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FRACTAFOLDS BASED ON THE SIERPINSKI GASKET
AND THEIR SPECTRA

ROBERT S. STRICHARTZ

Abstract. We introduce the notion of “fractafold”, which is to a fractal what
a manifold is to a Euclidean half-space. We specialize to the case when the
fractal is the Sierpinski gasket SG. We show that each such compact fractafold
can be given by a cellular construction based on a finite cell graph G, which is
3-regular in the case that the fractafold has no boundary. We show explicitly
how to obtain the spectrum of the fractafold from the spectrum of the graph,
using the spectral decimation method of Fukushima and Shima. This enables
us to obtain isospectral pairs of nonhomeomorphic fractafolds. We also show
that although SG is topologically rigid, there are fractafolds based on SG that
are not topologically rigid.

1. Introduction

Let K be a fractal [F]. Then a fractafold F based on K is a connected Hausdorff
topological space such that every point x in F has a neighborhood homeomorphic
to a neighborhood in K. There is no generally agreed upon definition of “fractal”,
other than “I know one when I see one”, but there are several well-defined classes of
fractals, such as Kigami’s p.c.f. (post-critically finite) self-similar fractals [Ki1]. We
are interested in this class of fractals because one can do analysis on them: under
certain additional hypotheses, one can construct a Laplacian ∆ on K and study
properties of the spectrum of ∆. (Of course it should be emphasized here that the
Laplacian is not uniquely determined by the topology of K, but rather depends
on certain additional geometric structures, just as the Laplacian on a manifold
depends on the choice of a Riemannian metric.) One of the purposes of introducing
fractafolds in this context is that we may easily extend the Laplacian from K to
F , and thereby obtain a larger class of objects on which to do analysis ([B], [Ki1],
[Ki2], [S2]).

We will mainly deal with the case K = SG, the Sierpinski gasket. Recall that SG
is the attractor of the ifs (iterated function system) in the plane consisting of three
homotheties (F1, F2, F3) with contraction ratio 1/2 and fixed-points equal to the
three vetices (q1, q2, q3) of an equilateral triangle. Then SG is the unique nonempty
compact set satisfying

(1.1) SG =
3⋃
i=1

Fi(SG).

Received by the editors May 30, 2002.
2000 Mathematics Subject Classification. Primary 28A80.
This research was supported in part by the National Science Foundation, grant DMS-0140194.

c©2003 American Mathematical Society

4019



4020 ROBERT S. STRICHARTZ

We refer to the sets Fi(SG) as cells of level one, and by iterating (1.1) we obtain the
splitting of SG into cells of higher level. Note that SG is connected, but just barely:
there is a dense set of points J , called junction points, defined by the condition that
x ∈ J if and only if U \ {x} is disconnected for all sufficiently small neighborhoods
U of x. It is easy to see that J consists of all images of {q1, q2, q3} under iterates
of the ifs. The vertices {q1, q2, q3} are not junction points, but rather what we will
call terminal points: if we glue together two neighborhoods of terminal points at
the terminal points, we obtain a set homeomorphic to a neighborhood of a junction
point. All other points in SG will be called generic points. It is clear that we
may obtain a fractafold based on SG by taking a collection of copies of SG and
gluing together certain pairs of terminal points (making sure that we do enough
gluing to get a connected set). Note that we allow gluing of pairs of terminal points
from the same copy of SG, and we allow some terminal points to remain unglued.
We call this a cellular construction, and we associate with it a cell graph G with
one vertex for each copy of SG, and an edge for each gluing pair. Note that we
allow multiple edges joining the same vertices, and loops joining a vertex to itself.
We will show that every fractafold based on SG has a cellular construction. The
cellular construction is not unique, but we show that there is a unique minimal one
characterized by the condition that G contains no triangles.

The terminal points of SG constitute its boundary in the analytic theory, al-
though this is not a topological notion of boundary. We will therefore define the
boundary of the fractafold to be all the terminal points that remain unglued in the
cellular construction (intrinsically, they are the corresponding points in neighbor-
hoods homeomorphic to neighborhoods of terminal points in SG). In particular,
there are many fractafolds without boundary; in fact they are characterized by the
condition that G is 3-regular. These fractafolds without boundary are natural can-
didates for the simplest objects to work with in the analytic theory, in the same
way that it is simpler to do analysis on compact manifolds without boundary than
on bounded domains in Euclidean space.

Euclidean space is homogeneous, and the same is true for Euclidean half-space
in the sense that any two interior points, and any two boundary points, may be
interchanged by a homeomorphism. But just about the opposite is true for SG. We
have topological rigidity ([BR], [DM]) as expressed in the following two results.

Proposition 1.1 (Topological rigidity of SG). (a) Any homeomorphism of SG onto
SG is one of six Euclidean isometries.

(b) Any homeomorphism of SG into SG is a Euclidean similarity, namely one
of the above isometries followed by an iterated ifs map.

The proof of these results is an easy exercise based on the observation that
there is a unique set of three junction points {p1, p2, p3}, the midpoints of the
edges joining the terminal points, with the property that SG\ {p1, p2, p3} has three
connected components. See [BR] or [DM] for details. A consequence of (b) is that
any two homeomorphic images of SG lying in SG and intersecting in more than one
point must be nested. None of these results are true for fractafolds. We will obtain
a substitute for the nesting property: if K1,K2 ⊂ F are homeomorphic to SG and
K1 ∩K2 is larger than a finite set, then K1 ∩K2 is a finite union of copies of SG.
This observation is needed in order to show that all fractafolds based on SG have
a cellular construction.
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The main result of this paper is that the spectrum of G determines the spectrum
of F in an explicit fashion, for compact fractafolds based on SG without boundary.
We follow the convention that the graph Laplacian on G is defined by

(1.2) ∆f(x) =
∑
Ex

(f(y)− f(x))

where Ex denotes all edges connecting x to another point (called y). Note that
since G is 3-regular there are exactly three terms in the sum, but some may be
repeated if there are more than one edge joining two distinct points, and in the
case that there is a loop joining x to x, this counts twice in the sum but produces
a net effect of zero. Also, we define the eigenvalue equation as

(1.3) −∆u = λu,

so we obtain a nonnegative spectrum. Explicitly, (1.3) says

(1.4) (3− λ)u(x) = u(y1) + u(y2) + u(y3) for all x

if {y1, y2, y3} are the three neighbors of x in G. To pass from the spectrum of
G to the spectrum of F we use the method of spectral decimation of Fukushima
and Shima [FS]. We should point out that while there are no new ideas in the
extension of this method to fractafolds, the description of the spectrum in this
context is perhaps more illuminating. For example, we show that certain aspects
of the spectrum are controlled by whether or not G is 2-colorable. Also, aside from
a crude measure of size (the number of vertices in G), the bulk of the spectrum
(asymptotically almost every eigenvalue) is independent of the particular fractafold.

The paper is organized as follows. In Section 2 we discuss the notion of a cellular
construction in general. However, we then specialize to the case K = SG, and for
the rest of the paper we deal with only this case. We show that every fractafold
based on SG has a cellular decomposition, and then discuss the cell graph associated
to the cellular decomposition. This section also contains the example showing the
failure of topological rigidity. The results of this section are purely topological, and
do not refer to the analytic theory.

In Section 3 we begin discussion of the analytic theory, constructing a Laplacian
and studying its spectrum. For the convenience of the reader we outline the defi-
nitions and basic results of Kigami [Ki1] adapted to fractafolds, but refer to [Ki1]
for many of the proofs. This section also contains some simple results about the
spectrum of graphs that will be needed later. These results, and some results in
Section 4, are closely related to results of Shirai [Shi]. Since we deal with finite
graphs and keep track of spectral mutiplicities, we cannot directly quote results on
infinite graphs from [Shi].

In Section 4 we discuss the spectral decimation method. Again for the conve-
nience of the reader we outline the basic results as adapted to fractafolds, but refer
to [FS] for proofs. This allows us to give an explicit description of the spectrum
of a compact fractafold without boundary in terms of the spectrum of the cell
graph. We also give an explicit example of an isospectral pair of nonhomeomorphic
fractafolds. This uses an isospectral pair of graphs that was kindly provided by
Robert Brooks. In Section 5 we show how to handle the Dirichlet and Neumann
spectra for fractafolds with boundary.

