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ABSTRACT. Let A; be a field, let JV be a normal subgroup of a finite group H

and let M be a completely reducible fc[JV]-module. We give sufficient conditions

for a finite dimensional (finite) group crossed product fc-algebra to be a Frobe-

nius or symmetric fc-algebra. These results imply that k[H]/( J(k[N])k[H]) and

the endomorphism fc-algebra, EndA.jW](MH), of the induced module MH are

symmetric fc-algebras. We also completely describe the fc[i/]-indecomposable

decomposition of MH. It follows that the head and socle of an indecomposable

component of MH are irreducible isomorphic fc[H]-modules.

1. Introduction and statements. Our notation and terminology are stan-

dard and tend to follow the conventions of [4, 6 and 8]. In particular, in this

article, all rings have identities, all modules over a ring are right and unital, all

vector spaces and algebras have finite dimension over the stipulated field and if n

is a positive integer and V is a module, then nV denotes the module direct sum of

n copies of V.

Throughout this article G denotes a finite group, 7? denotes a nonzero ring and

U(R) denotes the multiplicative group of units of 7?.

The ring 7? is G-graded if 7? is a direct sum R = 0„€G Rg of additive subgroups

Rg, one for each g E G, such that RgRh < Rgh for all g, h E G. In that case,

the subgroup Ry corresponding to the identity 1g of G is a subring and contains

the identity 1 of 7? (cf. [4, Proposition 1.4]) and Rg is an (Ry, Ry )-bimodule for all

g E G. Also if RgRh = Rgh for all g,h E G, then 7? is said to be fully G-graded
(this terminology conforms to [5, §1] and differs from [4]). If 7? is also an algebra

over the commutative ring cf and if Rg is an (^-submodule for all g EG, then R is

called a G-graded <^-algebra.

For the G-graded ring R ^ (0), if g E G and 0 / x E Rg, then we call g

the degree of x and write deg(a;) = g. A unit u E U(R) is said to be graded if

u E Rg for some g E G; in which case u_1 E Rg-y by [4, Lemma 5.1]. The set

Gr U(R) = \JgeG(U(R)nRg) of graded units oi R is a subgroup oiU(R) and clearly

deg: GrU(R) —► G is a group homomorphism with Ker(deg) = U(Ry). Thus we

have a sequence of group homomorphisms:

(1.1) l^U(Ry)^GrU(R)^G^l

where i denotes the canonic inclusion map and where the sequence is exact ex-

cept possibly at G. Also conjugation in R defines a group action of Gr U(R) on

Ry-. ry = u~*ryu for all ry E Ry and u € GrU(R), so that conjugation induces a
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homomorphism of the group Gri7(7?) into the automorphism group Aut(7?i) of the

subring 7?! and a homomorphism of GrcV(7?) into Aut(Z(Ry)).

By definition, the G-graded ring 7? = 0„eG Rg is called a G-crossed product if

the sequence (1.1) is exact (or equivalently: if U(R) fl Rg ^ 0 for all g E G).

Assume that 7? is a G-crossed product, choose 0g E U(R) fl Rg for each g E G

where 0y = 1/j and let ir: GrU(R) —► Aut(Z(7?i)) denote the group homomor-

phism induced by the conjugation action of GrU(R) on Z(Ry). Here we have:

Rg = Ry0g = 0gRy, U(R) n Rg = U(Ry)0g = 0gU(Ry) and if r E Z(Ry) and
u E U(Ry), then r^u^ = ru^ = rp« for all g E G. Thus U(Ry) < Ker(Tr) and the

exact sequence (1.1) yields a group action of G on Z(Ry).

We now proceed directly to state our first two main results.

As above, let 7? be a G-crossed product and assume that E is a G-invariant

subfield of Z(Ry) such that dim£;(7?1) is finite so that 7?i is a finite dimensional

^-algebra. Let F = EG denote the G-fixed subfield of E and let tt* : G -> Aut(E)

denote the group homomorphism induced by 7r and restriction to E. We conclude

that E/F is a finite Galois extension and Gal(E/F) = ir*(G) by a Theorem of

Artin (cf. [9, VIII, Theorem 1.8]). Clearly F = Z(R) C\E< Z(R) n Ry.
Let Tv" be a subfield of F = EG such that F/K is a finite field extension and let

T = Trf: E -> F denote the F-linear trace map. Also let 0 ^ X E HomK(F,K).

Since E/F is a finite separable field extension, we have T(E) = F by [9, VIII,

Theorem 5.2] and hence X(T(E)) = K. Moreover 7? is a G-crossed product finite

dimensional Tf-algebra since K <F = Z(R) DE < Z(R) n Ry.

Fix tp E UomE(Ri,E) and define /: 7? —► K by

if x = J2g£Gx9 € ^ f°r uni<lue elements xg E Rg for all g E G, set f(x) =

\(T(<p(Xy))).

