borel algebra with finite orbit. We make
that distinction by assigning to each measurable set in 2F2 =df {0, 1}F2 a center,
cradled between those elements of F2 which are most important for its definition.
The various prefatory lemmas are required for that definition and to formulize the
manner in which this center is rapidly mixed by the equivalence relation.

We think of F2 = 〈a, b〉 as having a and b as generators.

Definition. A weight for F2 is a function

w : F2 → R

such that w(σ) ≥ 0 all σ ∈ F2, w is non-zero at some point, and w ∈ �1(F2). An
element σ0 is a center for some such weight w if each∑

{w(τxσ0) : τ ∈ F2, τx is a reduced word},
as x ranges over {a, a−1, b, b−1}, is less than

1
2

∑
{w(τ) : τ ∈ F2}.

σ0 is a weak center if each such∑
{w(τxσ0) : τx is a reduced word} < 2

3

∑
{w(τ) : τ ∈ F2}.

Lemma 3.1. Every weight has at least one center.

Proof. We begin with some e ∈ F2, and if that is a center we are content.
Otherwise, there will be some x0 ∈ {a, a−1, b, b−1} with most of the weight lying

on reduced words of the form τx0, and so we shift our attention to x0. Again, if x0
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is a center, we are done; otherwise, we pass onto some x1 with most of the weight
lying on words of the form τx1x0. Since the majority of the weight lies within some
definite distance from the identity, this process must terminate after considering
finitely many xi’s. �

Notation. We let F2 act on �1(F2) by right multiplication:

τ · f(σ) = f(στ).

Lemma 3.2. σ0 is a center for a weight w if and only if σ0τ
−1 is a center for τ ·w;

σ0 is a weak center for a weight w if and only if σ0τ
−1 is a weak center for τ · w.

Proof. Immediate from the structure of the definitions. �

Note then that the centers of a weight and the weak centers of a weight form
a finite subset of F2 which is convex when viewed as being included in the Cayley
graph. In fact they are not just convex but linear; this is the key combinatorial
fact.

Lemma 3.3. If w is a weight, then its collection of weak centers is linearly ordered;
that is to say, there are x0, x1, ..., xn, with x0 ∈ F2, each xi+1 ∈ {a, a−1, b, b−1},
such that each xixi−1...x0 forms a reduced word and

{xixi−1...x0 : i ≤ n}
enumerates the weak centers.

Proof. Assume instead that there is some σ0 ∈ F2 such that aσ0, a
−1σ0, bσ0 are all

weak centers. (Without any real loss of generality we can assume that this is the
case; the other possibilities are entirely similar.)

Then for c ∈ {a, a−1} we have for x = c−1 that
∑

{w(τxcσ0) : τx is a reduced word} < 2
3
||w||�1

∴
∑

{w(τcσ0) : τc is a reduced word} > 1
3
||w||�1 .

For y = b−1 we have

{τ0ybσ0 : τ0y reduced} ⊃ {τ1aσ0 : τ1a reduced} ∪ {τ2a−1σ0 : τ2a−1 reduced}
∴

∑
{w(τybσ0) : τy is a reduced word} > 2

3
||w||�1 ,

with a slur on bσ0’s claim of weak centerhood. �

Notation. We let 2F2 =df {0, 1}F2 be the collection of functions from F2 to {0, 1};
we equip this with the product measure and let F2 act by multiplication on the
right: For f ∈ 2F2, σ, τ ∈ F2,

τ · f(σ) = f(στ).

This in turn induces an action on L2(2F2) in the usual way: Given

ψ : 2F2 → C

we define τ · ψ by the formulation

τ · ψ(f) = ψ(τ−1 · f).
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For S ⊂ F2 finite we define a corresponding function

ψS : 2F2 → {−1, 1},
f �→ (−1)|{σ∈S:f(σ)=1}|.

Thus if f assumes the value 1 on an odd number of elements of S, then ψS(f) = −1;
otherwise it takes the value 1.

It is well known that {ψS : S ⊂ F2 is finite} forms an orthonormal basis. One
can for instance determine by hand that they are orthogonal and then by Stone-
Weierstrass check that their linear combinations are dense, and hence that they
span.

Note that ψ∅ : f �→ 1 is the constant function with value 1. ψ ∈ L2(2F2) will
be orthogonal to the constant functions if and only if it is in the subspace given by
the closed span of {ψS : S �= ∅}.
Notation. Let F(F2) = {S ⊂ F2 : S is finite}.

F(F2) is a countable set, and we can thus form �2(F(F2)) in the usual way. This
Hilbert space is of course naturally isomorphic to L2(2F2) and we introduce some
notation to describe that isomorphism.

