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LOCAL ORDERS WHOSE LATTICES 
ARE DIRECT SUMS OF IDEALS 

JEREMY HAEFNER 

ABSTRACT. Let R be a complete local Dedekind domain with quotient field K 
and let A be a local R-order in a separable K-algebra. This paper classifies 
those orders A such that every indecomposable R-torsionfree A-module is 
isomorphic to an ideal of A. These results extend to the noncommutative case 
some results for commutative rings found jointly by this author and L. Levy. 

INTRODUCTION 

Let R be a complete local Dedekind domain with quotient field K and A 
a module finite R-order in a separable, finite-dimensional K-algebra. A A-
lattice is a finitely-generated, R-torsionfree A-module and an order A is called 
sigma-I if every A-lattice is isomorphic to a direct sum of ideals of A. A is 
local provided AI rad A is a division ring. This paper deals with the following 
questions: Which local R-orders are sigma-I and what is their structure? 

Current interest in sigma-I orders dates back to a ubiquitous paper [B] which 
in part considers sigma-I rings that are local commutative, Noetherian, 1-
dimensional, reduced rings with finitely generated integral closure. Nazarova 
and Roiter [NR] and Greither [G] also have results pertaining to the commu-
tative sigma-I problem. Finally, Haefner and Levy give a classification of the 
commutative sigma-I rings in [HL]. 

While a solution seems a bit more elusive for noncommutative orders, there 
are results which are useful in the characterization of noncommutative local 
sigma-I orders. For example, a generalization (due to Roiter [R'66]) of a theo-
rem of Bass states that every order with the 2-generator property (i.e., every left 
or right ideal can be generated by two elements) is sigma-I. In addition to the 
2-generator condition, there are two other properties closely related to sigma-I. 
An order A is Gorenstein if (AA)* = HomR(AA, R) is projective as a right 
A-module; and A is Bass if every overorder is Gorenstein. Drozd, Kiricenko 
and Roiter, in a paper [DKR] that completely classifies Bass orders, prove every 
Bass order is sigma-I and in certain local cases, the converse. 

The thrust of this paper is to identify those local sigma-I orders which are 
not Bass. To do this, we must know when an order has/mite representation type 
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(FRT); that is, when an order has finitely many nonisomorphic indecomposable 
lattices. Fortunately, primary orders having FRT are classified by Drozd and 
Kiricenko in [DK'73]. In their case-by-case analysis, they present much infor-
mation concerning the structure of FRT rings as well as three necessary and 
sufficient conditions for a certain local order to be sigma-I. However they do 
not determine the structure of all local sigma-I orders. 

In addition to the FRT information of [DK'73], we will use certain pullback 
constructions of the regular modules AA and AA' This pullback perspective 
provides explicit descriptions of local sigma-I orders, as seen in §3. It turns out 
that the noncommutative structure is strikingly analogous to the commutative 
situation as explored in [HL]. 

§ 1 explains the pullback point of view and contains some definitions, nota-
tions and useful lemmas. §2 provides new characterizations of sigma-I orders. 
§3 is devoted to examples and explicit descriptions of sigma-I orders and, fi-
nally, the last section contains some questions for further investigation. 

Notation. The following notation and terminology will be fixed for the remain-
der of this paper: 

(1) If X is a module over a ring R, then IR(X) denotes the composition 
length of X. In particular, IR(X) = n < 00 if X has a finite composition 
series of length n; otherwise, IR(X) = 00. 

(2) If M is a right A-lattice (for an R-order A), then M is uniform if 
M ® R K is a simple right mod~e for the separable K -algebra A = A ® R K . 

(3) For any R-order A, let A denote the intersection of all maximal orders 
in A containing A. (Note that maximal orders containing A exist since the 
algebra A is separable; see [CR].) 

1. THE PULLBACK PERSPECTIVE 

In this section, we study pullbacks of rings and lattices in order to obtain 
a precise description of the structure of orders. The results of this section 
are essential for the characterization of sigma-I orders in §2. Throughout this 
section, r denotes an arbitrary ring with 1. 

1.1 Definition. Suppose that M, ' M2 ' ... ,Mn and M are rings (or modules 
over r) and that there exist ring (or module) surjections 1;: M - M for 
all i. Define M = {(x" ... , xn) E M, E9 ... E9 Mn: 1;(x j ) = fj(x) for all 
1 ~ i, j ~ n}; M is called the n-fold pullback of M" M2 ' ... ,Mn by maps 
It ' 1; , ... ,In (over M). Pictorially, we have the following commutative dia-
gram: 
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where the top row of arrows are the projections of M onto M j • Denote M 
by 

M = pbk(~ , ... , In: MI ' ... , Mn - M) 
or just 

M = pbk(MI ' ... , Mn - M) . 
It is clear that M is a ring (module) if the maps are ring (module) surjections. 
We denote 2-fold pullbacks by 

M = pbk(~ : MI - M - M2: 1;) 
or just 

M = pbk(MI - M - M2). 

1.2 Remark. Every n-fold pullback 
M = pbk(~ , ... , In: MI ' ... , Mn - M) 

is a subdirect sum of M 1 , ••• , Mn' To see this, define 1C j : M -+ M j as the 
projection of Minto M j ; observe that the 1C j are surjections since the 1; are 
surjections. 

Lemma 1.3 proves a partial converse to the above remark; that is, any sub-
direct sum of MI and M2 is a 2-fold pullback. We note in Remark 1.4, 
however, that an arbitrary subdirect sum of M 1 , ••• ,Mn need not be an n-
fold pullback. 
1.3 Lemma. Suppose M, MI ' M2, N, N1 , N are rings (or modules over a ring 
r) such that M is a subdirect sum of MI and M2 . Let 1C 1 and 1C2 be the 
projections from M onto MI and M2, respectively. Set 

M = M /(ker1C1 + ker 1C2 ). 

For i = 1, 2, define 1;: M j -+ M to be the extension to M j of the canonical 
map t/ from M to· M (since ker 1C j c ker t/). Then: 

(l) M = pbk(~ : MI - M - M2: fJ . 
(2) ker ~ is the largest r-submodule of MI such that (ker~) EB 0 c Me 

MI EB M 2· Similarly, ker 1; is the largest r-submodule of M2 such that 0 EEl 
(ker 1;) c M c MI EEl M2 . 

(3) If M j is identified with its "zero section" in MI EElM2 (e.g. MI == MI EEl 0) , 
then ker 1; = M n M j • 

(4) ker1C 1 = 0 EEl ker f2 and ker1C2 = ker ~ EEl 0 so, in particular, ker1C 1 + 
ker 1C2 = ker ~ EB ker 1; . 

(5) The Inclusion Property holds: Suppose NI contains MI and 

N = pbk(gl : NI - N - M2: g2) 
for some epimorphisms gl and g2. Then MeN if and only if there is an 
epimorphism O!: M - N such that the.following diagram commutes: 

gl - g2 
N:NI - N - M2 
J f a II 

MM flMhM 
: 1 - - 2 
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Proof. (1), (5) These results can be obtained by a slight modification of the 
proof in [HL, §2]. 