Clearly f ErIomK(R, K).

LEMMA 1. Assume that Ker(<p) contains no nonzero right ideal of Ry (so that

Ry is a Frobenius E-algebra by [8, VII, Exercise 53]).  Then

(a) Ker(/) contains no nonzero right ideal of R and R is a Frobenius K-algebra;

and

(b) if <p(xyyy) = <p(yyxy) for all xy,yy E Ry and if <p(xy*) = <p(xy)n(-u) for all

xy E Ry and all u E GrU(R), then f(xy) = f(yx) for all x,y E R and R is a
symmetric K-algebra.

Note that Lemma 1(a) is already known for it is a special case of [10, Satz 6].

We shall utilize Lemma 1(b) to prove

PROPOSITION 2. Let K be a field and let R = ©geG Rg be a finite dimensional

G-crossed product K-algebra such that Ry is a semisimple K-algebra. Then R is a

symmetric K-algebra.

This proposition generalizes a well known result of Eilenberg and Nakayama (cf.

[2, Proposition 9.8]). Our proof of this proposition uses the reduced trace (cf. [2,

§7D]).
Again let K denote an arbitrary field.

Next we present an example due to E. C. Dade of a finite dimensional sym-

metric group-graded crossed product Tf-algebra with a 1-component that is not a

symmetric Tf-algebra.
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EXAMPLE 3 (E. C. DADE). Let K[X] denote the polynomial ring over K

in 1 independent variable X and let K[x] = K[X]/(X2) denote the truncated

polynomial TV-algebra where x = X + (X2). Also let R denote the TV-algebra of all

2x2 matrices over k[x] and let eij for 1 < i, j < 2 denote the usual matrix "units"

of 7?. Thus xetj = eijX for all 1 < i,j < 2, x2 = 0 and R has TV-basis {e^, xeij\l <

i,3 < 2}. Let G = (g) be a cyclic group of order 2 and set Ry = Keyy + Ke22 +

Kxey2 + Kxe2l and Rg = Ke12 + Ke2y + Kxeyy + Kxe22. It is straightforward to

verify that R is then a G-graded finite dimensional TV-algebra. Also (e2i +ei2) E Rg

and (e2i + ei2)2 = en + e22 = Ir, so that 7? is a G-crossed product. Moreover

7? is a symmetric TV-algebra by [8, VII, Exercises 48 and 51]. It is easy to see

that J(Ry) = Kxe2l + Kxe12 and that Ry = (eyyRy) © (e22Pi) in Mod(Pi). Set

Py = eyyRy. Thus Py = eyyRy = Keyy + Kxe12 is a projective 7?i-module and

PyJ(Ry) = Kxe12 = Rad(Pi). Here dimK(P1/Rad(Pi)) = dimK(Rad(P!)) = 1,

Pi is indecomposable, en E AnnRj(Rad(Pi)) and eu ^ Ann/?1(Pi/Rad(Pi)).

Thus Pi/Rad(Pi) and Rad(Pi) are not isomorphic in Mod(Pi) and hence Pi is

not a symmetric TV-algebra by [8, VII, Theorem 11.6(c)].

For the remainder of this section, let fc denote an arbitrary field, let 77 denote an

arbitrary finite group and let N be an arbitrary normal subgroup of 77. Here k[N]

and fc[77] denote the associated group algebras, Mod(fc[iV]) and Mod(fc[77]) are the

abelian categories of finitely generated k[N] and fc[77]-modules, respectively, and

J(k[N]) and J(k[H]) denote the Jacobson radicals of k[N] and fc[77], respectively.

As is well known, (cf. [8, VII, Theorem 7.21]), J(fc[iV])fc[77] = k[H]J(k[N]),
J(k[N])k[H] is an ideal of fc[77] and J(k[N])k[H] < J(k[H]).

Let V be a fc[77]-module and let S be a subset of fc[77]. Then

VJ(k[N]) = VJ(k[N])k[H],

VJ(k[N]) is a fc[77]-submodule of V and VJ(k[N]) < VJ(fc[77]). Also Annv(5) =
{v E V]vS = (0)} and Anny-(S') is a fc[77]-submodule of V if S is a left ideal

of fc[77]. Moreover ^(V) = V/(VJ(k[H])) denotes the head of V and S"(V) =

Annv(7(fc[77])) denotes the socle of V. Clearly JT(V) £ %f (V/'(VJ(k[N]))) in
Mod(fc[77]), Annv(J(k[N])) = Annv(J(k[N])k[H]) and

S"(V) =S*(Armv(J(k[N}))).