Notation. Let
∆ : L2(2F2) → �2(F(F2))

be the linear isometry induced by the association

ψS �→ δS ,

where δS(T ) = 1 if T = S, = 0 if T �= S.

From here we wish to convert the elements of �2(F(F2)) into weights. Of course
now there is no question of a linear isomorphism; instead we ask only for a process
of conversion which is Lipschitz on the unit sphere. We begin by mapping �2(F(F2))
into the positive part of �1(F(F2)).

Notation. We define
E : �2(F(F2)) → �1(F(F2))

by
E(φ)(s) = |φ(s)|2.

Note that ||E(φ)||�1 = ||φ||2L2 .

Lemma 3.4. For φ1, φ2 ∈ �2(F(F2)),

||E(φ1) − E(φ2)||�1 ≤ (||φ1||�2 + ||φ2||�2)||φ1 − φ2||�2 .
Proof.

||E(φ1) − E(φ2)||�1 =
∑

s∈F(F2)

|E(φ1)(s) − E(φ2)(s)|

=
∑

s∈F(F2)

|φ1(s)2 − φ2(s)2| =
∑

s∈F(F2)

|φ1(s)[φ1(s) − φ2(s)] + φ2(s)[φ1(s) − φ2(s)]|

≤
∑

s∈F(F2)

|φ1(s)| · |φ1(s) − φ2(s)| +
∑

s∈F(F2)

|φ2(s)| · |φ1(s) − φ2(s)|

= 〈|φ1|, |φ1 − φ2|〉 + 〈|φ2|, |φ1 − φ2|〉 ≤ ||φ1||�2 ||φ1 − φ2||�2 + ||φ2||�2 ||φ1 − φ2||�2 ,
by Cauchy-Schwarz. �
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Notation. We define
Σ : �1(F(F2)) → �1(F2)

by

Σ(φ)(σ) =
∑

S∈F(F2),σ∈S

|S|−1φ(S).

Σ is a linear contraction, and for φ positive, say in the range of E, of unit length,
and with φ(∅) = 0, we have that Σ(φ) is a weight with ||Σ(φ)||�1 = ||φ||�1 .

We then let

π = ΣE∆ : L2(2F2) → �1(F2),

ϕ �→ Σ(E(∆(ϕ))).

Notation. For S ⊂ F2 finite and τ ∈ F2 we let

τ · S = {στ−1 : σ ∈ S};
thus

σ ∈ S ⇔ στ−1 ∈ τ · S,
∴ στ ∈ S ⇔ σ ∈ τ · S.

Then for f ∈ �2(F(F2)) ∪ �1(F(F2)) and τ ∈ F2 we define τ · f ∈ �2(F(F2)) ∪
�1(F(F2)) by

τ · f(S) = f(τ−1 · S);

thus if f = δS0 , then

τ · f(S) = 1 iff τ−1 · S = S0

iff S = τ · S0;

and thus τ · δS0 = δτ ·S0 .

Lemma 3.5. (o) For ϕ ∈ L2(2F2) orthogonal to the constant functions and of norm
one, ||π(ϕ)||�1 = 1.

(i) ||π(ϕ1) − π(ϕ2)||�1 ≤ (||ϕ1||L2 + ||ϕ2||L2)||ϕ1 − ϕ2||L2 .
(ii) π is an F2-map, in the sense that for σ ∈ F2 and ϕ ∈ L2(2F2),

π(σ · ϕ) = σ · π(ϕ).

(iii) For ϕ not a.e. constant, π(ϕ) is a weight.
(iv) For such ϕ and σ ∈ F2, σ0 is a center of π(ϕ) if and only if σ0σ

−1 is a
center of π(σ ·ϕ); σ0 is a weak center of π(ϕ) if and only if σ0σ

−1 is a weak center
of π(σ · ϕ).

(v) For ϕ1, ϕ2 unit vectors in L2(2F2) orthogonal to the constant functions with
||ϕ1 − ϕ2||L2 < 1

12 , and σ0 a center of π(ϕ1), we will necessarily have σ0 a weak
center of π(ϕ2).

Proof. (o) and (i) follow from the various facts recorded above regarding E, ∆, and
Σ.

(ii): We first observe:

Claim: ∆ : L2(2F2) → �2(F(F2)) is an F2-map.
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Proof of Claim. It suffices to check this for the basis elements, of the form ψS . So
let τ ∈ F2, S ⊂ F2 finite, f ∈ 2F2.