(2) If ker 1; c X are r-submodules of M) such that X EB 0 eM, then 
1; (X) = 0 since !z(0) = O. Hence X = ker 1; . 

(3) Since M n M) = M n (M) EB 0) eM, then 1; (M n M)) = 0 and so 
MnM) c ker 1; . But it is clear that ker 1; c MnM) and so ker 1; = MnM). 

(4) From the Diamond Lemma 2.3 of [HL], kern) +kern2 = kerl1 ::> ker 1; EB 
ker f 2 • For the opposite inclusion, project ker 11 into M) and M 2 • By the 
pullback structure, these projections are contained in ker 1; , respectively. 0 

The next remark shows the connection between n-fold and 2-fold pullbacks. 

1.4 Remarks. (1) Every subdirect sum of M), ... , Mn can be described as a 
2-fold pullback recursively. 

The proof of this fact is by induction on n. The case n = 2 is just an appli-
cation of Lemma 1.3. For n > 2, let M be a subdirect sum of M), ... , Mn 
where each Mi is a module over some fixed ring r. Let n i: M - Mi be the 
projections of M onto Mi' Let W be the projection of M into the module 
M) EB·· 'EBMn_) ; that is, W = ((m), .,. , m n_)): there is some mn E Mn such 
that (m), ... , mn ) EM}. It is easy to see that M is a subdirect sum of W 
and Mn' By Lemma 1.3, M is a 2-fold pullback: 

for some epimorphism h: W - M. This completes the proof. 
(2) Every n-fold pullback, as in Definition 1.1, can also be described as a 

2-fold pullback. This follows from Remark 1.2 and Remark 1.4( 1) above. 
As 3-fold pullbacks playa significant role in what follows, we point out that 

in particular any 3-fold pullback M = pbk(1; , !z ' 1;: M) , M2 ' M3 - M) can 
be identified with 

N = pbk(f: W - M - M3: 1;), 

where W = pbk(1; : M) - M - M2: !z) and f is the induced homomorphism 
from W onto M (namely, f(m), m2) = 1; (m)) = !z(m2))· 

(3) A subdirect sum M of M), ... , Mn need not be an n-fold pullback 
(although it is a 2-fold pullback by (1)). For example, if A = Z2[X]/(1 - X4) 
(where, as usual, Z2 denotes the integers localized at prime 2), then A is a 
subdirect sum of Z2[X]/( 1 - X), Z2[X]/( 1 + X) and Z2[X]/( 1 + X 2). It turns 
out that A is a 2-fold pullback of Z2[X]/(l - X2) and Z2[X1/(1 + X2) but 
it is not the 3-fold pullback of the three rings above. This is the fundamental 
difference between "triad" and "special quasi-triad" defined in §2. 

The inclusion property is useful for working with pullbacks; so is the follow-
ing variant. 
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1.5 Corollary. Let M, N, 0 be r-modules with pullback structures 

M = pbk(m,: M, - M - M2: m2), 
N = pbk(n,: N, - N - M2: n2), 
0= pbk(o,: 0, - 0 - M 2 : O2 ), 

72' 

where M, c N, c 0" M c N n 0 and M is an Artinian, uniserial module 
such that Ir(M) = m. Then: 

( 1) Nand 0 are Artinian and uniserial, each with length Sm. 
(2) NcO ijandonlyijlr(N)?:.lr(O). 

Proof. (1) Apply Lemma 1.3 above. 
(2) If NcO then, by (4) of Lemma 1.3, there exists an epimorphism 

0: N - 0 and so Ir(N) ?:.lr(O). 
Conversely, by 1.3, it suffices to show that there exists an epimorphism 

y: N - 0 making the suitable diagram commute. But again by 1.3, there 
exists epimorphisms 0: M - Nand p: M - O. Since M is uniserial and 
lr( N) ?:. lr( 0) , then 0 factors through P; that is, there exists y: N - 0 such 
that yo = p. 0 

We know when one pullback is contained in another by Corollary 1.5. We 
show in the last result of this section how to construct a larger pullback from a 
smaller one. 

1.6 Corollary. Let M, M" M2 and M be as in Corollary 1.5. Suppose N is 
a r-module and 0: M - N is a r-epimorphism. Set ni = 00 mi' Then the 
r-module 

contains M. 
Proof. This follows from Corollary 1.5. An alternative proof is via the inclusion 
property of 1.3. 0 

2. CHARACTERIZATIONS OF LOCAL SIGMA-I ORDERS 

In [HL], a commutative local sigma-I order (with suitable hypotheses) was 
shown to be either (a) a Bass ring, or (b) a "triad" of three discrete rank one val-
uation rings pulled back over a field, or (c) a slightly more complicated subdirect 
sum of three discrete rank one valuation rings, called a "special quasi-triad". 

In this section, we give new definitions in the noncommutative setting for 
"triad" and "special quasi-triad", using very easily stated properties. We justify 
the terminology by proving equivalences that show these definitions generalize 
the commutative terminology. Our goal is the following result, which is the 
main theorem of this article. 

2.1 Theorem (Classification of local sigma-I orders). Let R be a complete local 
Dedekind domain with quotient field K and let A be a local R-order in a 
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separable K-algebra A. Then A is sigma-I if and only if A is either 
(i) a Bass order, or 

(ii) a triad, or 
(iii) a special quasi-triad. 

The definitions of "triad" and "special quasi-triad" for this more general 
setting are given in 2.2. We delay the proof of Theorem 2.1 until we have 
developed enough machinery. Throughout R, K, A and A will be as in the 
hypothesis of Theorem 2.1. 

2.2 Definitions. Suppose A has finite representa~on type (FRT) and IA(A) = 
3. Then A is called a triad provided rad A = rad A; A is called a special qUEsi-
triad provided A has a unique minimal overmodule (in A), T = A + radA. 

The above definitions were easily stated, but their utility is hindered because 
they lack structure and detail. Furthermore, the triad definition is seemingly 
incompatible with Bass' definition as a 3-fold pullback of three discrete valua-
tion rings [B]. All such worries are resolved by Theorems 2.6 and 2.12 where 
we give the structure of triads and special quasi-triads in terms of the pullback 
machinery. 

The following proposition summarizes some relevant results of Drozd, Kiri-
cenko and Roiter. 

2.3 Proposition. Given R, K, A and A as in the hypothesis of 2.1 . 
(1) [R'68] If A is sigma-I, then A has FRT. 
(2) [DK'73, p. 717] If A hasFRT, then IA(A) ~ 3. 
(3) [DKR, 12.1] For IA(A) < 3, A is sigma-I if and only if A is Bass. 
(4) [DKR, 10.3; DK'72, 3.3] If A is Gorenstein but not Bass, then A is 

contained in a unique minimal overring 0 (in A), and, furthermore, 0 is not 
Gorenstein. 

(5) [DK'73, 1.2] The order A has FRT if and only if all of the following three 
conditions hold: 

(a) A is hereditary, 
(b) AI A_ is generated by two elements, and 
(c) radA/A is a cyclic A-module. 