In Section 6 we discuss a wider class of Laplacians, which allows us to assign
different “sizes” to the cells in a cellular construction, while still using the same
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standard Laplacian on SG as the model. In this generality we are not able to give
an explicit description of the spectrum, but only of the portion of the spectrum
associated to localized eigenfunctions supported on a single cell. Of course there
are many more possibilities for defining Laplacians or elliptic type operators on
fractafolds, modeled on other operators on SG. For example, one may use the same
energy and different measures (self-similar or more general) [Ki1], or any of the
self-similar energies in [Sa], or even more general energies [MST]. We leave such
developments for the future.

We conclude this introduction with a discussion of two directions for future work.
The first involves the spectral theory of noncompact fractafolds. Teplyaev [T] has
studied one class, which he calls infinite SG’s, obtained by blowing up SG according
to a procedure described in [S1], so that the structure in the large mirrors the
structure in the small. For the case of such fractafolds without boundary, he shows
that the spectrum is pure point, consisting of a countable set of eigenvalues with
infinite multiplicity having a complete set of compactly supported eigenfunctions.
In the case of an infinite SG with boundary (there is only one of these, and its
boundary consists of a single point) he has similar, but less complete, results.
He also discusses an example from [BP] that falls into the class of noncompact
fractafolds without boundary.

At the opposite extreme, one could consider what might be called the universal
fractafold U , whose cell graph is the 3-regular tree T3. There is a covering map from
U to any fractafold without boundary, determined by the covering map from T3 to
any 3-regular graph. (Although U is not simply connected, there is undoubtedly
a way to define a relative homotopy theory that ignores small holes so that any
fractafold has the same relative fundamental group as its cell graph, and T3 is
simply connected.) A description of the automorphism group of T3 may be found
in [F-TN], but it is so large that one usually wants to use suitable subgroups of
it. Clearly each automorphism of T3 corresponds to a homeomorphism of U , and it
appears likely that the converse is true as well.

The spectrum of T3 is also described explicitly in [F-TN]. It is purely abso-
lutely continuous, and in many ways it resembles the spectrum of a noncompact
Riemannian symmetric space. One can then use the spectral decimation method
to create an absolutely continuous portion of the spectrum of U . But there are also
localized eigenfunctions which yield discrete eigenvalues with countable multiplic-
ity. Presumably, together these would yield the entire spectrum, but the details
have not been worked out.

The second direction for future work is to find the appropriate class of fractals
for which the methods of this paper may be applied. One obstacle is that a typical
p.c.f. fractal has a dense set of terminal points, so there is too much freedom in
gluing cells, and there is no hope of defining a natural notion of boundary. There
are, of course, many more examples in which the number of terminal points is finite,
such as the Sierpinski gaskets based on higher dimensional simplices. One would
also want the spectral decimation method of [Sh2] or [MT] to hold.

2. Cellular construction

Let K be a fractal. A point x ∈ K is called a junction point if for every suffi-
ciently small neighborhood U of x, U \ {x} is disconnected and decomposes into a
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finite number of connected components. A point y ∈ K is called terminal if a neigh-
borhood of y is homeomorphic to one of the connected components of U \ {x} for
some junction point x. One might think of terminal points as “boundary” points,
but this is not always appropriate, since in many examples the set of terminal points
is dense in K. At any rate, one can use terminal points to glue together several
copies of K and obtain a point with a neighborhood homeomorphic to U .

A cellular construction of a fractafold F , the analog of a triangulation of a
manifold, may be described by gluing together a finite or countable collection of
copies Kj of K (called cells) as indicated. That is, F is the union of the copies
Kj with an admissible identification of points that is locally finite (only a finite
number of points in each equivalence class, and only a finite number from each Kj)
and such that each equivalence class {y1, . . . , yn} with terminal points yj ∈ Kk(j)

(we do not prohibit k(j) = k(j′) for j 6= j′) has the property that each yj has a
neighborhood Uj in Kk(j) homeomorphic to a distinct component of U \ {x} (with
x mapped to yj) for some junction point x. The neighborhood system for the
topology of F is described in the obvious way: for the identified points we take the
unions of Uj as above, as neighborhoods, while for unidentified points z ∈ Kj we
take neighborhoods of z in Kj not containing any terminal point.

It is easy to see that every cellular construction yields a fractafold. The converse
statement is not clear in general, but it is true when K = SG.

Theorem 2.1. Any fractafold based on SG has a cellular construction.

Proof. For SG there are only three terminal points, the boundary points in V0, and
the only admissible identifications of points involve identifying two terminal points,
and all such identifications are admissible. It is easy to see that any fractafold mod-
eled on SG may be covered by copies of SG, since every point has an open neigh-
borhood of one of three types: i) SG with two terminal points removed (terminal
point neighborhood), ii) two copies of SG, each with two terminal points removed
and joined at the remaining terminal points (junction point neighborhood), iii) SG
with all three terminal points removed (generic point neighborhood). Moreover, if
the fractafold is compact we may obtain a finite covering. Now we claim that any
nonempty intersection C ∩ C′ of two cells in the covering must split into a finite
number of subcells of C. To see this we split C′ =

⋃
C′j into a finite number of

subcells with the property that no subcell C′j contains more than one terminal point
of C. Then either C∩C′j is empty, or it consists of a single point, or C′j is contained
in C. The reason is that otherwise, removing the terminal point of C would dis-
connect C′j . By the topological rigidity of SG, any C′j contained in C would have
to be a subcell of C. In the compact case we do a finite number of splittings of
our finite cover of the fractafold to obtain the desired cellular construction. In the
noncompact case a similar argument works; we leave the details to the reader. �

From now on we consider only fractafolds based on SG.

Definition 2.2. Given a cellular construction of a fractafold, we associate to it a
graph, called the cell graph, as follows: Each vertex of the graph corresponds to a
cell, and two vertices are joined by one edge for each identification of two terminal
points on the cells.

Note that we allow multiple edges, and edges joining a vertex to itself. Since
the cellular construction of a fractafold is not unique, there are many different cell
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Figure 2.1. (a) The cell graph after one blowup of each of the
original vertices. (b) G(1, 2), obtained from (a) by blowing up once
on the x side and twice on the y side.

graphs that represent the same fractafold. We can always split a cell in a cellular
construction into three cells of the next generation. On the level of the cell graph
this corresponds to the basic operation we will call blowing up a point: a single
vertex v is replaced by three vertices v1, v2, v3 joined to each other by a single
edge, and for each edge joining v to another vertex v′ in the original graph we
create an edge in the new graph joining one of the vj to v′. There can be at most
three such edges, so we make sure that we do not repeat the vertex vj in creating
the new edges. However, if v was joined to itself in the original graph, then there
will be multiple edges joining some of the new points (we explicitly prohibit joining
vj to itself). The reverse operation we call consolidating a triangle: when there are
three vertices v1, v2, v3 joined together in the original graph, we replace them by
a single vertex, and for all other edges joining vj to v′ we create a corresponding
edge joining v to v′.

Any connected graph where each vertex has at most three edges (we double
count an edge joining a vertex to itself) corresponds to a cellular construction of
a fractafold. Compact fractafolds correspond to finite graphs. We may define an
equivalence class on the set of all such graphs by repeated applications of the two
basic operations. Clearly, all equivalent graphs represent the same fractafold. For a
compact fractafold the converse holds as well, by essentially the same argument used
to prove existence of cellular contructions. We define the boundary of a fractafold to
be the set of points x having a neighborhood homeomorphic to SG with x mapped
to a terminal point. In terms of a cellular construction, these are just the terminal
points of the cells that are not identified with other points. Clearly a fractafold is
without boundary if and only if its cell graph is 3-regular.

We now describe a simple example that shows that topological rigidity does not
hold for fractafolds. Consider a cell graph consisting of two vertices joined by two
edges. The corresponding fractafold is just two copies of SG joined at two pairs of
terminal vertices (to embed this in the plane we need to distort the copies slightly
from the usual presentation). We will exhibit an infinite family of homeomorphisms
that fix the two boundary points. It follows that we can apply this construction
locally to any cell graph containing a double edge.

If we blow up both of the vertices of the original cell graph we obtain the cell
graph in Figure 2.1 (a), with two vertices of order two, called x and y. Now iterate
this process n times starting with x and m times starting with y. The resulting
graph is shown in Figure 2.1 (b) with n = 1 and m = 2, with each vertex labeled
according to the number of times it has been blown up. Call the resulting graph
G(n,m). Clearly G(n,m) is isomorphic to G(n′,m′) if n+m = n′+m′, and the iso-
morphism determines a homeomorphism of the fractafold which involves identifying
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Figure 2.2. (a) The vertical edge belongs to two triangles. The
dotted edges may or may not be there, and may terminate at
any vertex except the two vertices on the vertical edge. (b) The
configuration after consolidating either triangle.

cells of different generations. Because the difference in generations varies from cell
to cell, these homeomorphisms are not isometries, and they are all distinct. The
reader is encouraged to visualize these homeomorphisms as “accordian” motions of
the fractafold. This example also shows that there are many different ways that
two cells may intersect in a fractafold, in contrast to the trivial situation for cell
intersections in the fractal.