τ · ψS(f) = ψS(τ−1 · f) = (−1)|{σ∈S:τ−1·f(σ)=1}|

= (−1)|{σ∈S:f(στ−1)=1}| = (−1)|{στ∈S:f(σ)=1}| = (−1)|{σ∈τ ·S:f(σ)=1}|

= ψτ ·S(f).

Thus ∆(τ · ψS) = ∆(ψτ ·S) = δτ ·S = τ · δS = τ · ∆(ψS). �

It is immediate that E is an F2-map, and as for Σ we have

(Σ(τ · f))(σ) =
∑
σ∈S

|S|−1τ · f(S) =
∑
σ∈S

|S|−1 · f(τ−1 · S)

=
∑

σ∈τ ·S
|S|−1f(S) =

∑
στ∈S

|S|−1f(S) = (Σ(f))(στ) = (τ · Σ(f))(σ).

(iii) This is obvious from the definitions and Lemma 3.4.
(iv) We have for any x ∈ {a, a−1, b, b−1} that∑

{π(σ · ϕ)(τxσ0σ
−1) : τx is a reduced word}

=
∑

{σ · π(ϕ)(τxσ0σ
−1) : τx is a reduced word}

by (ii) above,

=
∑

{π(ϕ)(τxσ0) : τx is a reduced word},
by the definition of the action.

(v) If ||ϕ1||L2 , ||ϕ2||L2 = 1, ϕ1, ϕ2 ⊥ C1, and

||ϕ1 − ϕ2||L2 <
1
12
,

then using (0) and (i) we have

||π(ϕ1) − π(ϕ2)||�1 < 1
6
min{||π(ϕ1)||�1 , ||π(ϕ2)||�1} =

1
6
.

Thus for each σ0 ∈ F2, x ∈ {a, a−1, b, b−1},
|
∑

{π(ϕ1)(τxσ0) : τx reduced} −
∑

{π(ϕ2)(τxσ0) : τx reduced}|
is bounded by 1

6 ||π(ϕ2)||�1 , so that if
∑

{π(ϕ1)(τxσ0) : τx reduced} < 1
2
||π(ϕ1)||�1 =

1
2
||π(ϕ2)||�1 ,

then ∑
{π(ϕ2)(τxσ0) : τx reduced}

<
1
2
||π(ϕ2)||�1 +

1
6
||π(ϕ2)||�1 =

4
6
||π(ϕ2)||�1 =

2
3
||π(ϕ2)||�1 .

Definition. An equivalence relation E on a standard Borel space (X,B) has mod-
ular type if there is a countable group G acting by Borel automorphisms on X with
E = EG and there is an increasing sequence of finite Boolean algebras

B0 ⊂ B1 ⊂ B2 ⊂ ... ⊂ Bn ⊂ Bn+1 ⊂ ...B,
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such that G’s action permutes each Bn and B is generated as a σ-algebra by⋃
n∈N

Bn.

In particular then we have X, ∅ ∈ B0 and if A is an atom in some Bn and g ∈ G,
then g ·A is still an atom in Bn.

Example. Consider the space 2N =df {f |f : N → {0, 1}}, equipped with the metric
d(f1, f2) = 2−n(f1,f2), where n(f1, f2) is the least n with f1(n) �= f2(n). Suppose,
as in the examples constructed by Ted Slaman and John Steel [19], we have an
action of F2 by isometries on this space relative to this metric: That is to say, for
all f1, f2 ∈ 2N and σ ∈ F2 we have d(f1, f2) = d(σ · f1, σ · f2).

Then for each s ∈ 2<N a finite binary sequence, we let

Vs = {f ∈ 2N : f ⊃ s}.
Taking Bn = {Vs : length(s) ≤ n} we have witnesses to modularity.

We will in the future refer to this space with this action as Xss.

Alexander Kechris has suggested a different way of thinking about these classes
of examples. If we order the atoms of the various Bn’s under inclusion, thereby
obtaining a tree structure, then we can identify the space with a subset of the
infinite branches, and view the group as acting by isomorphisms. In this way
modular actions can be identified with actions by automorphisms of a rooted tree.

In the next theorem we equip 2F2 =df {0, 1}F2 with the product measure, µ, and
the shift action on the right: (τ ·f)(σ) = f(στ). We let EF2 denote this equivalence
relation.

Theorem 3.6. Let E be of modular type on (X,B) and M ⊂ 2F2 of full measure.
Then there is no countable to one measurable

θ : M → X

such that for all f1, f2 ∈ 2F2,

f1EF2f2 ⇒ θ(f1)Eθ(f2).