(6) [DK'73, p. 717] If A has FRT and I A (A) = 3, then 

(a) every uniform A-lattice is also a (uniform) A-lattice; 
(b) every uniform A-lattice is uniserial and cyc~c; 
(c) there exist !hree uniform right A (and so A) lattices XI' X2 and X3 

such that A = XI EB X 2 EB ~3 ; and 
(d) every uniform A (and so A) lattice M is isomorphic to one of XI' X 2 , 

X 3 · 

(7) The statement of(6) holds if "right" is replaced by "left': 
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2.4 Right module notation. Suppose A has FRT and IA(A) = 3. Let XI' X 2 , 
X3 be the uniform right modules given by 2.3(6). For each i, put Yi = 
radXi , which is maximal in Xi by 2.3(6). Let {el , e2'~} be a complete set 
of orthogonal primitive ~dempotents of A; note that ei • A = Xi . By 2.3(6)(a), 
it is easy to see that ei · A = Xi = ei · A; let 7ri be the projection of A onto Xi 
(via left multiplication by ei ). Set 

- A and A - ..,....,----.,--c-:---:===-- (AnX3) + (Anr)' 

(We identify Xi with its zero section in A;.. = XI E9 X2 E9 X 3 , as we will 
throughout this paper.) Set 7r to be the projection of A onto r, and note 
that r c XI E9 X 2 • Also let llr (l1A' respectively) be the canonical map from 
r onto r (from A onto A, respectively). 

It is straightforward to check that ker 7r = ker 7r I n ker 7r2 = A n X3 ' so the 
map 7ri can be factored through r. In other words, we have the following 
commutative diagrams for i = 1 , 2 : 

For notational convenience, we use 7rilr to denote the projection from r onto 
Xi' 

Now ker7rllr = rnx2 and ker7r2lr = rnx i . As a result, for i = 1,2, the 
map l1r: r - r factors through Xi by a map 1;: Xi - r; that is, we have the 
following diagrams commute for i = 1 , 2 : 

Similarly, ker 7r = ker 7r I n ker 1C2 = An X3 and ker 7r3 = An (r E9 0). Again, 
the canonical map l1A: A - A factors through both rand X 3 ; that is, there 
are maps f: r - A and h: X3 - A making these diagrams commute: 

A "r 
q~~/r 

A 

and 



724 JEREMY HAEFNER 

Pictorially, we have: 

A 
Finally, define Pi = (Xj E9 Xk ) n A, where j, k E {I, 2, 3} - {i} for each 

i = 1 , 2, 3. Note that Pi = ker 'It i and P, n P2 = ker'lt . 
The picture above suggests that A and r are pullbacks. Indeed, this is the 

case, as seen next. 

2.5 Proposition. Assume Notation}.4 holds. 
(1) AA is a subdirect sum of Ai.. = X, E9 X 2 E9 X3 and radA c radA = 

Y, E9 Y2 E9 Y3 • 

(2) r A = pbk(ft : X, - r - X 2 : fJ. 
(3) AA = pbk(f: r - A - X3: 1;). 
(4) r 3: A/(P, n P2), r 3: A/(P, + P2 ) and A 3: A/(P, n P2 + P3). 
(5) r has a unique maximal A-submodule, namely (e, + e2)· radA. 
(6) rand A are each Artinian, uniserial modules. 
(7) The left regular module AA has a structure analogous to that for AA as 

described in (1 )-( 4) . 

Proof. (1) Since the ei are the primitive idempoten~ of A, then ei · A c ei . A 
are uniform A,:.modules. But every ei • A is also a A-module by 2.3(6)(a) and 
so ei · A = ei · A = Xi. Thus, A is a subdirect sum as desired. 

Since ei · A = Xi ' we have either ei . rad A = Yi or rad A c Y, E9 Y2 E9 Y3 . 
~ut Y, E9 X 2 E9 ~3' X, E9 Y2 E9 X3 and X, E9 X 2 E9 Y3 are maximal right ideals of 
A , and so rad A c Y, E9 Y2 E9 Y3 • On the other hand, 

is obviously semisimple; hence rad A = Y, E9 Y2 E9 Y3 . 
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(2), (3) It follows from (1) that r A is a subdirect sum of Xl and X 2 , and 
AA is a subdirect sum of rand X 3 • Thus, by 1.3( 1), it suffices to show 

- r r r ~ = :---;----;-:--;----;---;-:-
ker(r - Xl) + ker(r - X2) ker(llllr) + ker(1l2Ir) 

and the analogous statements for A. It is not difficult to see that ker(llllr) = 
r n X 2 and ker( 1l21r) = r n Xl . Consequently, using the definition of r given 
in Notation 2.4, r is as desired. In a similar manner, we obtain the results for 
A. 

(4) These follow from Notation 2.4. 
(5) This is clear since r = (e l + e2) • A and A is local. 
(6) This follows since X3 is uniserial. 
(7) By symmetric arguments used in the proofs of (1) through (4). 0 

Using the pullback machinery, we now give a pragmatic description of the 
structure of triads. 

2.6 Theorem (Characterizations of triads). Assume R, A, K, A are as in the 
hypotheses of Theorem 2.1 and set U = AI radA. Then the following state-
ments are equivalent: 

( 1) A is a triad. 
(2) A has FRT and A is a 3-fold pullback of uniform right A-lattices Xl ' X2 ' 

X3 by right A-epimorphisms ti: Xi - U (over U); that is, A = {(Xl' X2, X3) E 
Xl EB X2 EB X3: tl (Xl) = t2(x2) = t3(X3)}· 

(3) A has FRT and A is a 3-fold pullback ofuniform left A-lattices Xl' X2 , 

X3 by left A-epimorphisms Si: Xi - U (over U); that is, A ~ {(Xl' X2 ' X3) E 
Xl EB X2 EB X3: Sl (Xl) = S2(X2 ) = S3(X3)} . 
Proof. (1) =? (2) Since A is a triad, A has FRT, IA(A) = 3 and radA = 
radA. Thus, using the notation of 2.4~and 2.5, radA = Yl EB Y2 EB Y3 and AA 
is a subdirect sum of XI EB X 2 EB X3 = A;.. . 

We first show that ker!; = Yi • As described in 1.3, ker!; = AnXi . It suffices 
to show An X3 = Y3 as the other cases are analogous. Clearly, Y3 cAn X3 
since radA = YI EB Y2 EB Y3. If An X3 = X3, then the inclusions 

rad A = YI EB Y2 EB Y3 C YI EB Y2 EB X3 

are proper, a contradiction to A local. By a similar fashion, it follows that 
r n Xi = Yi for i = 1 , 2 and An r = YI EB Y2 • 

In particular, 
- r r r - - ----",.-

- (rnxl ) + (rnx2) - YI EB Y2 

and 
- A A A - - -::-::----:--_,__ 

- (A n X 3) + (A n n - YI EB Y2 EB Y3 

furthermore, both are simple A-modules. 
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Now fix an isomorphism Ijf: A - U and, respectively, define the maps t 
and t3 as the compositions 

t = Ijf 0 f: r - U and t3 = Ijf 0 ~: X3 - U. 