Despite the ambiguity in “translating” from the cell graph to the fractafold,
we can unambiguously define a smallest possible cell graph corresponding to a
fractafold. The reason for this is that while we may be faced with choices when
we apply the operation of consolidating triangles, the choices do not affect the
graph we obtain. Suppose we have an edge that belongs to two triangles, like the
vertical edge in Figure 2.2 (a). Whether we consolidate the left triangle or the
right triangle, we obtain the configuration in Figure 2.2 (b). So each fractafold
corresponds to a unique cell graph with no triangles. In particular, two fractafolds
are homeomorphic if and only if their minimal cell graphs are graph isomorphic.

3. Spectrum of the Laplacian

Let F be a compact fractafold based on SG without boundary, given by a cellular
construction with cell graph G. We will not assume that G is minimal, because
implicit in our definition of the Laplacian is the assumption that all cells in the
construction are of equal size, while the operation of consolidating a triangle will
change the size of just the consolidated cell. It might be useful for the reader to
keep in mind two simple examples. The first, called the double of SG, has cell
graph G with two vertices connected by three edges; the fractafold consists of two
copies of SG joined at the three terminal points. The second, called the octahedron
fractafold, has cell graph G equal to the complete graph with four vertices; the
fractafold consists of four copies of SG placed on four faces of the regular octahedron
with no common edges (each face intersects the other three in a single vertex). Of
course these fractafolds are homeomorphic (in several different ways), but they will
have different Laplacians in the following construction.

Although there are many different Laplacians on SG, we will only use the sym-
metric self-similar Laplacian of Kigami [Ki1], which we denote by ∆. It is an easy
matter to transfer the definition of ∆ from SG to the fractafold, treating each cell
as a full size SG, and using the obvious identification of a neighborhood of an iden-
tified terminal point on two copies of SG with a neighborhood of a junction point
on SG. But we also present a self-contained construction as follows.
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The first step is to create a sequence of graphs Γ0,Γ1, . . . that will approximate
the fractafold. The first of these, Γ0, is simply the edge graph of G. The vertices
V0 of Γ0 are in one-to-one correspondence with edges of G, and v is connected to
v′ in Γ0 if and only if the corresponding edges in G meet at a G vertex. (Note
that if v and v′ correspond to a double edge in G, then we create two edges in
Γ0 connecting v and v′. Similarly, if v corresponds to a loop in G, then there will
be a loop in Γ0 connecting v to itself, and a double edge connecting v to v′.) If
x is a vertex in G it has exactly three edges touching it, and the vertices of Γ0

corresponding to these edges will be identified with the terminal points of the cell
that x represents. Each such terminal point belongs to exactly two cells, namely
the two cells represented by the points in G connected by the edge. This is exactly
the identification of terminal points of cells dictated by the cell graph G. (Note
that the same construction can be made to work for fractafolds with boundary if we
create “virtual edges” with only one endpoint so that every vertex in G has three
edges. The virtual edges will then correspond to boundary points of the fractafold.)

The graph Γ0 is 4-regular, since every edge in G meets two other edges at each
of its two endpoints, and if some of these edges coincide, then our double counting
conventions will come into play. Note that each vertex x in G gives rise to a triangle
of vertices in Γ0, namely the vertices in Γ0 corresponding to the three edges in G
that meet x. We call these cell triangles. Cell triangles may be degenerate: for
example, v, v, and v′ form a cell triangle if v has a loop and there are two edges
connecting v and v′. Also, the same three vertices may form two distinct cell
triangles if there are double edges joining each pair of them. Γ0 may also contain
other triangles that are not cell triangles. Figure 3.1 shows some examples of cell
graphs G and their corresponding Γ0 graphs.

Once we have Γ0, we obtain Γ1 by a process we call splitting: each cell trian-
gle in Γ0 splits into three cell triangles in Γ1 by adding three new vertices at the
“midpoints” of the edges of the cell triangle, as illustrated in Figure 3.2. This corre-
sponds to splitting the cells of the fractafold into three cells of the next generation.
Then Γk+1 is obtained from Γk by the same process. Since SG is obtained from
a single triangle in the limit from an infinite sequence of splittings, we obtain the
fractafold from Γk in the limit as k →∞. Note that splitting of Γ0 corresponds to
the operation of blowing up each of the vertices of G, so we have the commutative
diagram

G
edge graph−−−−−−−→ Γ0yblow up

ysplit

G1
edge graph−−−−−−−→ Γ1

We may iterate this process, so that Gk is the cell graph of the level k cells, and
Γk is the edge graph of Gk. The vertices of Γk may be identified with actual points
on the fractafold, namely the terminal points of the cells of level k.

If u is a real valued function on the fractafold, we may regard it as a function
on each of the vertex sets Vk of Γk by restriction. The graph energy is defined by

(3.1) Ek(u, u) =
∑
x∼ky

|u(x)− u(y)|2
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Figure 3.1. Examples of cell graphs (left) and corresponding Γ0

graphs (right). Top: the double SG. Note that the three vertices of
Γ0 form two distinct triangles. Middle: Note that Γ0 has two de-
generate triangles with just two vertices. Bottom: the octahedron
fractafold.

Figure 3.2. Splitting a triangle.

(the sum is over all edges, so if there are two edges connecting x and y, which can
only happen when k = 0, then we double count the term). The graph Laplacian is
defined by

(3.2) ∆ku(x) =
∑
y∼kx

(u(y)− u(x)).

Note that there are always exactly four terms in this sum. To define the analogous
quantities on the fractafold we need to multiply by the appropriate renormalization
factors before taking the limit. For the energy we let

(3.3) Ek(u, u) =
(5

3

)k
Ek(u, u)

and define

(3.4) E(u, u) = lim
k→∞

Ek(u, u).
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The limit always exists since the sequence {Ek(u, u)} is monotone increasing. We
define dom E to be the set of functions for which the limit is finite. The properties
of energy on SG proved in [Ki1] extend easily to fractafolds. Thus dom E is a
dense subspace of the continuous functions, and dom E modulo constants becomes
a Hilbert space with norm E(u, u)1/2. The inner product is given by

(3.5) E(u, v) = lim
k→∞

(5
3

)k ∑
x∼ky

(u(x)− u(y))(v(x) − v(y))

with the limit existing for u and v in dom E . Moreover, the factor 5/3 in (3.3)
and (3.4) is the only choice that doesn’t lead to one of the following dead ends: all
continuous functions have zero energy, or only constants have finite energy.

The Laplacian on the fractafold is defined by

(3.6) ∆u(x) =
3
2

lim
k→∞

5k∆ku(x).

Of course (3.6) only makes sense for x in the vertex set V∗ =
∞⋃
k=0

Vk, but V∗ is dense

in the fractafold. More precisely, u is in dom ∆ if the limit in (3.6) is uniform.
The explanation for the factor 5 in (3.6) is that it is the renormalizatoin factor 5/3
for energy divided by the renormalization factor 1/3 for measure. The measure µ
we are using is the symmetric self-similar measure on each cell, normalized so that
cells of level zero have measure one, hence cells of level k have measure 3−k. The
total measure of the fractafold is thus equal to the number of vertices in G. The
factor 3/2 in (3.6) is required to make the following weak formulation of ∆ match
up: ∆u = f for f continuous if and only if u ∈ dom E and

(3.7) −E(u, v) =
∫
fvdµ for all v ∈ dom E .

The equivalence of (3.6) and (3.7) is proved in [Ki1] for SG (actually, it is necessary
to assume that v vanishes on the boundary in that case) and the proof extends
easily to fractafolds (see also [Ki2]). The weak formulation allows us to define the
L2 domain domL2∆ by (3.7) for f ∈ L2(dµ), and then ∆ becomes a self-adjoint
operator with compact resolvant, hence discrete spectrum.