Proof. Note first of all that we may assume that on some positive measure set
M0 ⊂M we have that θ|M0 is one-to-one. There are various ways to see this: One
approach is to appeal to the uniformization theorem for subsets of the plane with
countable sections, and argue that θ[M ] is Borel and admits a Borel right inverse
ρ : θ[M ] → M ; the image of ρ has conull saturation, and hence positive measure;
since θ ◦ρ(y) = y all y ∈ Dom(ρ), we can simply take the image of ρ as our positive
set.

For the time being I wish to make a drastic simplifying assumption: θ is injective
everywhere. This will ease some of the notation, and we can return to the further
problems faced in the general case after having seen the main ideas. In actual fact it
will turn out that the general argument is only slightly more involved and requires
only minor regearing.

Let G be a countable group acting by Borel automorphisms with E = EG,
B0 ⊂ B1 ⊂ ... ⊂ Bn ⊂ Bn+1 ⊂ ...B with

⋃Bn generating B and each Bn a finite
G-invariant algebra. We let A(Bn) denote the atoms of the algebra Bn.

For B ∈ B we let
B̂ = θ−1[B].



A CONVERSE TO DYE’S THEOREM 3095

We can then define B̂ to be {B̂ : B ∈ B}, B̂n = {B̂ : B ∈ Bn}, and A(B̂n) to be
the atoms of B̂n. Note that off of a measure zero set we still have B̂ generating
the Borel algebra of 2F2 . (See 15.2 of [11]. This is the place where we are using θ
injective.)

For x ∈ {a, a−1, b, b−1}, f ∈ 2F2 , let gf,x ∈ G be such that

gf,x · θ(f) = θ(x · f).

Note that this assignment f �→ gf,x can be chosen to be measurable, for any such
x.
Claim (I): ∀x ∈ {a, a−1, b, b−1}∀ε > 0∃M ⊂ 2F2∃n ∈ N such that µ(M) > 1 − ε

and ∀B̂ ∈ A(B̂n)∀f1, f2 ∈ B̂ ∩M ,

gf1,x = gf2,x;

in other words, the function f �→ gf,x depends only on which B̂ ∈ A(B̂n) the point
f resides. �

Proof of Claim. One approach is to fix F ⊂ G finite such that off of a set of measure
less than ε/2 we have each gf,x ∈ F ; we then go on and let (Mg)g∈F be such that
for all f ∈Mg,

gf,x = g

and µ(
⋃

g∈F Mg) > 1 − ε/2. Since
⋃ B̂n generates B̂ as a σ-algebra, we have that⋃

n∈N
B̂n is dense in the measure algebra. Thus for each g ∈ F we may choose

ng ∈ N and B̂g ∈ B̂ng with

µ(B̂g∆Mg) <
ε

2|F | .
Thus taking

n = max{ng : g ∈ F}
and

M = (
⋃
g∈F

Mg) \ (
⋃

g∈F

B̂g∆Mg),

we are done. �

Applying this last claim repeatedly we may produce sets N2 ⊂ N1 ⊂ 2F2, n ∈ N,
and

g : A(B̂n) × {a, a−1, b, b−1} → G,

(B̂, x) �→ gB̂,x,

such that
(i) for all τ ∈ F2 with2 d(τ, e) ≤ 3 and all f ∈ N2 we have τ · f ∈ N1;
(ii) µ(N2) > 1 − (10−9);
(iii) if B̂ ∈ A(B̂n), f ∈ B̂ ∩N1, x ∈ {a, a−1, b, b−1}, then

gB̂,x = gf,x.

We may further assume that µ(B̂) < 10−8 for all B̂ ∈ A(B̂n).

2We write d(τ0, τ1) to indicate the distance of τ0 from τ1 in the Cayley graph; thus d(τ, e) ≤ 3
indicates that τ can be written as a word in {a, a−1, b, b−1, e} of length at most 3.
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Claim (II): If x ∈ {a, a−1, b, b−1}, B1, B2 ∈ A(Bn), and x · [B̂1∩N1]∩B̂2∩N1 �= 0,
then

(i) x · [B̂1 ∩N1] ⊂ B̂2;
(ii) x−1 · [B̂2 ∩N1] ⊂ B̂1;
(iii) x · [B̂1] ⊃ B̂2 ∩N1.

Proof of Claim. (i) Choose f0 ∈ B̂1 ∩N1∩x−1 · [B̂2]. Then gf0,x = gB̂1,x, and since

gB̂1,x · θ(f0) = θ(x · f0) ∈ B2

and G permutes A(Bn), we have gB̂1,x ·B1 = B2. Thus for all f ∈ B̂1 ∩N1 we have

θ(x · f) = gf,x · θ(f) = gB̂1,x · θ(f) ∈ B2,

∴ x · f ∈ B̂2.