Let Irr(fc[77]) denote a complete system of representatives of the isomorphism

classes of irreducible fc[77]-modules and, for each L E Irr(fc[T7]), let P(L) denote a

projective cover of L. Here, for L E Irr(fc[77]), we have

^(P(L))^^(P(L)/(P(L)J(k[N])))^^(P(L))=^(AnnP{L)(J(k[N])))

in Mod(fc[77]) by [8, VII, Theorems 11.2 and 11.6(c)]. Thus P(L)/(P(L)J(k[N]))
and Annp[Z/j(J(fc[jV])) are indecomposable fc[77]-modules. Also {P(L)|L 6

Irr(fc[77])} is a complete set of representatives for the isomorphism classes of pro-

jective indecomposable fc[77]-modules, cf. [8, VII, Theorem 10.9].

For any fc[77]-module V and any L E Irr(fc[77]), let mult(L in V) denote the

multiplicity of L as a composition factor of V.

Next we present our main results in classical Clifford Theory of Finite Group

Representation Theory.



834 M. E. HARRIS

THEOREM 4.   k[H]/(J(k[N])k[H]) is a symmetric k-algebra.

THEOREM 5. Let W be a completely reducible k[N]-module. ThenEndkim(WH)
is a finite dimensional symmetric k-algebra.

Note that the TV = 1 case of Theorem 4 is the well-known fact that fc[77] is a sym-

metric algebra (cf. [8, VII, Theorem 11.2]). Also, as in Theorem 5, Endk[H](WH)

plays a basic role in classical stable Clifford theory (cf. [4, §8]).

Theorem 4 also has implications for fc[jV]-projective fc[77]-modules:

PROPOSITION 6. Let W be a k[N]-projective k[H]-module and let r be a positive

integer such that WJ(k[N])r = (0). Then W = WJ(k[N])° > WJ(k[N])1 >
••• > WJ(k[N])r-1 > WJ(k[N])r = (0) is a k[H]-filtration of W to (0) where

the filtration factors (WJ(k[N]y)/(WJ(k[N])3+1) are projective modules over the

symmetric k-algebra k[H]/ (J (k[N])k[H]) for all 0 < j < r - 1.

Let W be a completely reducible fc[./V]-module and consider the direct sum de-

composition of WH into indecomposable fc[77]-modules. Since induction is an addi-

tive functor, it suffices to study this problem for a fixed (but arbitrary) irreducible

fc[iV]-module M.
Let P(M) be a projective cover of M in Mod(fc[iV]) and let Irr(fc[77]|M) = {L E

Irr(fc[77])|M is isomorphic to a composition factor (and hence to a summand) of

Ljv}- As is well known, (cf. [8, VII, Theorem 4.13(a)]), for any L E Irr(fc[77]), we

have
mult(L in ^(M/f))dimfc(Endfc[i/](L))

= mult(M in 7/;v)dimfc(End/c[;v](M)).

Theorem 4 is used in our proof of part (c) (ii) of our next main result which de-

scribes  the  complete  indecomposable  decomposition  of MH   and  P(M)H   in

Mod(fc[77]):

THEOREM   7.    (a)

P(M)H = 0        ((mult(L in ^(MH)))P(L));

L€lrr(k[H]\M)

(b)

M*£ 0        ((mult(L in ̂ (MH)))(P(L)/(P(L) J(k[N]))));
L€lrr(k[H]\M)

and

(c) 2/L€lrr(fc[77]|M), then

(i) P(L)/(P(L)J(k[N])) S AnnP{L)(J(k[N])),

(ii) &(P(L)l(P(L)J(k[N]))) = L=y(P(L)/(P(L)J(k[N]))) and
(iii) P(L)/(P(L)J(k[N])) is indecomposable, in Mod(fc[77]).

Next we present three applications of Theorem 7.

COROLLARY 8.   Let L E Irr(fc[77]). The following two conditions are equivalent:

(a) L is k[N]-projective; and

(b)P(L)J(k[N]) = P(L)J(k[H]).

Our second application gives a combination with alternate proofs of [8, Theorems

7.21(b) and (c) and 9.4]:
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COROLLARY 9.   The following three conditions are equivalent:

(a) J(k[N])k[H] = J(k[H]);
(b) ifW is a completely reducible k[N]-module, then WH is a completely reducible

k[H]-module;

(c) char(fc) does not divide \H/N\.

In that case, if M is an irreducible fc[jV]-module and L is an irreducible fc[T7]-

module, then L\MH if and only if M\L^.

Let A(N) = ^2neN k(n - 1) denote the augmentation ideal of fc[7V], so that

A(N) = Amifc[;v](ljv).  Part (b) of our final result is related to [8, VII, Exercise

18(b)]:

COROLLARY 10. Let L be an irreducible k[H]-module with N > Ker(L). View

L as an irreducible k[H/N]-module, let Q(L) denote a projective cover of L in

Mod(fc[77/jV]) and view Q(L) as a k[H]-module with N < Ker(Q(L)).  Then

(a) Q(L) 2 P(L)/(P(L)J(k[N])) in Mod(fc[77]); and
(b) P(L)J(k[N]) = P(L)A(N).