If we fix a cell C and a terminal point x in C, we can define the normal derivative
∂nu(x) of u with respect to C by

(3.8) ∂nu(x) = lim
k→∞

(5
3

)k
(2u(x)− u(yk)− u(zk))

where yk and zk are the neighboring vertices of level k to x in C. If u ∈ dom ∆,
then the normal derivatives exist, and satisfy the following matching condition: at
an identified terminal point, the sum of the normal derivatives with respect to the
two cells vanishes. In fact, the matching conditions provide necessary and sufficient
conditions for gluing together local solutions ∆ui = fi on Ci to obtain a global
solution ∆u = f (here we assume that the glued functions u and f are continuous).

The spectrum of the Laplacian on SG (with Dirichlet or Neumann boundary con-
ditions) was described exactly by Fukushima and Shima [FS], [Sh1] (see also [DSV],
[MT], [T] and [GRS] for further elaborations) based on the method of spectral dec-
imation [Sh2]. Our goal is to give an analogous description for fractafolds. We note
that SG itself is a fractafold with boundary. However, if we consider the double
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of SG, its spectrum is exactly the union of the Dirichlet and Neumann spectra for
SG, as the Dirichlet and Neumann eigenfunctions on SG are just the restrictions of
odd and even eigenfunctions on the double. Moreover, it is easy enough to decide
which eigenfunctions on the double are odd and even. Thus the spectral theory on
the double is equivalent to the two spectra on SG. The same considerations hold
for any fractafold F with boundary, as shown in Section 5.

We will show that the spectrum of the Laplacian on G determines the spectrum
of ∆0 on Γ0, and then via spectral decimation it determines the spectrum of ∆ on
the fractafold.

Lemma 3.1. The spectrum of the Laplacian on G contains 6 if and only if G is
2-colorable, in which case 6 has multiplicity one.

Proof. If G is 2-colorable, then taking u(x) = ±1 according to the color of x yields
an eigenfunction with eigenvalue 6. Conversely, suppose u is an eigenfunction,
−∆u(x) = λu(x), and let x0 be a vertex where |u(x)| attains its maximum value.
Without loss of generality, u(x0) = 1. Since G is 3-regular, we have λ ≤ 6 with
equality if and only if u(y) = −1 at all three vertices connected to x0. Continuing
in this manner, we find that λ = 6 implies u(x) = ±1 for every vertex, with signs
alternating for connected vertices. This shows that G is 2-colorable. Since the
2-coloring is unique, up to color reversal, it follows that the multiplicity of 6 is
one. �

Lemma 3.2 (cf. Theorem 1.2 of [Shi]). If λ 6= 6, then λ is in the spectrum of the
Laplacian on G if and only if it is in the spectrum of the Laplacian on Γ0, with
equal multiplicities.

Proof. Let u denote a function on the vertices of G, and let f denote a function on
the vertices of Γ0. Consider the operator Tu = f defined by f(v) = u(x) + u(y)
when v corresponds to an edge connecting x to y in G. The kernel of T is just the
space of 6-eigenvectors described in Lemma 3.1. If −∆u = λu on G with λ 6= 6,
then f = Tu is nonzero, and it is easy to see that −∆f = λf at v ∈ Γ0 simply by
adding the eigenvalue equations for u at x and y. This shows that the multiplicity
of λ in the Γ0 spectrum is at least the multiplicity of λ in the G spectrum.

On the other hand, consider the operator Sf = u defined by u(x) = f(v1) +
f(v2) + f(v3) where v1, v2, v3 correspond to the edges that meet x. Suppose f
belongs to the kernel of S. By adding u(x) = 0 and u(y) = 0 at the vertices in G
joined by the edge v, we obtain −∆f(v) = 6f(v). Thus the kernel of S is exactly
the 6-eigenspace. Now if −∆f = λf for λ 6= 6, we obtain −∆u(x) = λu(x) by
adding the equations −∆f(vj) = λf(vj) for the three vj corresponding to edges
meeting x. This yields the multiplicity comparison in the other direction. �

Let N denote the number of vertices in G. Note that N must be even. Then Γ0

has 3
2N vertices. It follows that m0(6), the multiplicity of 6 in the Γ0 spectrum,

must be 1
2N + 1 if G is 2-colorable, and 1

2N if G is not 2-colorable.
In order to use the spectral decimation method, we need to find the multiplicities

of the special eigenvalues 2, 5 and 6 for each of the graphs Γk. Moreover, we will
also explicitly give a basis for the corresponding eigenspaces for all k ≥ 1. The case
λ = 6 is quite easy to do using our previous lemmas. Since Gk is not 2-colorable for
any k ≥ 1, 6 is not in the spectrum of Gk, and the multiplicity mk(6) in Γk must
be exactly the difference in the total number of eigenvalues of Γk and Gk, since the
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Figure 3.3. The values of a 6-eigenfunction on two adjacent
(k − 1)-cells.

other eigenvalues are paired off. But the number of eigenvalues is just the number
of vertices, and Gk has 3kN vertices while Γk has 3

2 (3kN), so mk(6) = 1
23kN for

k ≥ 1. Note that 1
23kN is exactly the number of vertices Vk−1 of Γk−1. It is easy

to construct a 6-eigenfunction on Γk which takes the value one on a given vertex of
Vk−1 and zero on all the other vertices of Vk−1, so these clearly form a basis of the
6-eigenspace. Figure 3.3 shows the values of the eigenfunction on the vertices of the
two (k − 1)-cells that intersect at the given vertex; the function is zero elsewhere,
so the adjacent (k − 1)-cells form the support of the function.

We consider next the case λ = 2.

Lemma 3.3. 2 is an eigenvalue of the Laplace ∆1 on Γ1 if and only if G is
2-colorable, in which case it has multiplicity one. 2 is not an eigenvalue of the
Laplacian ∆k on Γk for any k ≥ 2.

Proof. Suppose G is 2-colorable, and let u be the 6-eigenfunction on G constructed
in Lemma 3.1. When we create the blowup G1, define u1 on G1 by u1(y) = u(x) if y
is any of the three vertices associated to x in the blowup. If, say, u1(y) = ±1, then
y has two neighbors in G1 where u1 = ±1 (the other two blowup points associated
to x), and one neighbor where u1 = ∓1, so −∆1u1(y) = 2u1(y). Conversely, if u1

is a 2-eigenfunction on Γ1, define u(x) = 1
3 (u1(y1) + u1(y2) + u1(y3)) on G, where

x blows up to (y1, y2, y3). We claim that u is not identically zero. Indeed, suppose
to the contrary that u ≡ 0. Since u1 is not identically zero, choose y1 so that
|u1(y1)| attains the maximum value of |u1|. But u1(y1) + u1(y2) + u1(y3) = 0 and
−∆1u1(y1) = 3u1(y1) − u1(y2) − u1(y3) − u1(z1) = 2u1(y1), where z1 is the other
vertex in G1 joined to y1. This says u1(z1) = 2u1(y1), contradicting the maximality
of |u1(y1)|.

Now it is easy to see that u is a 6-eigenvector on G. We simply add twice the
2-eigenvalue equation for u1 at the points y1, y2, y3 together with the 2-eigenvalue
equation for u1 at z1, z2, z3, where zj denotes the other point connected to yj in G1.
The result is the 6-eigenvalue equation for u at x. Thus we have shown mG1(2) =
mG(6), and mG(6) = 1 if G is 2-colorable, zero otherwise by Lemma 3.1. But
mG1(2) = m1(2) by Lemma 3.2. For k ≥ 2 we have mk(2) = mGk(2) = mGk−1(6),
but mGk−1(6) = 0 because Gk−1 is not 2-colorable (it contains triangles).

In the case that G is 2-colorable, we can describe the 2-eigenvector on Γ1 explic-
itly as follows: u is zero on all the old vertices V0 of Γ0, and on the new vertices
V1 \ V0, u = ±1 depending on the color of the cell the vertex is in. �

For the case λ = 5 we use a slightly different strategy. We first construct 3k−1N
2 +

1 linearly independent 5-eigenfunctions on Gk and Γk. This will show mk(5) ≥
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3k−1N
2 + 1. In the next section we will use a counting argument to show that we

actually have equality.

Lemma 3.4. G has N
2 + 1 independent (in the sense of homology) simple cycles.

Proof. The proof is by induction on the even number N . When N = 2 there are
only two possibilities, shown as the first two examples in Figure 3.1, and we see
by inspection the two simple cycles. (In fact the first example has three distinct
simple cycles, but only two are independent.)