In particular, we have A = pbk(t: r - U - X3: t3). Now ker t = YI EEl Y2 so 
t can be factored by '1r' the canonical map from r onto r; i.e., we have the 
following commutative diagram: 

r "U 
~'0... _/a 

r 
where f}: r - U is a A-isomorphism. But, from the definition of 1; and J;, 
'1r equals the compositions 

1[1 f., - 1[2 fi -
r - XI - rand r - X2 - r. 

Subsequently, we have the following commutative diagram: 

Now set tl = f} 0 1; and t2 = f} 0 J; so that 

r = pbk(tl: XI -* U - X 2 : t2 ). 

As a result, (XI' x 2 ' x 3) E A ¢:} t(x l ' x 2) = t 3(X3) ¢:} tl (XI) = t2(X2) = t(x l ' x 2) 
= t3 (X3 ). Hence, A is the desired 3-fold pullback. 

(2) ~ (1) If A has the form of (2), then A is contained in a direct sum of 
three uniform lattices. Consequently, A has FRT and 'A(A) =_3. Thus, we can 
use Notation 2.4 to describe A. It suffices to show that rad A = YI EEl Y2 EEl Y3 
is the maximal right ideal of A. Clearly, 

YI EEl Y2 EEl Y3 C A 

since Yi = ~er(.t;: Xi -* U). Yet radA c radA by 2.5(1), and so we have 
rad A c rad A = YI EEl Y2 EEl Y3 C rad A, as desired. 

( 1) ¢:} (3) These proofs are symmetric to those above. 0 

2.7 Remark. We note from the above proof that the triad also has the pullback 
structure A = pbk(t: r -* U - X3: t3), where r = pbk(t l : XI -* U - X 2 : t2) 
and t(x l , x 2) = tl(X I ) = t 2(X2). In particular, note that kert i = Yi and 
ker t = YI EEl Y2 • 

There is an analogous theorem (Theorem 2.12) for special quasi-triads but 
we will first need some information regarding the subrings of a triad. 
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2.8 Theorem. Let A have FRT and IA(A) = 3 and set T = A + radA. Then 
(1) A is Gorenstein if and only if A has a unique minimal overmodule, which 

is also a local non-Gorenstein overorder. 
~ ~ 

(2) T is a triad such that AcT c A, radT = radA and T/radT = 
AI radA as A-modules. 

(3) If A is a triad, then A is not Gorenstein. If A is a special quasi-triad, 
then A is Gorenstein. 

( 4) If A is a special quasi-triad, then an indecomposable A-lattice is either 
isomorphic to A or else is a T-lattice. In particular, a special quasi-triad A has 
FRT. 
Proof. (1) (:;.) By [DKR, 10.3; DK'72, 3.7], there exists a unique minimal 
overorder 0 which is local. If 0 is Gorenstein, then, by [DK'72, 3.3], A 
would be a local Bass ring. This contradicts IA(A) = 3 [DKR, 12.1]; hence, 0 
is not Gorenstein. 

( '¢=) From [DK'72, 2.8] and the fact that A is local, A must be injective 
on the category ~f A-lattices. Hence, ~ is Gorenstein .. 

(2) Since radA is a 2-sided ideal of A, observe that T is a ring with identity 
such that AcT cA. Set J = rad A . 
Claim. T has no nontrivial idempotents. 

Let e E T be a nonzero idempotent. Write e = A. + y where A. E A and 
y E J . Now J has ~no nonzero idempotertts: if x E J such that x = x 2 , then 
1 - x is a unit of A, a contradiction. Since A is local with rad ~ c J then 
A. f/. rad A (otherwise e E J). So A. is a unit of A and hence of A. 

Now e = e2 so modulo J, A. == A.2 • Since A. is a unit, A. == 1 mod J. After 
renaming, let e = 1 + y where y E J . But e = i implies 1 + y = 1 + 2 . y + l 
and so 0 = y + l = y . (1 + y). Yet y E J implies 1 + y is a unit in A. Thus, 
0= y. (1 + y). (1 + y)-' = y and so e = 1. This proves the claim. 

In particular, T T is indecomposable as a module. But since R is a complete 
local Dedekind domain, T is semiperfect and so T = End(!.T) is local. 

To see that T is indeed the triad, first observe that radA c rad T; conse-
quently, 

T A + rad A '" A A 
-ra-d-A - radA = AnradA = radA 

are simple A and T -modules. 
(3) A local Gorenstein ring must have a unique minimal overmodule by (1). 

However, it is straightforward to see that pbk(ft: X, - U - X2 : Iz) EB X3 and 
X, EB pbk(lz: X2 - U - X3: J;) are distinct minimal overmodules of the triad 
by 1.3 and 1.5. 

On the ot~r hand, a special quasi-triad has a unique minimal overmodule, 
T = A + radA, which, by (2), is a triad. 

(4) This last result stems from the fact that A is Gorenstein with minimal 
overorder T (see [CR, 37.13]). 0 
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2.9 Definitions. Let A be a local order with FRT such that IA(A) = 3. As be-
fore, write U = AI radA and recall, from 2.3(6), that the submodule structure 
of any uniform A-lattice is linearly 2rdered. 

( 1) The local order T = A + rad A is called the associated triad of A. 
(2) A right A-module M will be called a right special quasi-triad module 

provided there exist a right A-module M, three uniform right A-lattices MI ' 
M 2 , M3 with unique maximal sub modules NI ' N2 , N3 respectively and epi-
morphisms 1;, 1;, 1;, f such that 

(a) MA 2: pbk(f: L - M - M3: f 3), where 

L = pbk(1; : MI - M - M 2: 1;) , 
and 

(b) there exist epimorphisms gl and g2 such that the module ./Y = ker f = 
pbk(gl: NI - U - N2: g2) . 

Pictorially, we have: 

and 
./Y 

N/~N 
1~~2 

U 
The left special quasi-triad module is analogously defined. 

2.10 Remarks. (1) If 0i is the unique maximal submodule of Ni for i = 1 , 2, 
then it is easy to see that ker 1; = Ni and ker gi = 0i . 

(2) ./Y is a maximal A-submodule of NI EB N2 and NI EB N2 is a maximal 
A-submodule of L (by Lemma 1.3). 

(3) M = L I./Y has composition length 2. 
(4) ker(1;: M3 - M) = 0 3 and is the unique largest A-submodule of N3 . 

2.11 Notation. Let A and T be as in Definition 2.9. We shall keep the notation 
of 2.4 reserved for A and shall fix the following notation for T (see Remark 
2.7): 

where 



LOCAL ORDERS 729 

Theorem 2.8 shows that the triad is the "largest" local R-order inside A. We 
are now able to delve'into the structure of the special quasi-triad, again using 
the pullback perspective. 