In §2, we present some preliminary results. These results are used in §3 to prove

all of our main results.

Finally, the author would like to thank Professor Everett C. Dade of the Univer-

sity of Illinois-Urbana, Professor Reinhard Knorr of the University of Essen and Dr.

Burkhard Kulshammer of the University of Dortmund for stimulating discussions

about this paper.

2. Preliminary results. For our first result in this section, let R be a ring,

let J be a subset of R, let 7 be a right ideal of R, let X be an P-module and let

X = 0sGS Ws be a direct sum P-module decomposition of X. We trivially have

LEMMA 2.1. (a) XI and WSI for all s E S are R-submodules of X and XI =

®ses(WsI);
(b) X/(XI) = ®seS{Ws/WsI) in Mod(R) ; and

(c) Annx(J) = 0s€S AnnWa(J).

LEMMA 2.2. Let K be a field, let R be a finite dimensional symmetric K-

algebra and let V be a finitely generated projected R-module. IfV is not a completely

reducible R-module, then V > Rad(V) > Rad(V) n Soc(V) > (0) is an R-filtration

ofV and some R-composition factor ofV occurs in both VA/Rad(V/) and Rad(V) fl

Soc(V).

PROOF. Clearly it suffices to assume that V is a projective indecomposable

P-module and then the desired conclusion follows from [8, VII, Theorem 11.6].

For the next result, let A, B be rings and let a: A —♦ B be a ring isomorphism.

Let TV be a subfield of Z(A) such that A is a finite dimensional separable TV-algebra.

Set L = K". Thus L is a subfield of Z(B), B is a finite dimensional separable L-

algebra and dimji(A) = dimr,(B).

We shall, for the time being, adhere to the notation of [2, §7D].

Let d E A and let red.char.poly.A/K(d) = Xn + kyXn~l -I-h fc„_iA: + kn

where n is a positive integer and ki E TV for all 1 < i < n.
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LEMMA 2.3.   red.char.poly.B/L(dCT) = Xn + (fcJ)X""1 + ■ ■ ■ + (k%_y)X + k°.

PROOF. Let 7V,L denote algebraic closures of TV and L, respectively. As is

well known, (cf. [9, VII, Theorem 2.8]), a can be extended to a field isomorphism

a: TV —* 7/ and hence there is a ring isomorphism r: TV ®k A —► L ®l B such

that r(fc ®K a) = (P) ®L (aa) for all fc 6 TV and all a E A. Since TV ®K A

is a finite dimensional semisimple TV-algebra, there is a TV-algebra isomorphism

h: TV ®k A —* 0™ y MTi (TV) for some positive integer m and some positive integers

r% for all 1 < i < m. Let p: ®^LyMri(K) -* ©™=1Mr,(I) denote the ring

isomorphism induced by a: TV —> L. Set 7 = p o /i o r_1: L <g>z, S —► 0™.: Mri (L),

so that 7 is an L-algebra isomorphism and 7or = po/i. Let /i(l%c!) = 0™ x y5j(d)

for unique matrices <Pi(d) E MTi(K) for all 1 < i < m, so that

m

red. char. poly. A/n(d) — TTchar. poly.(<pi(d)).
i=i

Also let 7(1 ®l dCT) = 0^! Vi(da) for unique matrices ipt(da) E Mri(L) for all

1 < i < m, so that

m

red. char. poly.B/L(dCT) = TTchar. poly. ipi(da).

i=l

Here

P(A(1 ®k d)) = 0(W(d)p) = 7(r(l ® d))
2 = 1

771

= 7(i®<n = n^K).
t=l

Hence <Pi(d)p = ipt(da) for all 1 < z < m, (char. poly.((pi(d)))s = char. poly.(^(dCT))

for all 1 < i < m and the desired conclusion follows.

Our next result is presented without its straightforward proof.

LEMMA 2.4. Let (f be a commutative ring and let R = 0„e(3 Rg be a G-

crossed product (f-algebra. Also let {e^ |1 < i < n} be a set of G-fixed orthogonal

idempotents of Z(Ry) such that 1 = ^i=ie«- (Clearly ei E Z(R) fl Pi for all

1 < i < n). Choose 0g E U(R) n Rg for all g EG. Then R = 0"=1(etP) is a
direct sum decomposition of R into ideals e^P where each eiR is a G-crossed product

cf-algebra such that for all 1 < i < n:

(a) ei is the identity of eiR;

(b) (eiR)g = eiRg for all g E G;
(c) ei0g E U(eiR) C ((e,P)9) for all g EG; and

(d)U(R) = ^=yU(e,R).

LEMMA 2.5. Let R be a fully G-graded ring such that Ry is a semisimple ring

(in the sense of [1, I, §4]).  Then every G-graded R-module is projective.

