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HAUSDORFF DIMENSION IN
GRAPH DIRECTED CONSTRUCTIONS

R. DANIEL MAULDIN AND S. C. WILLIAMS

ABSTRACT. We introduce the notion of geometric constructions in R™ gov-
erned by a directed graph G and by similarity ratios which are labelled with
the edges of this graph. For each such construction, we calculate a number
o which is the Hausdorff dimension of the object constructed from a realiza-
tion of the construction. The measure of the object with respect to #* is
always positive and o-finite. Whether the #*-measure of the object is finite
depends on the order structure of the strongly connected components of G.
Some applications are given.

A geometric graph directed construction in R™ consists of
(1) a finite sequence of nonoverlapping, compact subsets of R™: Jy,...,J, such
that each J; has a nonempty interior,
(2) a directed graph G with vertex set consisting of the integers 1,...,n and
similarity maps T; ; of R™, where (¢, 5) € G, with similarity ratios ¢, ; such that
(a) for each 7, 1 <7 < n, there is some j such that (3,7) € G,
(b) for each 7, {T; ;(J;)|(¢,5) € G} is a nonoverlapping family and

(1) Ji 2| H(T:.5(95)I G, ) € G}
and
(c) if the path component of G rooted at the vertex 7; is a cycle:
[’il, cee ,’l:q,’l:q.’.l = 7:1],
then
q
(2) H bigigsr < 1.
k=1

We will generalize the setting to ratio graph directed constructions later in the
paper.

Each geometric construction naturally determines a compact subset K of R™.
This set, which we will term the construction object, is pieced together by following
the graph G and applying the maps coded by the edges to the corresponding sets. To
make explicit how this is done we will first formulate how the pieces are generated.
For each %, let Z'(J;) be the space of compact subsets of J; provided with the
Hausdorff metric, py.
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812 R. D. MAULDIN AND S. C. WILLIAMS

THEOREM 1. For each goemetric construction, there exists a unique vector of
compact sets, (Ky,...,Ky) € [Ii—, Z (J;) such that for each 1,

(3) K; = | J{Tii(K;)I(0.5) € G-

The construction object is defined as
(4) K =|JK.

As the proofs of our theorems show, it is really only the regular part of J; that
counts. Thus, we could assume each J; = cl(int J;) to begin with. Our main results
concern the Hausdorff dimension o of the set K and the measure of K with respect
to the corresponding Hausdorff measure /#*. In order to formulate these results,
we must present another fundamental tool associated with a construction and set
some terminology.

The weighted incidence matrix or construction matriz A = Ag associated with
a graph directed construction is the n X n matrix defined by

(5) A = [tijlig<ns

where we make the convention that ¢; ; = 0 if (¢,7) ¢ G. For each § > 0, let
Ag = Ag,p be the n x n matrix given by ag,; ; = t?,j- Also, let ®(3) be the spectral
radius of Ag. Of course, according to the Frobenius-Perron theorem, ®(g3) is the
largest nonnegative eigenvalue of Ag. It is known that @ is continuous.

THEOREM 2. ®(0) > 1, ® is continuous, strictly decreasing, and limg_, oo ®(0)
= 0. Indeed, there is a number ¢, 0 < ¢ < 1, such that for all 3 > 0 and € > 0,
P(B+¢) <c*P(B).

For each graph directed construction, let o be the nonnegative number such
that ®(a) = 1. We will show that the dimension of the construction object K is a.
This will be done by showing that K has positive # measure and, moreover, the
measure of K is either finite or o-finite depending on the structure of the graph G.
We set some terminology concerning graphs.

A cycle is a directed graph H for which there is a closed path which passes into
every vertex exactly once and such that every edge of H is an edge of this path. A
directed graph H is said to be strongly connected provided that whenever each of
z and y is a vertex of H, then there is a directed path from z to y.

A strongly connected component of G is a maximal subgraph H of G such that
H is strongly connected. Of course, the strongly connected components of G are
pairwise disjoint. It is possible that they do not cover G. It is also possible for
such a component to consist of a single vertex looped on itself. A vertex is not
considered to be strongly connected unless it is looped on itself.