2.12 Theorem (Characterizations of special quasi-triads). For R, A, K, A as 
specified in 2.1, U = AI rad A and I A (A) = 3, the following statements are 
equivalent: 

(1) A is a special quasi-triad. 
(2) A is Gorenstein and AA is a right special quasi-triad module. 
(3) A is Gorenstein and AA is a left special quasi-triad module, 

Proof, (1) =:} (2) By (3) of Theorem 2.8, A is Gorenstein and T = A + rad A 
is the associated triad. From (4) of 2.8, A has FRT and IA(A) = 3; so, using 
Proposition 2.5, write 

where 
r A = pbk(~ : XI - r - X2 : fJ. 

If r = 0, then r = XI EB X2 • Yet A has one maximal submodule, and hence 
so must every homomorphic image of A. Since r = XI EB X2 is the projection 
of A into XI EB X2 ' this is a contradiction. Thus, r f:. O. On the other hand, if 
IA(f) > 1, then rEBX3 (properly) contains A (apply the inclusion property of 
1.3). But rEBX3 does not contain T since the projection of T into XI EBX2 is 
e which properly contains r (apply the inclusion property). This contradicts 
the uniqueness of T as the minimal overorder of A; hence, r = U . 

If I A (A) = 0, then A = rEB X3 ' a contradiction to A local. If I A (A) = 1 , 
then A ~ U; it is straightforward to see from Corollary 1.5 and Notation 2.11 
that A = T, another contradiction. Thus, IA (A) ~ 2. But if IA (A) > 2, then, 
using Corollary 1.6, we construct the module 

M = pbk (h: r _ A - X3: h3) 
socle(A) 

(since A is uniserial) such that A eM. Now IA(A/socle(A)) ~ 2 so by 
Corollary 1.5, we have A c MeT where the inclusions are proper; this 
contradicts the minimality of T over A, and so I A (A) = 2. 

Let H = ker(f: r - A). To show that AA is a special quasi-triad, we must 
show that H has the form: 

H = pbk(gl: YI - H - Y2: g2) , 
where gi are some A-epimorphisms. Now YI EB Y2 is the unique maximal 
A-submodule of r by 2.5(5); so either H C YI EB Y2 or H = r. If H = r, 
then I A (A) = I A (r I H) = 0, a contradiction. Hence, H C YI EB Y2 • 

Next we claim that H is a subdirect sum of YI and Y2 • Set 1l' l lr (H) = 
ZI and 1l'2 Ir (H) = Z2 so that H is the subdirect sum of ZI and Z2' But 
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'A (r / H) = 2 so, applying Corollary 1.5, H is one of three possibilities: Yl $Z2 ' 
Zl $ Y2 or a subdirect sum of Yl and Y2 , where Zi is the (unique) maximal 
submodule of Yi • Suppose H = Zl $ Y2 • Then because H = ker f :) 0$ Y2 ' the 
map f: r - A factors through Xl . In other words, there is a map k: Xl - A 
such that the following diagram commutes: 

r f II A 

1tll~ ~ 
Xl 

Now construct the A-lattice 

M = X2 $pbk(k: Xl - A - X3: 1;). 

Notice that ker k = Zl and ker 1; = Z3' both of which are maximal in Yj. 
We observe that A c M because of the above commutative diagram. But 
T ct. M because Yl EEl 0 EEl 0 ct. M (otherwise Yl = ker k , a contradiction). This 
contradicts the fact that T is the unique minimal overmodule of A. Hence, 
H =I Zl EEl Y2 · Similarly, H =I Yl EEl Z2 so H is a subdirect sum of Yl and Y2 , 
as claimed. 

Consequently, we can use Lemma 1.3 to write 

H = pbk(gl: Yl - H - Y2: g2) , 

where gi are some A-epimorphisms. If H = 0, then H = Yl EEl Y2 and 
'A (r / H) = 1 , a contradiction. Thus, H =I O. If 'A (H) ~ 2 , then by Corollaries 
1.5 and 1.6, we can construct a module 

M = pbk (hi: Yl - H - Y2: h2) socle(H) 

(since H is uniserial) such that HeM c Yl EEl Y2 c r where the inclusions 
are proper. This also contradicts 'A(r/H) = 2. Thus, 'A(H) = 1 and so AA 
is a right special quasi-triad module. 

(2) ::;. (3) It suffices to show that AA is a left special quasi-triad. Since A is 
Gorenstein, AA ~ (AA)* = HomR(AA' R) and so it suffices to show that (AA)* 
is a left special quasi-triad. By Definition 2.9 and Remark 2.10(3), 'A (r / H) = 2 
and Z3 = ker(1;: X3 - A) C Y3 c X3. Subsequently, there are two short exact 
sequences: 

(A) I '1-o ----> H EB Z3 ----> A ----> A ----> 0, 

(B) 

where I denotes inclusion, 11 the canonical map and the map [f -1;] is 
defined by [f -1;](1', x 3 ) = fey) - 1;(x3 ). Now applying the functor (-)* = 
HomR(-, R) yields: 

(A)* *,* * * a -0----> A ----> H EB Z3 ----> ExtR(A, R) =: W ----> 0, 
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(B)* 0 -+ r* EEl X; ;: A* ~ ExtR(A, R) =: W -+ 0, 

where f} is the boundary map from the long exact Hom sequence. This dual 
functor is a bijection between the category of right A-lattices and the category 
of left A-lattices. Consequently, 

A* H* EEl Z* 
W~ ~ 3 = r* EEl X* = A * 

3 

and is an Artinian, uniserial, cyclic, left module of length 2. 
Since H = pbk(gl: YI - U - Y2: g2)' then ZI EEl Z2 is the maximal sub-

module of H where Zi is maximal in Yi • Using a similar approach for H, 
we get the following exact sequences: 

(C) 

(D) 0 -+ H -.!.... YI EEl Y2 [gl~g21 U -+ 0, 

where v is the canonical map and [gl - g2](Y I ' Y2) = gl (y I) - g2 (Y2)' Applying 
the * -functor, we get 

(C)* 

(D)* 

Thus, 

* * ,. * a 0-+ YI EEl Y2 -+ H -+ ExtR(U, R) -+ O. 

H* Z* EEl Z* 
ExtR(U, R) ~ Yt EEl Y2* ~ I H* 2 

is an Artinian, simple left A-module and so is isomorphic to U; identify 
ExtR(U, R) with U. 

Set Xi =: Zi* which is a uniform left A-lattice. 
Next we claim that H* = pbk(sl: XI - U - X2: S2) for some epimorphisms 

Si (i = 1, 2) such that ker Si = Yi*' Since H* is maximal in XI EEl X2 and 
since H* is a full A-module of KX I EEl KX2 , then H* is a subdirect sum of 
XI EEl X2 . By Lemma 1.3, write H* = pbk(sl: XI - r - X2: S2) for some 
artinian left A-module rand epimorphisms S I and S2' But Y; EEl Y2* C H* 
and so ~* C ker Si' Now if ker Si = Xi' then H* (and so H) decomposes, a 
contradiction. Hence, ker Si i= Xi' Yet Yi* is maximal in Xi (= Zn so we 
have ker Si = Yt . Hence, r ~ XJ Yt ~ U and this proves the claim. 