PROOF. Let M be a G-graded P-module. Then M = My ®fll R in GrMod(P)
by [4, Theorem 2.8]. Here My is a projective Pi-module and [1, II, Proposition

6.1] implies that M is a projective P-module.     Q.E.D.
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COROLLARY 2.6. Let R be a fully G-graded ring such that Ry/J(Ry) is a
semisimple ring (in the sense of [1, I, §4]). Set I = J(Ry)R, so that I is a (two-

sided) G-graded ideal by [3, Proposition 1.11] and I < J(R) by [7, Lemma 2.7(b)].

Let M be a G-graded R-module and let N]M in Mod(P). Then, for each integer

j > 0, (NP)/(NP+1) is a projective R/I-module.

PROOF. Fix an integer j > 0. Clearly MP is a G-graded P-module with

(MP)g = MgJ(Ryy for all g E G and NP\MP in Mod(P). Thus

((NP)/(NP+1))\((MP)/(MP+1))

in Mod(P/7). However P/7 is a fully G-graded ring with (R/I)y — Ry/J(Ry) as

rings and (MP)/(MP+1) is a G-graded P/7-module. Thus Lemma 2.5 and the fact

that summands of projective modules are projective yield the desired conclusion.

For the remainder of this section, let fc denote an arbitrary field, let 77 denote

an arbitrary finite group and let N denote an arbitrary normal subgroup of 77.

For our next two results, let 7 be a subgroup of 77 with iV < 7 < 77. Let V be

a fc[7]-module, so that we have the short exact sequence

(2.1) (0) - VJ(k[N]) ^ V ^ V/(VJ(k[N])) -► (0)

in Mod(fc[T]) where i denotes the canonic inclusion map and ir denotes the canonic

epimorphism. Since induction is an exact functor [8, VII, Theorem 4.2], we have

the short exact sequence

(2.2) (0) -» (V J(k[N]))M -^ VH -^ (V/(VJ(k[N])))H - (0)

in Mod(fc[77]). For any g E G and v E V, we have gJ(k[N])g~x = J(k[N]) and

hence (v <g> g) J(k[N]) = vJ([N]) <g> g. Thus we clearly have

LEMMA 2.7. In (2.2), lm(iH) = VHJ(k[N]) and hence irH induces a k[H]-

isomorphism X: VH/(V" J(k[N])) — (V/(VJ(K[N])))H.

Similarly we have the short exact sequence

(2.3) (0) — Anny(J(k[N])) -U V -^ Vf Annv(J(k[N])) — (0)

in Mod(fc[7]) where i denotes the canonic inclusion map and n denotes the canonic

epimorphism.

As above, (2.3) yields the short exact sequence

(2.4) (0) - (Annv- (J(k[N])))H -^ VH -^ (Vf Annv (J(k[N])))" - (0)

in Mod(fc[77]). Duality clearly implies

LEMMA 2.8.   7n (2.4), lm(iH) = AnnVH(J(fc[jV])).

For our final result of this section, let M be an irreducible fc[iV]-module and let

T = IH(M) = {gE H\M ®g^Min Mod(k[N])}, so that N < T < 77.

LEMMA 2.9. Let X and Y be finitely generated k[T]-modules such that all

composition factors Xn and Yn are isomorphic to M.  Then

(a) Homk{H}(XH,YH) = Homfc(T](X,Y) over fc; and

(b) Endk{H](XM) = Endk[T](X) as k-algebras.
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PROOF. Let s = ]H: T\ and let {zy = l,z2,... ,zs} be a right transversal of

T in 77. Thus M ® Zi and M ® z, are nonisomorphic irreducible fc [TV] -modules

for all 1 < t,j < a with i ^ j. Clearly X = X ® zy = X ® 1 and F =

Y ® zy = Y ® 1 in Mod(fc[T]), M S M^^ = M®1 in Mod(fc[7V]) and
(y#)T = (y ® 1)0W in Mod(fc[T]) where IF = 0*=2(y ®zj) is a fc[T]-submodule

of (YH)T. Alsop: Homfc[#](X",y")-+Homfc[r](A:<g>l,(y")T) where p denotes

restriction to X <g> 1 is a fc-isomorphism by [8, VII, Theorem 4.5]. Here

Hamfc[r] (X®1,(YH)T)= Homfc[r] (AT ® 1, y ® 1) © Homfc[r] (X <8> 1, W)

and Homfc[7-](X ® 1,W) is a fc-subspace of Hom^^r](Xj$ <8> l,!^). But W/v —

0i=2(Fv <8> *<) in Mod(fc[7V]) and Homfc[iV] (ATN <g> m,YN ® «,-) = (0) for all 1 <
*» J < a with i 7^ j since all composition factors of X ® 2, and y ® Zj are isomorphic

to M ® Zi for all 1 < i < a. Thus Homfc[/v] (Xn ® 1, W-V) = (0) and it is now clear

that both (a) and (b) hold. '

3. Proofs of the main results.

PROOF OF LEMMA 1. Assume the notation and hypotheses of Lemma 1.