(ii) Choose f0 ∈ B̂1 ∩N1 ∩ x−1 · [B̂2 ∩N1]. Letting f1 = x · f0 we have

f1 ∈ B̂2 ∩N1,

x−1 · f1 ∈ B̂1,

and we finish by applying (i) but with x−1 taking the place of x and B̂1 and B̂2

exchanging roles we are done.
(iii) If f0 ∈ B̂2 ∩N1, then x−1 · f0 ∈ B̂1 by (ii). �

Definition. Let us say that B̂ ∈ A(B̂n) is good if

µ(B̂ \N2)
µ(B̂)

< 10−4;

if it is not good, then we say it is bad.

It follows from µ(N2) > 1 − (10−9) that

µ(
⋃

{B̂ ∈ A(B̂n) : B̂ is bad} ∪ (2F2 \N2) < 10−4.

The remainder of the proof has the following overarching form. The last claim
more or less states that F2 comes close to permuting the good elements of A(B̂n).
But then if we look at the centers associated to the characteristic functions of
the good elements of A(B̂n), we obtain a set which is overly F2-invariant, and a
contradiction ensues.

Let

N3 = {f ∈ 2F2 : ∀τ ∈ F2(d(τ, e) ≤ 3 ⇒ τ · f ∈ N2 \
⋃

{B̂ ∈ A(B̂n) : B̂ bad})}.
Note that µ(N3) > 1 − (4 × 3 × 3 × 10−4) > 1 − 10−2.

Claim (III): If f0 ∈ N3 ∩ B̂1, τ ∈ F2, d(τ, e) ≤ 3, τ · f0 ∈ B̂2, then

µ(B̂1)
µ(B̂2)

∈ (
104 − 1

104
,

104

104 − 1
)

and
µ(τ · B̂1∆B̂2) < 4 · 10−4min{µ(B̂1), µ(B̂2)}.
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Proof of Claim. Let us suppose τ = x0x1x2, each xi ∈ {a, a−1, b, b−1}; let us fix
Ĉ1, Ĉ2 ∈ A(B̂n) containing x2 · f and x1x2 · f . Then by (iii) of the last claim,
x2 ·B̂1 ⊃ Ĉ1∩N1, x1 · Ĉ1 ⊃ Ĉ2∩N1, and x0Ĉ2 ⊃ B̂2∩N1. But for any f ′ ∈ B̂2∩N2

we have
τ−1 · f ′ = x−1

2 x−1
1 x−1

0 · f ′, x−1
1 x−1

0 · f ′, x−1
0 · f ′ ∈ N1;

tracking backwards we obtain x−1
0 ·f ′ ∈ Ĉ2 ∩N1, x−1

1 x−1
0 ·f ′ ∈ Ĉ1∩N1, and finally

τ−1 · f ′ ∈ B̂1. Thus, bearing in mind that τ · f ∈ B̂2 implying B̂2 good, we in
general obtain

τ · [B̂1] ⊃ B̂2 ∩N2

∴ (µ(B̂2 \ (τ · B̂1)) < 10−4µ(B̂2)

∴ µ(B̂2) − µ(B̂1) = µ(B̂2) − µ(τ · B̂1) < 10−4µ(B̂2).

Similar reasoning implies τ−1 · [B̂2] ⊃ B̂1 ∩N2,

∴ B̂2 ⊃ τ · [B̂1 ∩N2]

∴ µ((τ · B̂1) \ B̂2) < 10−4µ(B̂1).
Then as in the previous paragraph we have

∴ µ(B̂1) − µ(B̂2) < 10−4µ(B̂1).

�

Definition. For B̂ ⊂ 2F2 with µ(B̂) ∈ (0, 1) we define γB̂ ∈ L2(2F2) by

γB̂(f) =
√

(1 − µ(B̂))√
(µ(B̂))

for f ∈ B̂ and

γB̂(f) =
−√

(µ(B̂))√
(1 − µ(B̂))

for f /∈ B̂. Note then that

||γB̂||2L2 =
∫

(γB̂)2

=
∫

B̂

1 − µ(B̂)
µ(B̂)

+
∫

2F2\B̂

µ(B̂)
1 − µ(B̂)

= 1

and that

〈γB̂ , 1〉 =
∫

B̂

((1 − µ(B̂))/µ(B̂))
1
2 −

∫
2F2\B̂

(µ(B̂)/(1 − µ(B̂)))
1
2

=
√

(µ(B̂))
√

(1 − µ(B̂)) −√
(1 − µ(B̂))

√
(µ(B̂)) = 0.