In a similar fashion, A * is also a subdirect sum of H* and X3 so we can 
write A * = pbk(s: H* - 'IF - X3: s3)' From (B)*, r* EEl X; c A * ; and so 
r* c ker S C H* (by (2) of Lemma 1.3). Similarly, we have X; c ker S3 C X3 . 
Now 2=IA(X3/X;) (since 2=IA(X3/Z3 )) and so 2?IA('lF). 

We claim that I A ('IF) = 2. If not, then 'IF ~ U or O. If 'IF = 0, then 
A * = H* EEl X3 • This implies that A ~ A ** ~ H EEl Z3 ' a contradiction since A 
is local. If 'IF ~ U , then we have 

0-+ A * -+ H* EEl Z; -+ U -+ O. 
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Comparing this to sequence (A)*, we see that W 2: (H* EB Z;)jA* 2: U; this 
is a contradiction since W has length 2. Thus, IA('7F) = 2 = IA(W) (in fact, 
'7F 2: W). 

To complete the proof that A * is a left special quasi-triad, we must show 
that 

ker(s: H* - '7F) = pbk(hl : Y; - U - Y;: h2 ) 

for some epimorphisms hI and h2 • We have seen that r* c ker s (from 
(Bn; yet 2 = IA('7F) = IA(H* jkers) = IA(W) = IA(H* jr*) , so we get that 
ker s = r* . Finally, using similar homological arguments as above, we observe 
that r* = pbk(hl: Yt - U - Y;: h2 ) , as desired. 

(~) :::} (1) Using 1.3, it is straightforward to show that the triad T = A + 
rad A is minimal over A. Since A is Gorenstein, then T is the unique minimal 
overmodule of A. 0 

While the radical of a triad is quite tractable (radA = radA = YI EB Y2 EB Y3 ), 
such is not the case for the special quasi-triad. The next lemma, however, shows 
some nice properties. 

2.13 Lemma (Special quasi-triad facts). Let A be a special quasi-triad and T 
the associated triad using the notation of 2.12. Let Zi be the maximal submod-
ule of Yi • Then 

(1) ker(r - AA) = (YI ' Y2)' T + ZI EB Z2' where Yi is some generator of Yi • 
(In particular, this kernel is aT-module.) 

(2) radA = (YI ' 0, Y3) . T + (0, Y2' Y3) . T + ZI EB Z2 EB Z3 is a (right) ideal 
of T. 

(3) The results of (1) and (2) also hold for the left module structure of A. 
In particular, radA is a 2-sided ideal of T. 
Proof. (1) By Definition 2.9, 

H = ker(f: r - A) = pbk(gl: YI - U - Y2: g2)' 
Let Y I be some generator of YI . Since U = Aj rad A is simple, there is a 
generator Y2 of Y2 such that (YI' Y2) E H. We claim that H = (YI ' Y2) . 
T + (ZI EB Z2)' where Zi is the maximal sub module of Yi • If x E H, then 
x = (YIA, Y2') such that gl(YIA) = g2(Y2')' But gl(Y I) = g2(Y2) and so 
Y2A - Y2' E ker g2 = Z2' Hence 

x = (Y I ' Y2)A - (0, Y2)A + (0, Y2)' E (YI ' Y2)T + 0 EB Z2 
which proves the claim. 

(2) Let M = radA. From the right regular module structure of A, the 
projection of Minto r is the maximal submodule of r, namely YI EB Y2 ' 
while the projection of Minto X3 is Y3 . The pullback structure for M is 

M = pbk(m: YI EB Y2 - M - Y3 : m3), 

where M = Mjker(Yf: A - A) 2: AjradA and kerm = ker(f: r - A) = H = 
(YI ' Y2)' T + ZI EB Z2 which is maximal in YI EB Y2 · If Y3 is a generator of Y3' 
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then there exists generators y, and Y2 of Y, and Y2 respectively such that 
(Y" 0, Y3) E M and (0, Y2' Y3) EM. If x EM, then x = (Y,A., Y2 r , Y30') 
where m(y,A., Y2r) = m 3(y30') and A., r, 0' E AcT. But 

m(y,A., Y2 r) = m(y,A., 0) + m(O, Y2 r) = m 3(Y3)A. + m 3(Y3)r 

so that Y3(0' - A. - r) E ker m3 = Z3. Hence, 

as desired. 

x = (Y" 0, Y3)A.+ (0, Y2' Y3)r+ (0,0, Y3(0' -A.- r)) 
E (Y, ' 0, Y3) . T + (0, Y2' Y3) . T + Z, EB Z2 EB Z3 ' 

(3) This follows from symmetric arguments. D 

The following result of [DK'73], stated without proof, plays a crucial role in 
proving Theorem 2.l. 

2.14 Theorem [DK'73, 8.1]. Let T be a local, non-Gorenstein order of FRT 
with I A (A) = 3. Then T is sigma-I if and only if rad T is an ideal of T . 

Before proving Theorem 2.1, we will characterize all local sigma-I orders 
such that IA(A) = 3. 

2.15 Theorem. Let R, K, A and A be as in 2.1 such that IA(A) = 3. Then 
A is sigma-I if and only if A is either 

(a) a triad, or 
(b) a special quasi-triad. 

Proof. (=» if A is a sigma-I order then A has FR! by 2.3( 1). Subsequently, 
either A is non-Goren stein with rad A an ideal of A or else A is Gorenstein 
with minimal overorder T which is local, non-Goren stein a~d sigma-I (2.8). 

Suepose A is non-Goren stein and so rad A is a 2-sided A-ideal. But from 
2.3, A = X, EB X2 EB X3 where {X) is a complete set of isomorphism repre-
sentatives of uniform right A-lattices as well as the indecomposable projective 
A-modules. Set Xi = XJ(X; . radA) and so e =: AI radA = X, EB X 2 EB X 3 • 

However, b~ 2.3, each Xi is cyclic and hence the set {X;} consists of ~ll the sim-
ple A and A modules. Thus, e is semisimple Artinian so that rad A c rad A . 
The opposite inclusion_is known from 2.5. This shows that A is a local order 
such that rad A = rad A and so A is the triad. 

Now suppose that A is Gorenstein with minimal overorder T which is non-
Gorenstein, local and sigma-I. From the above paragraph, T is the triad and 
so A is a special quasi-triad. 

(~) Firs~ suppose A is! triad. Then from 2.8, A is non-Gorenstein with 
radA = radA, an ideal of A. By 2.14, A is sigma-I. _ 

Now suppose A is a special quasi-triad. Then T = A + rad A is the unique 
minimal overmodule of A, so, by Theorem 2.8, T is non-Gorenstein and 
sigma-I. From (4) of Theorem 2.8, every indecomposable A-lattice is either 
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A or some indecomposable T-Iattice. Since T is sigma-I, then so is A. This 
completes the proof. 0 

Historically, Bass [B] showed that, in the commutative case, if A is sigma-I 
then Pi + Pj = radA. This is also the case in the noncommutative situation as 
seen by the next result. 