Let 0 ^ x = ^2g€G xg E R where xg E Rg for all g E G and assume that

f(xR) = (0). Fixing g E G, we have (0) = f(x0g-1R1) = X(T(tp(xg0g~iRy))).
Thus <p(xg0g-\Ry) = (0) since X(T(E)) = TV. The hypotheses on tp force xg = 0.

Applying [8, VII, Exercise 53], we conclude (a).

Assume the additional hypotheses of (b) and let x = YlgeG r9^Q an(^ V =

JlgeG s9@9 be elements of R where rg, sg E Ry for all g EG. Then

f(xy) = X(T(v(Y(rg0gsg-i0g-i))))
g€G

= Y X(T(tp(rg(0gsg-.0g-,)))) = Y X(T(tp(0gSg-10g-1rg)))
g€G g€G

using the fact that 0gsg-i0g-i E Ry for all g EG. Hence

/(XU)  -   Y KT(<p((sg-l0g-ljg0g)^1)))

g€G

=  Ym^g-iPg-^g))*'^-1))-
geG

However T = Trf and Trf (e) = £t€7r.(G) e' for all e E E using the fact that E/F

is a finite Galois extension with Gal(£/F) = tt*(G) and [9, VIII, Theorem 1.8].

Thus

f(xy)= Y*(T(<P(sg-i0g-irg0g)))
g€G

^ A E(v'W»)     =/(»*)•

Now [8, VII, Exercise 54] completes the proof of (b).

A PROOF OF PROPOSITION 2. Assume the hypotheses of Proposition 2. Let

Ry = 0"=1 Bi be the decomposition of Pi into ideals such that each Bi is a simple

TV-algebra for all 1 < i < n. Let 1 = J27=i e* where e; E Bi = eiRy for all 1 <i < n.
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Then J? = {eAl < i < n} is the set of primitive central idempotents of Pi and

GrU(R), acting by conjugation, permutes J?'. Clearly U(Ry) = 0™=1 U(Bi) is

contained in the kernel of this action. Thus we may view G as permuting J2". Next

let y = \Sj=y^j be the G-orbit decomposition of Jr. Set fj = £e.eJr. e, for all

1 < 3 < t. Then {fj\l < k < r} is a set of G-fixed orthogonal idempotents of

Z(Ry) such that 1 = Y?j=y fj- Since a finite direct sum of symmetric TV-algebras

is a symmetric TV-algebra, Lemma 2.4 implies that it suffices to assume that G acts

transitively on J^.

Set e = ey, f = 1 - e, B = By = eRy, E = Z(B) and 77 = StabG(e). Clearly
E is a field, TV = Ke = eTV C E, Rh = ®heH Rh is an 77-crossed product

TV-algebra, {e, /} is a set of T7-fixed orthogonal central idempotents of Pi such

that 1 = e + /, Gr U(Rh) = [Jh€H(U(R) H Rh) acts by conjugation on B and E

and U(Ry) = 0™=1 U(Bt) acts trivially by conjugation on E. Thus conjugation

induces a group homomorphism n: 77 —♦ Aut(E) and Lemma 2.4 implies that

Rh = (ePi/)® (/P//) where eP# and fRn are T7-crossed product TV-algebras, etc.

Here (ePB)i = ePi = B is a simple TV-algebra with Z(B) = E. Clearly n: 77 —►

Aut(P) is precisely the homomorphism induced by conjugation of Gr C/(ePjf) on

E. Let F = EH denote the 77-fixed subfield of E, so that TV £ TVe = eTV C F.
Also let T = Trf: E -> F and 0 ^ A E HomK(F, TV) be as in Lemma 1. Viewing

B as a finite dimensional (simple) P-algebra where E = Z(B), the reduced trace

trB/E E EomE(B,E) is defined (cf. [2, §7D]). Moreover trB/E(xw) = trB/E(j/x) for

all x,y E B and Ker(TrB/£) contains no nonzero right ideal of B by [2, Corollary

7.6 and Proposition 7.41], Also trB/E(xu) = trB/E(x)u for all x E B and all

u E GrcV(eP^) by Lemma 2.3. Define /: eP# —► TV as in Lemma 1, so that

/ € Homx(eP/f,TV), f]s = X oTrf otrB/£ E Homx(S,TV), Ker(/|s) contains no

nonzero right ideal of B and

(*) f(xu) = f(x) for all x E B and all u E Gr U(eRH).