We therefore have a unit vector which is orthogonal to the constant functions.
We say that σ0 is a center (or weak center) for f ∈ 2F2 if for B̂ ∈ A(B̂n)

containing f we have that σ0 is a center (respectively, weak center) for π(γB̂), the
weight associated to the element of A(B̂n) in which f falls.

Claim (IV): If f ∈ N3, τ ∈ F2, d(τ, e) ≤ 3, f ∈ B̂1, τ · f ∈ B̂2, B̂1, B̂2 ∈ A(B̂n),
then

||τ · γB̂1
− γB̂2

||L2 = ||γτ ·B̂1
− γB̂2

||L2 < 3 · 10−2.
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Proof of Claim. We may partition 2F2 into the sets τ · B̂1∆B̂2, τ · B̂1 ∩ B̂2, 2F2 \
(τ · B̂1 ∪ B̂2) and let ψ1, ψ2, ψ3 be the functions with support equal to those sets
respectively and such that

γτ ·B̂1
− γB̂2

= ψ1 + ψ2 + ψ3.

It suffices to find suitable bounds on ||ψ1||L2 , ||ψ2||L2 , ||ψ3||L3 . For ease of expres-
sion we assume µ(B̂1) ≤ µ(B̂2); this is harmless; the argument under the reverse
inequality is symmetrical. Recall that we have

µ(B̂2) <
104

104 − 1
µ(B̂1)

by the last claim.
We calculate upper bounds on ||ψ1||L2 , ||ψ2||L2 , ||ψ3||L2 in turn.

||ψ1||L2 = (
∫

τ ·B̂1∆B̂2

ψ2
1)

1/2 ≤ [(4 · 10−4µ(B̂1))(
1√

(µ(B̂1))
)2)

1
2

=
√

(4 · 10−4) = 2 · 10−2.

||ψ2||L2 = (
∫

τ ·B̂1∩B̂2

ψ2
2)

1
2 ≤ √

(µ(B̂2))[
√

(1 − µ(B̂1))√
(µ(B̂1))

−
√

(1 − µ(B̂2))√
(µ(B̂2))

]

≤ √
(µ(B̂2))[

√
(1 − µ(B̂1))√

(µ(B̂1))
−

√
(1 − µ(B̂2))√

(µ(B̂2))
][
√

(1 − µ(B̂1))√
(µ(B̂1))

+
√

(1 − µ(B̂2))√
(µ(B̂2))

](
√

(B̂2))

= µ(B̂2)[
(1 − µ(B̂1))

(µ(B̂1))
− (1 − µ(B̂2))

(µ(B̂2))

= µ(B̂2)(
µ(B̂2) − µ(B̂1)µ(B̂2) − µ(B̂1) + µ(B̂1)µ(B̂2)

µ(B̂1)µ(B̂2)
)

=
µ(B̂2) − µ(B̂1)

µ(B̂1)
<

10−4µ(B̂1)
µ(B̂1)

= 10−4.

||ψ3||L2 = ((
∫

2F2\(τ ·B̂1∪B̂2)

[
√

(µ(B̂1))√
(1 − µ(B̂1))

−
√

(µ(B̂2))√
(1 − µ(B̂2))

]2)
1
2

≤ [(
√

(µ(B̂1))√
(1 − µ(B̂1))

)2 + (
√

(µ(B̂2))√
(1 − µ(B̂2))

)2]
1
2

< (2µ(B̂1) + 2µ(B̂2))
1
2 < (2 · 10−8 + 2 · 10−8)

1
2 = 2 · 10−4.

Claim (V): If f ∈ N3, τ ∈ F2, d(τ, e) ≤ 3, σ0 a center for f , then σ0τ
−1 is a weak

center for τ · f . �

Proof of Claim. We fix B̂1, B̂2 ∈ A(B̂n) with f ∈ B̂1 and τ · f ∈ B̂2. By definition
we then have σ0 a center for π(γB̂1

). By Lemma 3.5 (iv) we have that σ0 · τ−1 is a
center for π(τ · γB̂1

) = π(γτ ·B̂1
). By Claim (IV) we have ||γτ ·B̂1

− γB̂2
||L2 < 1

12 , and
hence by Lemma 3.5 (v) σ0τ

−1 is a weak center for π(γB̂2
) and hence by definition

a weak center for τ · f . �
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Definition. For x ∈ {a, a−1, b, b−1} we let Ax be the set of f ∈ N3 such that either
the identity e is a center of f or some reduced word of the form σx is a center of
f . For τ a reduced word we let Bτ be the set of f ∈ 2F2 such that some reduced
στ is a weak center for f .