2.16 Corollary. Let R, K, A and A be as in 2.1 such that iA(A) =3. If A 
is sigma-I, then Pi + Pj = radA = Qi + Qj for all i, j E {I, 2, 3}. i =j:. j. 
Proof· If A is the triad, observe that Pk = Yi EB Yj since rad A = YI EB Y2 EB Y3 . 
Symmetrically, Qi + Qj = radA for any i =j:. j . 

If A is the special quasi-triad, then by Lemma 2.13, rad A = (y I ' 0, Y3)' T + 
(0, Y2' Y3)' T +ZI EBZ2 EBZ3 . From inspection, PI = (0, Y2' y 3)· T +OEBZ2 EBZ3 
and P2=(YI,0'Y3)·T+ZIEBOEBZ3' Now P3 cradA so P3 =(YI'-Y2'0)· 
T + ZI EB Z2 EB 0. In particular, Pi + Pj = radA for any i =j:. j . Symmetrically, 
Qi+Qj=radA for any i=j:.j. 0 

Finally, the proof of Theorem 2.1 is at hand. 

Proof of 2.1. (::;.) Using Proposition 2.3, we see that if A is sigma-I, then A 
has FRT so iA(A) :5 3. If iA(A) :5 2, then A is a local Bass order by 2.3(2). 
If iA(A) = 3, then A is either a triad or a special quasi-triad by 2.15. 

(<=) Every local Bass order is sigma-I from [DKR, 12.1] and Theorem 2.15 
shows that every triad and special quasi-triad are sigma-I. 0 

An appropriate remark is that the sigma-I property is left-right symmetric. 
Indeed, this can be directly verified by dualizing with respect to R; that is, M 
is a right indecomposable A-lattice if and only if M* = HomR(M, R) is an 
indecomposable left A-lattice. 

3. EXAMPLES 

In this section, we provide some examples of sigma-I (but not Bass) rings to 
elucidate the notions of triad and special quasi-triad. In certain cases, we can 
give a definitive form for the triad. 

If A is a local sigma-I order which is not Bass then IA(A) = 3 and so 
there are three possibilities for the separable algebra A: M3(D) , M2(D) EB DI 
or DI EBD2EBD3 where D, DI , D2, D3 are division rings. Let £g (respectively 
£gJ be the unique maximal R-order in D (Di) , let .9 = n£g = £gn (respec-
tively, .9i = n£gi = £gin) be the unique maximal ideal of £g (£gJ and let k 
(respectively, kJ be the residue division ring. Assume throughout this section 
that A is a local R-order in A with FRT. 

The case A = M3(D). Since R is a complete local Dedekind domain, any 
hereditary order inside A is, up to isomorphism, one of the following: 

[~ : :], [:::] and M3(£g) . 
.9.9£g .9.9£g 



LOCAL ORDERS 735 

The second possibility is ruled out for A by [DK'73, 3.1]. Let I denote the 
3 x 3 matrix identity: 
3.1 Proposition. (1) If 

A=[~: :], 
9' 9' ~ 

then the triad A has the form 

A= [~ ~ :] +I·~. 
9' 9' 9' 

(2) If A = M3(~)' then the tria~ A has theform A = (I, x2 ' x3) +M3(9') , 
where (I, x2 ' x3) is the subring of A generated by I, x2 and x3 such that, mod-
ulo M3(9') , (I, x2 ' x3) generates a division subring in M3(k) of k-dimension 
3. 

Conversely, (I, x2 ' x3) + M3(9') is a triad provided (I, x2 ' x3) modulo 
M3(9') forms a division ring of k-dimension 3. 
Proof. (1) It is easy to verify that A is a ring with 

radA = [~ ~ :] = radA 
.9 .9 .9 

and ~o A is a triad. Suppose T is another triad contained in A. Th~n rad T = 
radA = radA. But T is a ~-module and lET so AcT c A. Notice 
that Xl = (~~~), X2 = (9' ~~) and X3 = (9' 9'~) with maximal 
submodules (respectively) Yl = (9' ~ ~), Y2 = (.9 9' ~), Y3 = (.9 9' 9') . 
Now we have X;/Yj = A/radA c T/radA = T/radT = X;/Yj and these are 
simple A-modules. Thus, if A/ rad A and T / rad A are simple A-modules, 
then T = A. 

(2) Now_ M3(.9) c radA (by exercise 3, p. 365 of [RD. Further, M3(9') is 
a 2-sided A-ideal such that A/M3(.9) is ~ division ring. As a result, the ring 
A is local. Hence, radA = M3(9') = radA and so A is a triad. In this case, 
the uniform lattices are all isomorphic so set Xi = (~~~) with maximal 
submodule Yi = (9' 9' 9'). _ 

If T is any other triad in A, then 

T = T/radT = X;/Yi = (~~ ~)/(.99'9') = (kkk). 

Hence T is a division ring with k-dimension 3. L~ I, Yz and Y3 generate T 
as a right k-module. Lift these to I, Yz and Y3 in A and put A = (I, Y2' Y3) + 
M3(.9) so that AcT. But A is a triad such that A/ radA = T / radA = 
A/ radA. This forces T = A. 0 

3.2 Examples. (1) This first example illustrates the triad of 3.1(2). Let R be 
a local (commutative) Dedekind domain with maximal ideal P and residue 
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field k = R/ P and suppose F is a field extension of k of degree 3. Then F 
embeds into A = M3(k) such that IA: FI = IF: kl = 3. Let F be generated, 
as a k-algebra, by I, x2 and x3 in A and lift these to M3(R). Now define T 
as in 3.1 (2). 

(2) For an example of a special quasi-triad inside A = M3(D) , let 

[
.9 g g] 

T= .9 .9 g +I·g 
.9 .9 .9 

be the triad as in 3.1 (1). Observe that 

[
.9 g g] [0 1 0] 

Y1 = ° ° ° = ° ° ° ·T=(YI'0,O)·T, 
o 0 0 ° 0 0 

° 0] [0 ° .9 g = 0 0 

° 0 ° ° 
r]·T~(O'Y2'O).T 

and 

Y3~ [i i i] ~ [~ ~ ~].T~(O'O'Y3).T' 
where YI = (010), Y2 = (001) and Y3 = (nOO). The maximal submodule of 
Yj is Zj so following 2.13(2), set 

M = (YI' 0, Y3)· T + (0, Y2' Y3)· T + ZI EB Z2 EB Z3 

=[~ ~ ~].T+[~ ~ ~].T+[: : :] 
n 0 0 0 ° 0 .92 .9 .9 

It is straightforward to check that A = M + I . g is a local order such that 
rad A = M. In addition, T is uniquely minimal over A. By 2.12, A is a 
special quasi-triad and is sigma-I. 