Let {xy = 1, x2,..., x„} be a choice of right coset representatives of T7 in G, so

that G = (jHxi. Also set 0i = 0Xi for all 1 < i < n and choose the notation so

that Bf' = Bi for all 1 < i < n. Clearly a%: By -> P* defined by: on(b) = 0~1b0i
lor all b E B = By is a TV-algebra isomorphism for all 1 < i < n.

Define tp: Ry = 0"=1 Bi —> TV by: if y = £"=1 yi E Ry for unique elements

yi E Bi for all 1 < i < n, set tp(y) = J™=y f(0iVi0~1)- Clearly tp E EomK(Ry,K),
<p(xy) = tp(yx) for all x,y E Ry and Ker(<p) contains no nonzero right ideal of Pi.

Fix u E Gr U(R), 1 < j < n and z E Bj. Clearly there is a unique 1 < fc < n such

that P" = u~10~1By0Ju = Bk and hence 0jU = ^0k for a unique 7 E U(R) n Rh
and for a unique h E 77. Thus

tp(zu) = tp(u~lzu) = f(0ku-1zu0-1) = f(l-103z0-11).

But 7 = e7 + /7, 7_1 = e7_1 + /7-1 and B = By = eRy, so that (*) implies

tp(zu) = f((0jZ0J1)^) = f(0jZ0~1) = <p(z). It follows that <p(xv) = <p(x) for all

x E Ry and all v E GrU(R). Now Lemma 1(b) with E = KI yields the desired

conclusion.

For the remainder of the paper, we shall assume the notation of the final segment

of §1 and we set G = H/N.
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A PROOF OF THEOREM 4. As is well known, k[H] can be viewed as a G =

77/TV-crossed product fc-algebra where (k[H])Nh = 0x6jv/i fcx ror an h E H. Then

k[H]N = k[N], J(k[N])k[H] is a G-graded ideal with (J(k[N])k[H])N = J(k[N])
(cf. [7, Lemmas 2.4-2.7]) and k[H]/(J(k[N])k[H]) is a G-graded fc-algebra with

(k[H]/(J(k[N])k[H]))Nh = (k[H]Nh + J(k[N])k[H])/(J(k[N])k[H])

for all hE H. Since

(k[H]N + J(k[N])k[H])/(J(k[N])k[H])

= (k[N] + J(k[N])k[H])/(J(k[N])k[H]) =■ k[N]/J(k[N])

as fc-algebras and since k[N]/J(k[N]) is a semisimple fc-algebra, Proposition 2 yields

the desired conclusion.

A PROOF OF THEOREM 5. Assume the hypotheses of Theorem 5 and observe

that if X is any fc[7V]-module and h E 77, then (X ® h)H S XH in Mod(fc[77]). It

follows that we may assume that there are a positive integer s, irreducible k[N]-

modules My,... ,MS and positive integers rj,...,rs such that W = 0i=1(rjMj)

and such that for any 1 < i, j < s and any x,y E 77, Mi®x = Mj®y in Mod(fc[7V])

implies that i = j.

Let ^ be a transversal of N in 77 with ^ON = {1}. Suppose that 1 <i, j < s

with i ? j. Then Homfc[//]((r!Mt)H, (r^M,)") 2 Homfe[N] (nM{, (rjMf)N) by [8,

VII, Theorem 4.5]. Thus

Eomk[H]((riMi)H, (r}M:)") £ r,r3 I 0 Homk{N](Mi,M3 ®x)\= (0)

\x€.T '

since Mi and Mj®x are irreducible and nonisomorphic fc[iV]-modules for all x E 77.

As is well known, this fact implies that

s

Endk[H](WH) - 0Endfc(„1((rlMJ)/f)

i=l

as fc-algebras. Since a direct sum of symmetric fc-algebras is also a symmetric fc-

algebra by [8, VII, Exercise 54], it suffices to assume that 8=1. Set r = ry, and

M = My, so that W = rM, and let I = {h e H\M ® h = M in Mod(fc[jV])}, so

that N < I < 77.
Here WH = (rM)H £ r(MH) and hence End^]^") = (Endk[H]{MH))r as

fc-algebras, where (Endk[H](AfH))r denotes the full r x r matrix fc-algebra over

Endfe[//](A7H). Applying [8, VII, Exercise 48], it suffices to assume that r = 1

and W = M is irreducible in Mod(fc[/V]). As is well known, Endk\H\(AIH) —

Endfc[/j(M7) as fc-algebras (cf. Lemma 2.9(b)). Thus it suffices to assume that

77 = 7. Then Endk[H}(MH) can be viewed as a G = 77/iV-crossed product TV-

algebra with (Endfc^tM")), £ Endk[N](M) by [4, §§4-5]. Since Endk[N]{M) is
a division fc-algebra by Schur's Lemma, an application of Proposition 2 completes

our proof of Theorem 5.