For the induction step, we assume the result is true for 3-regular graphs with
N − 2 vertices, and consider G with N vertices. Suppose first that G contains a
loop on the vertex x. Then x must connect to exactly one other vertex y. Form
a graph G′ by removing x and y from G, and add an edge connecting z1 and z2,
the two other points connected to y. (It may happen that z1 = z2.) Note that G′

is connected and 3-regular, so by the induction hypothesis it has N/2 independent
simple cycles. Each of these cycles corresponds to a cycle in G (if the cycle in G′

contains the edge joining z1 and z2, then the corresponding cycle in G contains the
edges joining z1 and z2 to y). In addition we have the loop on x, which is clearly
independent of the others.

Next consider the case that G has no loops. It is easy to see that G must contain
at least one simple cycle (keep moving without backtracking until you return to a
vertex). Let x and y be adjacent vertices that lie on a simple cycle. Form a graph
G′ by removing x and y from G, and adding edges connecting x′ to x′′ and y′ to y′′

where x′ and x′′ are the other vertices connected to x in G, and y′ and y′′ are the
other vertices connected to y in G (again there may be some coincidences among
the points x′, x′′, y′, y′′). It is clear that G′ is connected and 3-regular, and has
one fewer independent simple cycles. �

Given a simple cycle x0, x1, x2, . . . , xn = x0 in G, we create a 5-eigenfunction
on G1 as follows. Let x′j , x

′′
j , x′′′j denote the triangle in G1 that replaces xj ,

chosen so that x′′j−1 and x′j are adjacent vertices in G1 for 1 ≤ j ≤ n. Then
x′0, x

′′
0 , x
′
1, x
′′
1 , . . . , x

′
n−1, x

′′
n−1, x

′
n = x′0 is an even cycle in G1. We set u(x′j) = 1,

u(x′′j ) = −1, and let u = 0 at all other vertices. Then the 5-eigenvalue equation
holds at all vertices of the cycle, since each vertex has two neighbors of the opposite
sign. It also holds trivially at the points x′′′j since u(x′′′j ) = 0 while u(x′j)+u(x′′j ) = 0,
and even more trivially at all other points where every term is zero.

It is clear from the construction that independent simple cycles yield independent
eigenfunctions. We can apply the same reasoning to the graphs Gk also. This yields

m5(Gk) = m5(Γk) ≥ 3k−1N

2
+ 1.

We may also describe the 5-eigenfunctions on Γk directly as follows. The simple
cycle in Gk−1 may be interpreted as a cycle of (k − 1)-cells in Γk−1 connected at
two terminal points each. Each of these cells splits into three k-cells as in Figure
3.2. We assign alternating values ±1 to the new vertices that run parallel to the
connecting old vertices in the cycle. All other vertices have value zero. An example
is shown in Figure 3.4.
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Figure 3.4. A 5-eigenfunction on Γk associated to a simple cycle
of length 5 in Gk−1.

4. Spectral decimation

In this section we show how the spectrum of G determines the spectrum of the
fractafold. We denote by {µj}, j = 0, . . . , N0, the distinct eigenvalues of G (in
increasing order) except for 6, with multiplicities mG(µj). (Of course µ0 = 0 with
m(0) = 1.) We have

(4.1)
N0∑
j=0

mG(µj) =

{
N − 1 if G is 2-colorable,
N if G is not 2-colorable.

The spectrum of Γ0 is then {µ0, . . . , µN0 , 6} with multiplicities

(4.2)


m0(µj) = mG(µj),

m0(6) =

{
1
2N + 1 if G is 2-colorable,
1
2N if G is not 2-colorable.

We now describe the spectral decimation algorithm to relate the spectra of Γk
and Γk−1. Let

(4.3) p(x) = x(5− x),

and let

(4.4) ϕ±(x) =
5±
√

25− 4x
2

be the two inverses (we will only deal with the interval 0 ≤ x ≤ 6 where the square
root is well-defined).

Proposition 4.1. Let u be a λ-eigenfunction on Γk for λ 6= 2, 5, 6. Then the
restriction of u to Γk−1 is a p(λ)-eigenfunction, and if x, y, z are the terminal
vertices of a (k− 1)-cell in Γk−1 and w is the new vertex in Γk connected to x and
y, then

(4.5) u(w) =
4− λ

(2− λ)(5 − λ)
(u(x) + u(y)) +

2
(2− λ)(5 − λ)

u(z).

Conversely, given a p(λ)-eigenfunction u on Γk−1 with λ 6= 2, 5, 6, if we use (4.5)
to extend u to Γk, then we obtain a λ-eigenfunction on Γk.
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This result is proved in [FS] for SG, and the proof may also be found in [DSV].
The argument is entirely local, so the extension to fractafolds is immediate.

Note that p(2) = p(3) = 6 and p(5) = p(0) = 0. Thus 6-eigenfunctions on
Γk−1 extend to 3-eigenfunctions on Γk but not 2-eigenfunctions. Similarly, 0-
eigenfunctions on Γk−1 extend to 0-eigenfunctions on Γk but not 5-eigenfunctions,
but the only 0-eigenfunctions are the constants. Note that if λ 6= 2, 5, 6, then the
proposition implies that 0 ≤ λ < 5, because if λ > 5, then p(λ) < 0. We use the
convention of placing eigenvalues in a box if they are present only in the case that
G is 2-colorable.

Theorem 4.2 (cf. Theorem 1.8 of [Shi]). Let {λ(k−1)
0 = 0, λ(k−1)

1 , . . . , λ
(k−1)
n , 6} be

the spectrum of Γk−1 for k ≥ 1 in increasing order with multiplicities mk−1(λ(k−1)
j ).

Then the spectrum of Γk in increasing order is

{0, ϕ−(λ(k−1)
1 ), . . . , ϕ−(λ(k−1)

n ), 2 , 3, ϕ+(λ(k−1)
n ), . . . , ϕ+(λ(k−1)

1 ), 5, 6},

with 2 present only when k = 1 if G is 2-colorable (and then m1(2) = 1), with
multiplicities

(4.6)



mk(0) = 1,
mk(ϕ±(λ(k−1)

j )) = mk−1(λ(k−1)
j ), 1 ≤ j ≤ n,

mk(3) = mk−1(6),
mk(5) = 1

23k−1N + 1,
mk(6) = 1

23kN.

Proof. Observe that ϕ− is increasing and ϕ+ is decreasing, and 0 < ϕ−(x) < 2 and
3 < ϕ+(x) < 5 if 0 < x < 5, so we have the correct order for the Γk spectrum. The
proposition explains the appearance of ϕ±(λ(k−1)

j ) with multiplicity mk−1(λ(k−1)
j ),

and also 3 = ϕ+(6) with multiplicity mk−1(6). The eigenvalue 0 corresponds to the
constants alone. We have explained the multiplicities of 2 and 6 in the previous
section, and we have shown mk(5) ≥ 1

23k−1N + 1. To show that we have equality
we just have to count.

The sum of the multiplicities for Γk−1 is 1
23kN , and for Γk it is 1

23k+1N . We
give the argument for the case k ≥ 2, or k = 1 and G is not 2-colorable. (The
remaining case is quite similar.) Then mk−1(0) = 1 and mk−1(6) = 1

23k−1N , so

n∑
j=1

mk−1(λ(k−1)
j ) =

1
2

3kN − 1
2

3k−1N − 1 = 3k−1N − 1.

Thus ∑
j

mk(ϕ−(λ(k−1)
j )) +mk(ϕ+(λ(k−1)

j )) = 2 · 3k−1N − 2.

To this we add mk(0), mk(3) = 1
23k−1N and mk(6) = 1

23kN to obtain a total of
4 · 3k−1N − 1 for the sum of multiplicities of all eigenvalues of Γk except 5. Thus
mk(5) = 1

23k+1N − (4 · 3k−1N − 1) = 1
23k−1N + 1. �

The next part of the spectral decimation method is the fact that

(4.7) spectrum(F) =
3
2

lim
k→∞

5kspectrum(Γk)
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in the following precise sense. Let {δk}k>n be a sequence of signs δk = ± with all
but a finite number being minus. If λn ∈ spectrum(Γn) with multiplicity mn(λn)
and

(4.8) λk = ϕδk(λk−1) for all k > n,

then λk is in spectrum(Γk) with the same multiplicity (except that when λn = 6 we
must choose δn+1 = + so that λn+1 = 3 rather than 2). Also, the λk-eigenfunctions
on Γk are obtained from the λk−1-eigenfunctions on Γk−1 by (4.5). But now

(4.9) λ =
3
2

lim
k→∞

5kλk

exists, and the sequence of λk-eigenfunctions on Γk converges uniformly to a λ-
eigenfunction on F , giving an eigenspace of multiplicity mn(λn). (The existence of
the limit (4.9) is a consequence of the requirement that δk is minus for all sufficiently
large k.) Conversely, for every λ ∈ spectrum(F) there exists a smallest n, called the
generation of birth, such that λ is obtained in this way. We have four possibilities:

(i) n = 0,
(ii) n = 1 and λ1 = 2,
(iii) n ≥ 1 and λn = 5,
(iv) n ≥ 1 and λn = 6.