Each f ∈ N3 is a member of at least one Ax by Lemma 3.1, and hence we may
fix Ax with µ(Ax) > 1

5 . From the last claim we have that if f ∈ Ax ∩ N3, and τ
does not begin with x, and d(τ, e) ≤ 3, then

τ · f ∈ Bxτ−1 ⊂ Bτ−1 .

There are 27 possibilities for a reduced word τ of length 3 not starting with x, and
for each such τ we have

µ(Bxτ−1) ≥ µ(Ax) >
1
5
.

Since 27
5 > 2, there is some f ∈ 2F2 in three different Bxτ−1

1
, Bxτ−1

2
, Bxτ−1

3
, each xτi

reduced, each d(τi, e) = 3. This flatly contradicts Lemma 3.3.
So much for the proof of the theorem under the simplifying assumption that θ

is one-to-one everywhere.
In the general case we must first pass to M0 of positive measure on which θ is

injective. Since the action of F2 on 2F2 is mixing we may find invertible maps

T, S : M0 →M0

such that at each x ∈M0 there will be n(x),m(x) > 0 with

T (x) = an(x) · x,
S(x) = bm(x) · x,

and thus we have 〈T, S〉 ∼= F2.
Now we trot through the argument above, but selectively replacing 〈a, b〉 with

〈T, S〉. We still calculate the centers with respect to the Cayley graph on F2 = 〈a, b〉,
but we use only words from 〈T, S〉 to shift.

We amend the definitions from above by setting B̂ = M0∩θ−1[B] for B ∈ B; as in
Claim (I) we may find an n such that for all B̂ ∈ A(B̂n), all x ∈ {T, T−1, S, S−1},
and f1, f2 in a subset of M0 with relatively large measure, gf1,x = gf2,x, where
f �→ gf,x has been chosen measurably with the requirement that θ(x.f) = gf,x ·θ(x).

Our definitions of N2, N1 are parallel to the ones before, but now asking that
N2 ⊂ N1 ⊂M0 and µ(N2) > (1− 10−8)µ(M0) and having x range over {T, T−1, S,
S−1}. In Claim (II) we have x again range over {T, T−1, S, S−1} and in Claim (III)
we have τ range over words of length less than three built from {T, T−1, S, S−1}.
The main idea here is that if τ is an irreducible word in {T, T−1, S, S−1} and
f ∈ M0, then there will be a corresponding τ̄f built from {a, a−1, b, b−1} with
τ̄f · f = τ · f and various other natural properties: σ = τ if and only if σ̄f = τ̄f ;
σ and τ are incomparable (i.e. neither extends the other) if and only if σ̄f is
incomparable with τ̄f .

With these and other natural adjustments the proof passes through as before.
Kechris pointed out a more elegant approach to the last step of the argument,

which passes from one-to-one somewhere to the specific case of one-to-one every-
where. We begin by assuming we have a homomorphism3 θ from EF2 as in the

3A Borel function θ is said to be a homomorphism from an equivalence relation F to an
equivalence relation F ′ if x1Fx2 always implies θ(x1)F ′θ(x2).
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statement of the theorem; we are aiming for a contradiction. We then choose Borel
ρ : θ[M ] × N � M such that {ρ(y, n) : n ∈ N} enumerates the preimage of any
y ∈ θ[M ]. We let G×Z act on X × 2N with the product of the original action of G
on X and the odometer action of Z on 2N (the generator acts by adding one with
carry, but in fact any modular action of Z or any other countably infinite group
will do); this action will still be modular since the odometer action of Z is modular.
We let (zn)n∈N enumerate some orbit in 2N under the action of Z. We now define
a new homomorphism

θ̂ : M → X × 2N

given by
θ̂(x) = (θ(x), zn),

where n is least such that ρ(θ(x), n) = x. This new homomorphism is one-to-one
everywhere, and falls into the proof above.

There is one obvious generalization which the argument accommodates.

Definition. Let (Z, C, ν) be a standard Borel probability space and let ZF2 be the
product space consisting of all

f : F2 → Z

with the product measure and the action defined by

σ · f(τ) = f(τσ).

This space with this action and measure is said to be the Bernoulli shift of F2 on
ZF2.

Theorem 3.7. Let E be of modular type on (X,B), (Z, C, ν) a standard Borel
probability space, and M ⊂ ZF2 of full measure. Then there is no countable to one
measurable

θ : M → X

such that f1EF2f2 ⇒ θ(f1)Eθ(f2).