The case A = M2~) EB DI . Assume k = kl as rings. As in the case above, the 
hereditary order A is isomorphic to either 

3.3 Proposition. (1) If 

A = [: :] EB gl ' 

then the triad A c A has the form 

A = pbk(f: r ..... k = kl - gl: 1;) 
.9";:$ (as a ring), where r=[.9".9"]+I.g. 



LOCAL ORDERS 

(2) If A = M2(9) $91 , then the triad A has the form 

A = pbk(f: r - U - 9 1 : 1;) 

737 

(as a ring), where r = pbk(1;: (99) - U - (99): 1;) and U = AI radA ~ 
r I rad r ~ gl 19'1 is a 2-dimensional skewfield extension of k = 919' . 

Also, kerf = M 2(9'), ker 1; = 9'3 and ker 1; ~ ker.t; ~ (9' 9'). 
Proof. (I) Let A be as above. Since the maps in the pullback are ring homo-
morphisms, then A is a ring with radical [::] $9'1 = rad A. Hence, A is a 
triad. 

If T is also a triad then rad T = radA = radA. Write 

TT = pbk(t: e - U -gl: t3 ) 

using t~e notation of 2.11 and the fact that X3 = 9 1 , ~ow U_ = T I rad T = 
T I rad A is a c!!vision_ ring containing k and sits inside AI rad A ~ k $ k $ k . 
Furthermore, AI rad A is a direct sum of three simple T -modules. This implies 
U ~ kl ~ k . It is straightforward to check that, since T is a triad, then r = e 
as rings and so T ~ A . 

(2) If A has the form of (2), then it is easy to see that 

rad A = ker 1; $ ker.t; $ ker 1; = (9' 9') $ (9' 9') $9'1 

= M2(9') $9'1 = radA:. 

Conversely, suppose T is a triad. Then using 2.11, write 

TT = pbk(t: e - U - gl: t3 ) 

where U = TlradT. In this case, XI ~ X 2 ~ (99), X3 = gl' YI ~ 
Y2 ~ (9' 9') and Y3 = 9'1 are the right uniforms while XI ~ X2 ~ [!], 
X3 = 9 1, .r; ~ 14 ~ [:] and ~ = 9'1 are the left uniforms. In particular, 
U = T/radT ~ XIIYI ~ (kk) is a 2-dimensional k-space. Now by Remark 
2.7, 

e = pbk(tl: (99) - U - (g g): t2 ) 

and is the projection of A into M2(9) ; hence e is a local order. Furthermore, 
rade = M2(9') so e/rade ~ U as desired. 0 

3.4 Examples. (I) Let R, P and k be as in Example 3.2(1). Then the order 

T= [~ ~] $P+(I$I)·R 

is local with 

[ p R] -rad T = P P $ P = radA 

and so T is a triad. 
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(2) For an example of a special quasi-triad in an algebra of the form M2(K I )EB 
K 2 , let R, P, k be as before with P = Rp = pR. Define the ring r = 
[~ ~] + I . R. Notice that r = pbk(1t : XI - k - X 2 : 1;) , where XI ~ (R R) 
and X 2 ~ (P R) are uniform right r-lattices. The maps It and 1; have kernels 

YI = [~ ~]. r = [~ ~]. r ~ (P R) 

and 

Y2 = [~ ~]. r = [~ ~]. r ~ (P P) 

respectively. Now set 

v = r/ [~ ~]. r 
and check that V ~ {[ ~ ~ ]} , where x and y belong to k; i.e., V is a com-
mutative, Artinian valuation ring of length 2. Such a ring, by a theorem of 
Hungerford [H], is a homomorphic image of some principal ideal domain. A 
suitable localization of this PID yields the necessary discrete valuation ring ~I 
mapping onto V. Thus, 

A = pbk(f: r - V - 9 1 : h) 
is a (noncommutative) special quasi-triad. Of course, 

T = A + { [; ;] EB 9'1 } = A + rad A 
is a triad by 2.8. _ 

(3) For an example of a triad when A = M2(9) EB ~I ' set Q = M2(1E3) ' 
where 1E3 is the localization of IE at 3. Let P = 3 . 1E3 be the unique maximal 
ideal of 1E3 • Define 

r = [~ ~]. 1E3 + [~ ~]. 1E3 + M2(P) 

which is a local Bass order such that r = Q and radr = M 2(P). Note that 
r / rad r is a 2-dimensional field extension of k = 1E3 / P ~ IE modulo 3 (since 
v'5 i IE mod 3). Choose a discrete valuation ring ~I with maximal ideal 9'1 
such that r / rad r ~ 9 1/9'1 (see [H]). Define 

T = pbk(t: r - r/ radr - 9 1 : t3 ) 

which is a local order in nEB 9 1 = T. Note that rad T = M 2(P) EB 9'1 = 
rad(Q EB 9 1) = rad T. By 2.6, T is a triad and so is sigma-I. 

The case A = DI EB D2 EB D 3 . In this case, there is a unique maximal (and 
hereditary) R-order, Q = 9 1 EB 9 2 EB 9 3 • Let el , e2 and e3 be the central 
primitive orthogonal idempotents in Q. 
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3.5 Theorem. The/ollowing statements are equivalent/or a local order A in A: 
(1) A is sigma-I. 
(2) A is either 
(a) the triad 0/ g', EB g'2 EB g'3 ; that is, A = {Cd, ' d2 , d3): 1; d, = hd2 = 

J;d3} , where J;: g'i - k ~ g'd.9i , or 
(b) the special quasi-triad; that is, A = pbk(/: r - V - g'3: J;), where 

r = pbk(1;: g', - k - g'2: h), V ~ r/(y, + Y2)' rand Yi is some 
generator 0/ Yi . 

(3) Pi + Pj = radA for all i =f. j . 
Proof. By Theorem 2.15 and Corollary 2.16, it suffices to show that (3) implies 
(2). Yet the Pi are 2-sided ideals of A so the same argument used in [HL, 3.6] 
(slightly modified for the non commutativity of the g') will work here. 0 

Remarks. (1) The existence of a special quasi-triad depends on the ramification 
index of the maximal ideal P of R within the maximal orders g'i' See [NR] 
for details. 

(2) For examples of triads and special quasi-triads in the case A = D, EBD2 EB 
D3 , see [HL, §4]. 

4. FINAL REMARKS 

Here are some remarks and questions for further investigation of sigma-I 
orders. 

(1) What happens to the sigma-I property when passing from local orders 
over complete local Dedekind domains to arbitrary orders over complete local 
Dedekind domains? A reduction theorem such as that found in [DK'72] might 
be possible. 

(2) What is true about arbitrary orders over Dedekind domains having the 
sigma-I property? In this case, an analogous tool as the graph of the spectrum 
of the ring R may help classify the sigma-I orders. 

(3) Klingler [K] has discovered an apparent flaw in a paper by Berman; in 
doing so, he was able to classify which integral group rings (for groups with 
square-free order) have the sigma-I property as well as describe the genera of 
lattices over such rings. 

Acknowledgment. I would like to thank the referee for making many helpful 
comments for the revision of this paper. 
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