These facts are proved in [FS] for SG, but the same proof works for fractafolds
(note that the factor 3/2 is omitted in the definition of the Laplacian used in [FS],
so the analog of (4.9) in [FS] is also missing this factor).

We may now give an exact description of the spectrum of F . Let

(4.10) ψ(x) =
3
2

lim
k→∞

5kϕ(k)
− (x)

where ϕ(k)
− denotes the composition of ϕ− with itself k times. The lowest eigenvalue

in the spectrum of F is zero, with multiplicity m(0) = 1. After that, the distinct
eigenvalues follow a cyclic pattern. Since by Theorem 4.2 the nonzero eigenvalues of
Γ1 are {ϕ−(µ1), . . . , ϕ−(µN0), 2 , 3, ϕ+(µN0), . . . , ϕ+(µ1), 5, 6}, the lowest portion
of the spectrum of F (choosing δk to be minus for k ≥ 1) will be

C′1 = {ψ(µ1), . . . , ψ(µN0), 5ψ(2) , 5ψ(3), 5ψ(ϕ+(µN0)),

, . . . , 5ψ(ϕ+(µ1)), 5ψ(5), 52ψ(3)}.
(4.11)

Another application of Theorem 4.2 gives the eigenvalues of Γ2 as

{ϕ−ϕ−(µ1), . . . , ϕ−ϕ−(µN0), ϕ−(2) , ϕ−(3), ϕ−ϕ+(µN0), . . . ,

ϕ−ϕ+(µ1), ϕ−(5), 3, ϕ+(5), ϕ+ϕ+(µ1), . . . , ϕ+ϕ+(µN0), ϕ+(3),

ϕ+(2) , ϕ+ϕ−(µN0), . . . , ϕ+ϕ−(µ1), 5, 6}.

This means that following C′1 in the spectrum of F will be

C′′1 = {52ψ(ϕ+(5)), 52ψ(ϕ+ϕ+(µ1)), . . . , 52ψ(ϕ+ϕ+(µN0)),

52ψ(ϕ+(3)), 52ψ(ϕ+(2)) , 52ψ(ϕ+ϕ−(µN0)), . . . ,

52ψ(ϕ+ϕ−(µ1)), 52ψ(5), 53ψ(3)}.

(4.12)
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The first cycle in the spectrum of F is

(4.13) C1 = {C′1, C′′1 , 53ψ(ϕ+(5))}

where the last eigenvalue is the lowest eigenvalue with generation of birth three.
Note that aside from the highest three eigenvalues of C1, the order is essentially
palindromic. This means that the basic format of C1 gets repeated as we go up the
spectrum, with the powers of 5 and the iteration of ϕ+ and ϕ− changing.

To describe the cycle Ck for k ≥ 2 let 2n−3 < k ≤ 2n−2 determine n. Then there
are sequences α and β of length n − 1 and sequences δ, δ′ of length ≤ n − 2 of
symbols + and −, all beginning with + and such that α = (γ,−) and β = (γ,+) if
k is odd and α = (γ,+) and β = (γ,−) if k is even. We then have

Ck = {5nψ(ϕαϕ−(µ1)), . . . , 5nψ(ϕαϕ−(µN0)), 5nψ(ϕα(2)) ,

5nψ(ϕα(3)), 5nψ(ϕαϕ+(µN0)), . . . , 5nψ(ϕαϕ+(µ1)),

5nψ(ϕα(5))), 5nψ(ϕγ(3)), 5nψ(ϕβ(5)), 5nψ(ϕβϕ+(µ1)),

. . . , 5nψ(ϕβϕ+(µN0)), 5nψ(ϕβ(3)), 5nψ(ϕβ(2)) ,

5nψ(ϕβϕ−(µN0)), . . . , 5nψ(ϕβϕ−(µ1)), 5nψ(ϕδ(5)),

5nψ(ϕδ(3)), 5n(ϕδ′ (5))},

(4.14)

where ϕα = ϕα1 · · ·ϕαn−1 , etc. In the case k = 2n−2 the last two eigenvalues have
a factor 5n+1 rather than 5n. It is possible to give a precise description of γ, δ, δ′

in terms of k, but it is rather complicated, so we omit it.
The eigenvalues 5nψ(ϕαϕ±(µj)) and 5nψ(ϕβϕ±(µj)) have generation of birth

zero, and hence multiplicity mG(µj). The eigenvalues 5nψ(ϕα(3)) and 5nψ(ϕβ(3))
also have generation of birth zero, and hence multiplicity m0(6). The eigenvalues
5nψ(ϕα(2)) and 5nψ(ϕβ(2)) have generation of birth one and multiplicity one (if
G is 2-colorable). The eigenvalues 5nψ(ϕα(5)) and 5nψ(ϕβ(5)) have generation of
birth one and multiplicity m1(5) = 1

2N + 1, while 5nψ(ϕγ(3)) has generation of
birth one and multiplicity m1(6) = 3

2N . This accounts for the multiplicities of all
but the last three eigenvalues of the cycle, and these multiplicities are the same for
all cycles.

The generation of birth of the last three eigenvalues is j + 2 where k =
2j(2`+1). The multiplicities of eigenvalues 5nψ(ϕδ(5)) and 5nψ(ϕδ′(5)) aremj+2(5)
= 1

23j+1N + 1, while the multiplicity of eigenvalue 5nψ(ϕδ(3)) is mj+2(6) =
1
23j+2N . These multiplicities vary from cycle to cycle, grow without bound, and
depend only on N . That is, only the size of F counts for these multiplicities. These
are the eigenvalues that really dominate the spectrum. If we consider all the other
eigenvalues in all cycles Cj for j ≤ 2n−2, their total multiplicities add up to a mul-
tiple of 2n, whereas there are on the order of 3n total multiplicities in this portion
of the spectrum. We may say that asymptotically almost all of the spectrum comes
from the top three eigenvalues of the cycles, and depends only on the size of F .

We summarize the above discussion as follows:

Theorem 4.3. The distinct eigenvalues of F are given in increasing order as

(4.15) {0, C1, C2, . . .}
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Figure 4.1. The cell graph G and eigenvalues for all examples
with N = 2 or 4.

where C1 is given by (4.13) and Ck for k ≥ 2 by (4.14). The multiplicities of the
eigenvalues in cycle Ck are given by

{mG(µ1), . . . ,mG(µN0), 1 ,m0(6),mG(µN0), . . . ,mG(µ1), 1
2N + 1,

3
2N,

1
2N + 1,mG(µ1), . . . ,mG(µN0),m0(6), 1 ,mG(µN0),

. . . ,mG(µ1), 1
23j+1N + 1, 1

23j+2N, 1
23j+1N + 1},

(4.16)

where k = 2j(2` + 1). In particular, the spectrum is uniquely determined by the
spectrum of G, and asymptotically almost all of the spectrum depends only on N .

In Figure 4.1 we show the cell graph G for all possible fractafolds with N = 2 or
4, together with a list of eigenvalues (subscripts indicate multiplicities greater than
one).

We end this section by giving an explicit description of a pair of fractafolds
that are isospectral but not homeomorphic. To show that they are isospectral
we need to show that their cell graphs are isospectral. To show that they are
not homeomorphic we need to show that after consolidating all triangles, the two
graphs remain distinct. There are many explicit examples of isospectral pairs of
graphs in the literature, but apparently none that are 3-regular. Robert Brooks
[Br3] has indicated how to modify 4-regular isospectral graphs of Sunada type by
a substitution scheme to obtain 3-regular pairs (see [Br1], [B] where related ideas
are discussed). By starting with an example ([Bu], [Br1]) of an isospectral pair
of 4-regular graphs with seven vertices, based on the group SL(3, 2) = PSL(2, 7),
and substituting a 2-vertex graph for each vertex, we obtain the isospectral pair of
3-regular graphs with fourteen vertices each shown in Figure 4.2. The fractafolds
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Figure 4.2. An isospectral pair of 3-regular graphs with fourteen
vertices. Three different types of edges are indicated.