Proof. We let (C�)�∈N be a generating algebra of ν-independent sets in Z, each
having measure one-half. For S ⊂ N × F2 finite we define

ψS : ZF2 → {−1, 1},
f �→ (−1)|{(�,σ)∈S:f(σ)∈C�}|.

With this and other painless modifications the proof goes through as before. �

4. Borel reducibility

Definition. For E and F equivalence relations on standard Borel (X,B) and (Y, C),
we say that E is Borel reducible to F , written E ≤B F , if there is a Borel function
θ : X → Y with

x1Ex2 ⇔ θ(x1)Fθ(x2).
We write E <B F if E ≤B F holds, but F ≤B E fails.

We say that E is treeable if it is countable and there is an acyclic graph on X ,
which is Borel in the sense of having its collection of vertices Borel as a subset of
X × X in the product Borel structure, whose connected components form the E
equivalence classes. E is hyperfinite if it can be written as an increasing union of
Borel equivalence relations which have all equivalence classes finite.



A CONVERSE TO DYE’S THEOREM 3101

Any free Borel action of F2 is treeable; one simply copies the Cayley graph across
the various components of EF2 . An equivalence relation with countable classes is
hyperfinite if and only if it is Borel reducible to E0. A group is amenable if and
only if it has a free action by measure preserving transformations on a standard
Borel probability space whose resulting orbit equivalence relation is hyperfinite.

For these and other related facts the reader should refer to [13].

Theorem 4.1 (Jackson, Kechris, Louveau; see [13]). There is a universal treeable
equivalence relation; that is to say, there is a treeable equivalence relation ET ∞
such that for all F with countable classes we have

F ≤B ET ∞

if and only if F is treeable.

Not all treeable equivalence relations are universal in their sense. E0 is treeable,
but not ≤B-universal. But in answer to a question raised in [13]:

Theorem 4.2. There is an equivalence relation E on standard Borel (X,B) with

E0 <B E <B ET ∞.

Proof. Let E be a modular equivalence relation, arising from a free ergodic action
of F2 as in [19], as discussed following the original definition of modular in the
previous section. Since it arises from a free Borel action of F2, it is treeable; since
there is an invariant measure and F2 is non-amenable, it is not Borel reducible to
E0. To see that it is not ≤B-universal among treeable equivalence relations we
apply Theorem 3.6. �

John Clemens pointed out a further application of Theorem 3.6. He begins
by considering the equivalence relation EXss

F2
× E0, where, as before, F2 acts in

a measure preserving fashion on Xss with modular type. This resulting product
equivalence relation is still modular, and hence in particular ET ∞ is not Borel
reducible to EXss

F2
× E0; on the other hand by [1] the product equivalence relation

is not treeable and thus we also have EXss

F2
× E0 not Borel reducible to ET ∞.

In this way we have an example of a countable Borel equivalence relation which
is not ≤B-comparable with ET ∞. As Clemens puts it, ET ∞ is not a node among
the countable Borel equivalence relations.

There is one manner in which the definition of modular could be relaxed. Instead
of asking that each Bn be finite we ask only that it be countable and generated as
an algebra by its atoms.

Definition. An equivalence relation E on a standard Borel space (X,B) is loosely
modular if there is a countable group G acting by Borel automorphisms on X with
E = EG and there is an increasing sequence of countable algebras

B0 ⊂ B1 ⊂ ... ⊂ Bn ⊂ ... ⊂ B
such that

(a) each B ∈ Bn is a finite Booelan combination of the atoms in Bn;
(b) each Bn is permuted by the action of G.

However, in the context of equivalence relations and actions on finite measure
spaces, this generalization, although painless, buys relatively little new. We leave
the following proposition as an exercise for the reader.
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Proposition 4.3. Let E on (X,B) be loosely modular, F an ergodic equivalence
relation on a standard Borel probability space (Y, C, µ), and

θ : Y → X

a countable to one measurable map with

y1Fy2 ⇒ θ(y1)Eθ(y2).

Then there is a modular Ê on (X̂, B̂) and a countable to one measurable θ̂ : Y →
X̂ with y1Fy2 ⇒ θ̂(x1)Êθ̂(x2).

Thus, if F refuses measurable reduction to a modular equivalence relation, then
it likewise refuses measurable reduction to any loosely modular equivalence relation.

An example of a loosely modular equivalence relation is given by any countable
group of permutations of N acting by right composition on the space of injections
from N to some countable set. It follows then in particular that there are countable
Borel equivalence relations which are not reducible to, say, the group of recursive
permutations acting on the space of injections N ↪→ N.

Since the first draft of this paper, Kechris in [12] wrote his own treatment of this
material which draws out the representation theoretic connections and in which he
formalizes the notion of anti-modular.
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