REMARK. If G is a construction graph, then G must have at least one strongly
connected component.
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A classical theorem states that determinants may be factored over the strongly
connected components. In our case, we have

FACTOR THEOREM. If Hy,Hs,...,H, are the strongly connected components
of G, then

8
(6) det(I — Ag,g) = [ det(I - An, p)-
i=1

The path component of G rooted at a vertex i consists of all vertices 7 such
that there is a directed path from ¢ to 5. To say that a path component is a cycle
means that the subgraph of G over that component is a cycle. Clearly, if a path
component is a cycle H, then H is a strongly connected component of G. For each
subgraph H of G, let V(H) be the vertex set of H. However, we will normally
write ¢ € H instead of : € V(H).

We give a sufficient condition for #*(K) to be finite. The development of
Hausdorff measures may be found in Falconer [6] or Rogers [8].

THEOREM 3. For each graph directed construction such that G itself is strongly
connected, the Hausdor[f dimension of K, the construction object, is o, where
®(a) = 1. Moreover,

(7 0 < Z%(K) < +o0.

In order to analyze a construction, we get the following notation. Set G(1) =

{1,...,n} and for each integer p > 2, set

(8) G(p) = {(zla 'aip) (S {1,,”}”'(1],7,]4.1) € G, .7 = lv' Ry 2 1}
Also, set

9) G =JGw.
and ”
(10) G ={(ij) € {L,...,n}N|(35,7+1) € G, j=1,2,3,... }.

We use the partial order on G* U G* given by o < 7 provided 7 extends o.

At this point let us mention that there is some overlap of our Theorem 3 and
some results of T. Bedford [11]. Bedford considers the case where the maps T;;
depend only on j and the sets J; are convex. It is not determined whether the Z#
measure is finite or o-finite, but rather that it is equivalent to the Gibbs measure.

We turn now to the interesting case when A is not assumed to be irreducible.
If the construction matrix A is not irreducible, then the measure of K depends
on the order structure of the strongly connected components of G. Let SC(G) be
the set of all strongly connected components of G. Each H € SC(G) defines a
graph directed subconstruction. This subconstruction, based upon the sets J; such
that « € V(H), has directed graph H, and the similarity maps are those from the
original construction. Clearly, a subconstruction satisfies conditions 2(a) and 2(b).
We will verify later that condition 2(c) is also satisfied. For each H € SC(G), let
ay be the number § such that ®y(8) = 1. We partially order SC(G) by stating
that H; < Hj provided there is a path v = {g1,...,9x} € G* such that g, € H;
and g € Ho.

Our most general result presented here can now be stated.
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THEOREM 4. For each graph directed construction, o = max{ay|H € SC(G)}
and K has positive o-finite #* measure. Further, Z*(K) < oo if and only if
{H € SC(G)|an = a} consists of pairwise incomparable elements.

For each 0 = (¢1,...,1p) € G* with o] =p > 2, set

(11) To =To(1)0(2) © * ° To(p-1).0(p)
p—1

(12) to = H to(i),o(i+1)>
=1

and,

(13) Jo = Ta(Ja(p))'

These sets form a Cantor scheme. Thus, for p = 1,2,3,... the sets {J,|oc € G(p)}
are nonoverlapping and if ¢ and 7 are in G* and ¢ < 7, then J; C J,. In addition,
for each o in G(p), int(J,) # @ and

(14) diam J, = t, diam J,(|¢|)-

Note that the construction object K can be expressed as

(15) K=ﬁ U 7%

p=1 |0€G(p)

Our analysis of the dimension and measure of K depends upon a detailed study of
the natural approximating sums determined by the nth level sets J, in (15).

LEMMA 1. Ifr=[i1,%2,...,%,0+1 = t1] s a cycle in G, then
(16) tr < L

PROOF. Let H be the strongly connected component of G with 7 C H. If 7 is
the path component of 7;, then by condition 2(c), (16) holds.

Otherwise, 7 is a proper subset of H and for some vertex s of 7 and some
j € H\r, there is an arrow from i, to j.

Consider J(;,, . 4,i,.,) and J,, i, ;) Since these sets are nonoverlapping
nonempty subsets of J;, with nonempty interiors, Ji,, . 4,.i, = Ti, 5,0 -0T5,4, (J5,)
is a proper subset of J;,. Therefore, t, < 1, as was to be proved.