Figure 4.3. The above graphs after consolidation of all triangles.

with these cell graphs are isospectral. After consolidating all triangles we obtain
the graphs shown in Figure 4.3, which are clearly not isomorphic, as they have
different numbers of vertices. Thus the fractafolds are not homeomorphic.

We give a brief explanation why the graphs in Figure 4.2 are isospectral. The
basic principle is that k-regular graphs are isospectral if and only if they have
the same “length spectrum”, the number of distinct closed paths of length m (for
m ≤ N). With the correct counting convention this number is just tr Am, where
A is the incidence matrix of the graph, and

(4.17) tr Am =
N∑
j=1

(λ̃j)m

where {λ̃j} is the spectrum of A (just an affine image of the spectrum of the Lapla-
cian). Knowing all the quantities (4.17) for m ≤ N determines all the elementary
symmetric polynomials in the eigenvalues up to order N , hence the characteristic
polynomial of A, hence the eigenvalues.

The Sunada construction of isospectral graphs yields even more information.
The edges of the graphs are colored, and the number of closed paths of length m
with a given coloring scheme is identical for both graphs. The coloring of edges in
Figure 4.2 is indicated by the use of solid, dashed and dotted lines. The solid and
dashed lines come from the 4-regular graphs (just consolidate pairs of vertices in
Figure 4.2 along dotted lines), which have this Sunada property, and it is easy to
see that the Sunada property is inherited in the substitution process.
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5. Fractafolds with boundary

If F is a compact fractafold with boundary based on SG, we create the double F̃
by taking two copies of F and identifying corresponding boundary points. If G is
a cell graph for F , we see that the corresponding cell graph G̃ for F̃ is obtained by
taking two copies of G and creating one or two edges joining corresponding vertices
that have fewer than three edges, so that G̃ becomes 3-regular. Let R denote the
reflection on F̃ that interchanges corresponding points in the two copies of F , and
similarly let r denote the corresponding reflection on G̃. We can then define odd
and even functions on F̃ or G̃ with respect to these reflections, and odd and even
extensions from functions on F or G to functions on F̃ or G̃.

Now it is easy to see the reflection R preserves eigenspaces on F̃ , and so eigen-
spaces split into odd and even functions. Moreover, upon restriction to F , the
odd functions satisfy Dirichlet boundary conditions, and the even functions satisfy
Neumann boundary conditions. Conversely, Dirichlet eigenfunctions on F extend
by odd reflection to odd eigenfunctions on F̃ , and Neumann eigenfunctions on F
extend by even reflection to even eigenfunctions on F̃ . Thus the problem of finding
the Dirichlet and Neumann spectra on F becomes merely a matter of sorting the
spectrum of F̃ into even and odd parts. We denote multiplicities of odd eigenvalues
with a prime, and even eigenvalues with a double prime.

The sorting is quite straightforward. The graph G̃ has N odd and N even eigen-
functions, where N is the number of vertices of G. Of course the 0-eigenfunction
is even. Note that G̃ is 2-colorable if and only if G is 2-colorable, in which case
the 6-eigenfunction is odd. Thus the odd spectrum of G̃ has distinct eigenvalues
{µ′1, . . . , µ′N1

, 6 }, with multiplicities m′G(µ′j) satisfying

(5.1)
N1∑
j=1

m′G(µ′j) =

{
N − 1 if G is 2-colorable,
N if G is not 2-colorable,

and

m′G(6) =

{
1 if G is 2-colorable,
0 if G is not 2-colorable,

while the even spectrum has distinct eigenvalues {0, µ′′1 , . . . , µ′′N2
} with multiplicities

m′′G(µ′′j ) satisfying

(5.2)
N2∑
j=1

m′′G(µ′′j ) = N − 1,

and {µ′1, . . . , µ′N1
} ∪ {µ′′1 , . . . , µ′′N2

} = {µ1, . . . , µN0}. When we sort the eigenfunc-
tions (with λ 6= 6) on Γ̃0 into odd and even, we obtain the same eigenvalues and mul-
tiplicities. We may then deduce the multiplicities of the odd and even 6-eigenspaces
by a counting argument. Since G̃ has 2N vertices, Γ̃0 has 3N vertices. Let M de-
note the number of these that correspond to boundary points of F . Note that M
and N must have the same parity. Then 1

2 (3N − M) and 1
2 (3N + M) are the
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dimensions of odd and even functions on Γ̃0. By (5.1) and (5.2) this means

(5.3)

m
′
0(6) =

{
1
2 (N −M) + 1 if G is 2-colorable,
1
2 (N −M) if G is not 2-colorable,

m′′0(6) = 1
2 (N +M)

for the multiplicities of the odd and even 6-eigenvalue. This completes the sorting
of all eigenvalues with generation of birth equal to zero. It is also clear, in the
2-colorable case, that the 2-eigenfunction of Γ̃1 is odd.

It remains to sort the eigenvalues with higher generation of birth, namely λ = 5
and λ = 6 born in Γ̃k. For λ = 6 the answer is easy, since Γ̃k−1 has 3kN vertices
and M of them correspond to boundary vertices of F . Each 6-eigenfunction of
the standard basis is associated to a vertex of Γ̃k−1. Now the boundary vertices
yield even eigenfunctions. For nonboundary vertices, each pair (the corresponding
vertices of the two copies of Γk−1) yields one odd and one even eigenfunction. Thus

(5.4)

{
m′k(6) = 1

2 (3kN −M),
m′′k(6) = 1

2 (3kN +M),

and of course m′k(3) = m′k−1(6) and m′′k(3) = m′′k−1(6). For λ = 5 we resort once
again to counting. The odd multiplicities must sum to 1

2 (3k+1N − M) and the
even multiplicities to 1

2 (3k+1N +M). Assuming this is the case for Γ̃k−1, we count
4 · 3k−1N −M odd and 4 · 3k−1N + M − 1 even total from Theorem 4.2 for all
eigenvaleus except λ = 5; hence

(5.5)

{
m′k(5) = 1

2 (3k−1N +M),
m′′k(5) = 1

2 (3k−1N −M) + 1.

Theorem 5.1. For a compact fractafold with boundary, the distinct Dirichlet eigen-
values in increasing order have cyclic structure

(5.6) {C′1, C′2, . . .}

where

C′k = {5nψ(ϕαϕ−(µ1)), . . . , 5nψ(ϕαϕ−(µ′N1
)), 5nψ(ϕα(2)) ,

5nψ(ϕα(3)), 5nψ(ϕαϕ+(µ′N1
)), . . . , 5nψ(ϕαϕ+(µ′1)),

5nψ(ϕα(5)), 5nψ(ϕγ(3)), 5nψ(ϕβ(5)), 5nψ(ϕβϕ+(µ′1)),

. . . , 5nψ(ϕβϕ+(µ′N1
)), 5nψ(ϕβ(3)), 5nψ(ϕβ(2)) ,

5nψ(ϕβϕ−(µ′N1
)), . . . , 5nψ(ϕβϕ−(µ′1)), 5nψ(ϕδ(5)),

5nψ(ϕδ(3)), 5nψ(ϕδ′ (5))},

(5.7)

and corresponding multiplicities

{m′G(µ′1), . . . ,m′G(µ′N1
), 1 ,m′0(6),m′G(µ′N1

), . . . ,m′G(µ′1),
1
2 (N +M), 1

2 (3N −M), 1
2 (N +M),m′G(µ′1), . . . ,m′G(µ′N1

),

m′0(6), 1 ,m′G(µ′N1
), . . . ,m′G(µ′1), 1

2 (3j+1N +M),
1
2 (3j+2N −M), 1

2 (3j+1N +M)}.