A PROOF OF PROPOSITION 6. Let W and r be as in Proposition 6 and let

0 < j < r - 1. Clearly W]\yVN)H in Mod(fc[T7]) by [6, II, Theorem 3.8]. Thus

((iyj(fc[/v]r)/(iyj(fc[iV]r+1)|(((iyN)//)j(fc[iV])^)/(((^)H)j(fc[jv])^1)
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in Mod(fc[T7]) by Lemma 2.1. Also (((WN)H)J(k[N]y)/(((WN)H)J(k[N]y+1)

is a G-graded module for the G-crossed product fc-algebra fc[77]/(J(fc[7V])fc([77])

by [7, Lemmas 2.4, 2.6-2.7 and Remark 2.5]. Since (fc[77]/(J(fc[TV])fc[77]))i £
k[N]/J(k[N]) as fc-algebras, Lemma 2.5 and Theorem 4 imply the desired conclu-

sions.

A PROOF OF THEOREM 7. Assume the hypotheses of Theorem 7. Clearly we

have a short exact sequence

(0) -► P(M)J(k[N]) -U P(M) ^ M -f (0)

where i denotes the canonic inclusion map and tt denotes an epimorphism in

Mod(fc[7V]). Since induction is an exact functor [8, VII, Theorem 4.2], we obtain

the following short exact sequence

(0) -> ((P(M) J(k[N])))H -C P(M)H ^ MH -* (0)

in Mod(fc[77]). Lemma 2.7 implies that lm(iH) = P(M)HJ(k[N]) and irH in-

duces a fc[T7]-isomorphism X: (P(M)H)/(P(M)HJ(k[N])) -» MH. It follows that

%*(P(M)H) S£ %*(MH) in Mod(fc[77]). Since P(M)H is a projective fc[77]-module,

[8, VII, Theorem 10.9(a)] yields (a). Applying Lemma 2.1(b), the isomorphism A

yields (b).
Here ^(P(M)) = AnnP(M) (J (k[N])) 2 M in Mod(fc[/V]) and hence (a) and

Lemmas 2.8 and 2.1(c) imply:

(3.1) MH =■ 0        (mult(Lin^(M/f))AnnF(L)(J(fc[TV]))).

Lelrc(k\H\\M)

Fix L E Irr(fc[77]|M). We noted above that

&(P(L)l(P(L)J(k[N\))) = P = S*(AnnP(L)(J(k[N]))).

Thus P(L)/(P(L)J(k[N])) and AnnF(L)(J(fc[TV])) are indecomposable fc[T7]-

modules. Using (b), (3.1) and the Krull-Schmidt Theorem, (c) holds once we prove

(3.2) S*(P(L)/(P(L)J(k[N]))) = L     in Mod(fc[77]).

Since P(L)\P(M)H, Proposition 6 implies that P(L)/(P(L)J(k[N])) is a pro-

jective indecomposable module over the symmetric fc-algebra fc[T7]/(J(fc[7V])fc[77]).

Since ̂ (P(L)/(P(L)J(k[N]))) Si L [8, VII, Theorem 11.6(c)] yields (3.2) and we
are done.

A PROOF OF COROLLARY 8. Let L E Irr(fc[77]). Assume (a), so that L\(LN)H■

Hence there is an irreducible fc[7V]-module M such that M\Ln and L]MH. Then

Theorem 7 implies (b). Assume (b) and choose an irreducible fc[7V]-module M such

that M]Ln- Then Theorem 7 implies that L\MH and (a) holds.

A PROOF OF COROLLARY 9. Clearly (a) implies (b) by Theorem 7. As-

sume (b). Then (1n)H is a completely reducible fc[77]-module. Thus fc[77/7V] is a

semisimple fc-algebra and Maschke's Theorem yields (c). Next assume (c) and let

L E Irr(fc[77]). Then L is fc [TV]-projective by [8, VII, Theorem 7.7(b)] and hence

P(L)J(k[N]) = P(L)J(k[H]) by Corollary 8. Since

*\H]k[H] =      0      (mult L in &(lH))P(L)
L&rr{k\H\)
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by Theorem 7(a), for example, (a) is immediate. The last statement follows from

Frobenius reciprocity [8, VII, Theorem 4.5], Theorem 7 and (a).

A PROOF OF COROLLARY 10. With the hypotheses of Corollary 10, apply

Theorem 7 with M = In to conclude that P(L)/(P(L)J(k[N])) is isomorphic

to an indecomposable component of (ljv)^ and all indecomposable components

X of (1N)H with &(X) = L in Mod(fc[T7]) satisfy X = P(L)/(P(L)J(k[N])) in
Mod(fc[T7]). Since Q(L)](1N)H and Jf(Q(L)) = L in Mod(fc[T7]), we conclude (a).

Clearly A(N) = Annk[N](lN) > J (A; [TV]) and TV acts trivially on Q(L), so that

P(L)A(N) < P(L)J(k[N]). Thus (b) holds and our proof is complete.
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