For each cycle 7 in G, let #7 be the number of vertices in the subgraph 7. Set

(17) T = sup{(¢,)"/#7|r is a cycle}.
LEMMA II.
1/p
(18) lim [ sup ta} <I'<1.
P= |0€G(p)

PROOF. Fix o = (i1,...,1p) € G(p), with p > n. By the pigeon-hole principle
some index is repeated. Choose a cycle in o, factor the product over the cycle from
the entire product, and remove the cycle from o except for one of the repeated
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mdices. We again obtain a path. Continue. Thus, for each cycle ¢, there is a
nonnegative integer g, such that

(19) te = [[ t&ts,
¢
where 7 € G* and |7| < n. Thus,

(#:9)
(20) te =[] [(tg)l/#s'] . < TRy
¢

Taking the p-root of both sides and then letting p go to infinity, we have (18).
PROOF OF THEOREM 1. Define the map ¥ of [T, Z (J;) into itself by

(21) V(My,...,Mp) = (Ny,...,Np),

where

(22) N; = | {T:(M))I(:, 5) € G}

By recursion, the pth iterate of ¥ satisfies

(23) VP (My,..., Mp) = (Y2 (M1, ..., Mp))iey,

where

(24) WMy, . M) = | To(Myper))
o€G(p+1)

o(1)=1

Consider the space [}, % (J;) provided with the distance d given by the maximum
of the Hausdorff distance between corresponding coordinates. Thus,

d(VP(Ay,...,An), Y?(By,...,By))

= max py U To(As(p+1)), U T5(Bo(p+1))
- o0€G(p+1) g€G(p+1)
(25) o) =Gl

< I‘{lsava{aercli](iﬁ-l) lopH (Aa(p+l)a Bo(p+l))
o(1)=1

<d((As,...,An),(Bi, ..., Bn)) to.

max
oc€G(p+1)
By Lemma II, if p is large, ¥? is a contraction map of []-, # (J;). Thus, ¥ and
therefore, ¥ has a unique fixed point.

NOTE. Let us indicate the relationships between our results and those of Hutch-
inson [2] (in R™) and Moran [1]. Their results may be obtained as follows. Assume
G is complete and Jy, ..., J, are pairwise similar. For each 7, let T; be a contraction
with similarity ratio r; < 1. Set T; ; = T;. Now, from Theorem 1 we find the vector
of sets K1,...,Ky. Setting K = |J]_; Ki, we have

(26) K; = Ti(K).
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Therefore, this is Hutchinson’s set in this case. Also, in the analogous ratio setting
which is given at the end of this paper, we have

A o
(27) Ap=|:
S O

Since all the columns are identical, ®(8) = >, rf and the dimension o of K
satisfies

n
(28) er‘ =1
1=1
This is Moran’s fundamental formula.
In order to prove Theorem 2, we recall that if u = (1,...,1) in R™, then
. 1
(29) Jim || Afuly’” = @.

By recursion, we have, for p =1,2,3,...,

(30) |AGuly = > t2.
oc€G(p+1)

Let = {1,...,n}% and let S be the shift operator on (). Let M be the set of
all shift-invariant probability measures on {2 with the weak topology and define
m: = {1,...,n}? by m(w) = (w(1),w(2)). Let A be the standard Haar measure
on (). Thus,

|ABully = nP*t 3 (1/nPth)ed

oc€G(p+1)
p—1
— B
(31) =n"* /Q T (s 4A)-
=0
Also, let h(u) denote the entropy of an element of M [4, 5].
LEMMA III.
(32 0g(9) = sup {5 [ 10g1tr(0) du) + ) }.
HEM Q

PROOF. For each € > 0, let Ag ¢ be the n x n matrix with entries
(33) iy =t +e 16, 9),

where G’ = {1,...,n}?\G.
Let A be the largest nonnegative eigenvalue of Ag.. We have lim._.o Ag,c =
Mg = ®(B) and

1
(34) log Age = Jim = log 145, ul..
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Now,

p—1
A5 culls = n?*! /n | J R
7=0

A=
(35) =n”+1/()exp p ;Zlogtem(sj(w» dA(w).