(5.8)



4040 ROBERT S. STRICHARTZ

Similarly, the Neumann eigenvalues in increasing order are

(5.9) {0, C′′1 , C′′2 , . . .}
with

C′′k = {5nψ(ϕαϕ−(µ′′1 )), . . . , 5nψ(ϕαϕ−(µ′′N2
)), 5nψ(ϕα(3)),

5nψ(ϕαϕ+(µ′′N2
)), . . . , 5nψ(ϕαϕ+(µ′′1)), 5nψ(ϕα(5)),

5nψ(ϕγ(3)), 5nψ(ϕβ(5)), 5nψ(ϕβϕ+(µ′′1 )), . . . ,

5ψ(ϕβϕ+(µ′′N2
)), 5nψ(ϕβ(3)), 5nψ(ϕβϕ−(µ′′N2

)), . . . ,

5nψ(ϕβϕ−(µ′′1 )), 5nψ(ϕδ(5)), 5nψ(ϕδ(3)), 5nψ(ϕδ′ (5))},

(5.10)

and corresponding multiplicities

{m′′G(µ′′1 ), . . . ,m′′G(µ′′N2
), 1

2 (N +M),m′′G(µ′′N2
), . . . ,m′′G(µ′′1 ),

1
2 (N −M) + 1, 1

2 (3N +M), 1
2 (N −M) + 1,m′′G(µ′′1),

. . . ,m′′G(µ′′N2
)), 1

2 (N +M),m′′G(µ′′N2
), . . . ,m′′G(µ′′1 ),

1
2 (3j+1N −M) + 1, 1

2 (3j+2N +M), 1
2 (3j+1N −M) + 1}.

(5.11)

The notation here is the same as in Theorem 4.3, with the same modifications
when k is a power of 2. Also, in some cases the multiplicities m′0(6), 1

2 (3N −M),
or 1

2 (N −M) + 1 in (5.8) or (5.11) may be zero, in which case the corresponding
eigenvalues should be deleted from (5.7) or (5.10). Asymptotically, almost all of
the spectra are the same, and depend only on N .

As an example, consider the original SG. Here N = 1 and M = 3, and G̃ consists
of two vertices with three edges joining them, with eigenvalues 0 and 6. In this case
N1 = N2 = 0, but G is 2-colorable. Also m′0(6), 1

2 (3N −M) and 1
2 (N −M) + 1 all

vanish. Thus the Dirichlet cycle consists of just seven eigenvalues,

C′k = {5nψ(ϕα(2)), 5nψ(ϕα(5)), 5nψ(ϕβ(5)), 5nψ(ϕβ(2)), 5nψ(ϕδ(5)),

5nψ(ϕδ(3)), 5nψ(ϕδ′ (5))}
with multiplicities {1, 2, 2, 1, 1

2 (3j+1 + 3), 1
2 (3j+2 − 3), 1

2 (3j+1 + 3)}. This is the
“octave structure” first noted explicitly in [GRS]. The Neumann cycle consists of
six eigenvalues,

C′′k = {5nψ(ϕα(3)), 5nψ(ϕγ(3)), 5nψ(ϕβ(3)), 5nψ(ϕδ(5)), 5nψ(ϕδ(3)), 5nψ(ϕδ′(5))}
with multiplicities {2, 3, 2, 1

2 (3j+1 − 1), 1
2 (3j+2 + 3), 1

2 (3j+1 − 1)}. These results are
consistent with [FS]. Note that the cycles C′k and C′′k of the two spectra have three
eigenvalues in common, namely the last three. In fact the Dirichlet eigenspace
contains the Neumann eigenspace for the 5nψ(ϕδ(5)) and 5nψ(ϕδ′(5)) eigenvalues,
and the Neumann eigenspace contains the Dirichlet eigenspace for the 5nψ(ϕδ(3))
eigenvalue. The common eigenspaces are called “prelocalized” eigenfunctions in
[BK].

6. General metrics

The Laplacian on a manifold depends on the choice of a Riemannian metric. The
Laplacian on a fractafold F with a given cellular construction that we have studied
so far in this paper may be thought of as arising from a “standard metric” that
treats all the cells in the cellular construction as having the same “size”. This is
implicit in (3.1), (3.2) and (3.6). In this section we will discuss briefly what happens



FRACTAFOLDS BASED ON THE SIERPINSKI GASKET 4041

if we consider more general Laplacians associated to “metrics” that allow the cells
to have different “sizes”. Actually, we will see that there are two independent
parameters, which we will denote by a and b, that measure the size of a cell in
terms of energy and measure. For simplicity we deal only with compact fractafolds
without boundary.

Note that every edge in each graph Γk lies entirely in one cell, even though the
vertices may belong to two different cells. Thus the sum in (3.1) may be broken
up into N separate sums, each giving the contribution from a single cell. If we are
given positive weights {ai} for the cells, we multiply the energy from cell Ki by ai
and sum, to obtain

(6.1) E
(a)
k (u, u) =

N∑
i=1

ai
∑
eik

|u(x)− u(y)|2,

where eik denotes the set of edges on Γk lying in Ki. We may then define E(a)
k and

E(a) by the analog of (3.3) and (3.4). This is merely

(6.2) E(a)(u, u) =
N∑
i=1

aiE(u
∣∣
Ki
, u
∣∣
Ki

).

We may define a Laplacian associated with E(a) and any reasonable measure
µ by using the weak formulation (3.7). We will only consider a special class of
measures. Let µi denote the standard measure on Ki (with µi(Ki) = 1) and let

(6.3) µ(b) =
N∑
i=1

biµi

for some choice of positive weights {bi}. In other words,

(6.4) µ(b)(A) =
N∑
i=1

biµi(A ∩Ki).

Then define ∆(a,b) as follows: for u ∈ dom E(a) and f continuous, u ∈ dom ∆(a,b)

and ∆(a,b)u = f means

(6.5) −E(a)(u, v) =
∫
fvdµ(b) for all v ∈ dom E(a).

If u is supported in the interior of a cell Ki, then

(6.6) ∆(a,b)u = aib
−1
i ∆u.

However, this is not the whole story, as ∆(a,b) depends on both sets of parameters,
not just the quotients. What is going on is that ∆(a,b) is constructed by gluing
together the operators aib−1

i ∆ on Ki using a matching rule that depends on {ai}.
More precisely, let {ui} and {fi} be defined on Ki and satisfy aib

−1
i ∆ui = fi in

the sense of the standard Laplacian on Ki, and suppose ui and fi are well defined
at all terminal points, ui(x) = ui′(x) and fi(x) = fi′(x) if x is a terminal point of
both Ki and Ki′ identified in F . Then ∆(a,b)u = f if and only if

(6.7) ai∂nui(x) + ai′∂nui′(x) = 0

at all identified terminal points.
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It is also possible to give a pointwise formula for ∆(a,b)u. At interior junction
points of Ki we just multiply (3.6) by aib−1

i . At an identified terminal point x as
above we have

∆(a,b)u(x) = lim
k→∞

3 · 5k
bi + bi′

(ai(2u(x)− u(yk)− u(zk))

+ ai′(2u(x)− u(y′k)− u(z′k)))
(6.8)

where yk, zk and y′k, z′k are the neighbors of x on level k in Ki and Ki′ .
It is easy to see that if we split a cell Ki in a cellular construction into three cells

Ki1, Ki2, Ki3 of the next generation, then the ai factor must be replaced by 5
3ai,

and the bi factor must be replaced by 1
3bi in order to obtain the same Laplacian.

Each Laplacian ∆(a,b) has a distinct discrete spectrum, which may in principle
be described as follows. To decide if λ is an eigenvalue, we consider all possible
solutions of

(6.9) ∆ui = a−1
i biλui on Ki

and try to glue them together to get a continuous function on F satisfying the
matching conditions (6.7). For a generic choice of λ, the solutions of (6.9) are
uniquely determined by the values of ui at the terminal points of Ki. That means
that we need to specify the values of u at the 3

2N junction points of level zero.
The matching conditions (6.7) give us 3

2N homogeneous linear equations in these
3
2N parameters, and so generically there will be no nontrivial solutions. But for
special choices of λ, the determinant of this linear system will vanish and nontrivial
solutions will exist. In fact it is possible to describe explicitly how the normal
derivatives that enter into (6.7) are determined by the values at the terminal points
of solutions of the eigenvalue equation (6.9), in terms of “special functions”. We will
not give the details here, except to note that the description is complicated enough
that there is no hope of getting an explicit solution to the eigenvalue problem.

But there are also nongeneric choices of λ that yield localized eigenfunctions
supported on just one cell. In fact, one only has to choose one of the prelocalized
eigenspaces described at the end of Section 5. The eigenvalues get multiplied by
aib
−1
i . Thus the spectrum of F contains eigenvalues

{aib−1
i 5nψ(ϕδ(5)), aib−1

i 5nψ(ϕδ(3)), aib−1
i 5nψ(ϕδ′ (5))}

with multiplicities {
1
2 (3j+1 − 1), 1

2 (3j+2 − 3), 1
2 (3j+1 − 1)

}
.

Again it seems likely that these eigenvalues comprise asymptotically almost all of
the spectrum.
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