J=0
For each w = (w;)$2 _ . € Q2 and positive integer p, set

(36) Wp=(..,w1,...,Wp,W1,...,Wp,...)

and define a probability measure R, ., on (2 by

1=
(37) Rpw = p Z 653 (@)
=
where 6, is the unit mass at n. Clearly, R, ., is shift invariant. Note
1=
/ logte r(n) dRpw(n) — ;Zlog te,m(89(w))
(38) a =0
1
= E(IOg te,(w,,,wl) — log te,w(SP—l(w)))'
So,

(39) [lA% cullx =n”+1/n [exmo {ﬂ/ﬂlogte,n(n) dRp,w(n)}]

(te,n(s7-1 () tes(wpywr))? dA(W).
Let M. = max{tc (; ;)} and m, = min{t, (; ;) }. Thus,

(40) (|45 ully < P (M,/m,)? /n exp [pﬂ /rz 108 te () dR,,,w(n)] dAw).
Therefore,

.1
i~ log 145 cullx
(41) .
<logn+ lim -log {/ exp [p,ﬁ/ log te x(n) dRp,w(n)] dA(w)}.
p—oo p 0 Q

We wish to apply Varadhan’s theorem [3, Theorem II.7.1]. For each p, let ap = p
and let @, be the probability measure defined on the Borel subsets A of M by

(42) Qp(A) = A({w|Ryp, € A}).

Thus, Q, is the image measure of A under the Borel measurable map w — R,
and by the ergodic theorem, {Q,,}g‘;l converges to 8. It is shown in [3, Theorem
I1.4.4(a)] that {@p}$2; has a large deviation property with constants {a,} and
entropy function I(u) = logn — h(u). That I(u) has this form is shown in [3, Ex.
1.6.2].
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Now, according to Varadhan’s theorem, we have the variational principle:

lim 1log {/M exp [p,[i/nlog tex(n) du(n)] de(N)}

= sup {ﬂ / log te r(w) du(w) +h(u)} —logn.
HEM Q

(43)

By changing variables,

/ exp [pﬂ / log te n(n) du(n)] dQp(1)
M [9]

(44) =/Qexp [pﬂ/QIOgte,w(n) dRP""(")] dA(w).

From (41), we find

(45) log Ag e < sup {ﬂ / log te r(w) di(w) +h(u)}~
UEM Q
From (39), we also have
6) A3 eull 2 /M) [ exp |06 [ 18 te i) dRpa(0)] b
Proceeding as before, we obtain the reverse inequality in (45). So,
(47) g a.c = sup {8 [ 1081000y dui) + bl }.
HEM Q
REMARK. We could have used the notion of topological pressure [4] to obtain
(47).
Since
(48) tem(w) = tr(w) + € 1o/ (m(w)),
(49) log Ag,e = sup {ﬂ/ 10g tr(w) du(w) + Blogeu(r(w) & G) + h(u)} :
HEM m(w)EG

Since h is upper semicontinuous in y, the first integral is continuous and the second
term is continuous, for each £ > 0, there is some u. where the supremum is attained.
By compactness we can assume p. — fi. So, with the convention that —oo -0 =0,
we find

(50) log Ag < sup {ﬁ / log tr () dp(w) + h(/t)}-
HUEM m(w)EG

Notice that if € < 1, then, according to (49),

(51) log Ag.e > sup {ﬁ/ log tr(w) du(w) + h(u)}-
HEM m(w)EG

Taking limits, we obtain the reverse inequality of (50). Lemma III follows.
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LEMMA IV. There is a number ¢, 0 < ¢ < 1, such that
(52) sup {/ log tr(w) du(w)} <logec.
MUEM Q

PROOF. Lemma IV follows from Lemma II, since if (18) holds, then if ¢ is large
and 0 € G(q + 1),

1 14T
(53) 52108 to(i),o(i+1) < log (T) .
i=1
Thus,
1
(54) / log t1r(w) du(w) =- [Q/ log t1r(w) d#(w)] :
Q q Q

By the shift-invariance of y,

/ log tr(w) dp(w [E/ logtr(si(w)) dulw )]
- 1/q
q—1
1+T
= /ﬂlog [H tﬂ(si(w))] du(w) < log (-—T) .
1=0

PROOF OF THEOREM 2. Since Ag > 0, it follows from the Frobenius-Perron
theorem that A has a nonnegative eigenvalue Ag > 0 with spectral radius ®(3) =
Ag. By condition 2(a), and the fact that g is at least as large as the minimal
row sum, we have ®(3) = Ag > 0 and ®(0) > 1. (It is possible that ®(0) =1 as
Example 1 shows.)

It follows from Lemma IV that for 3> 0and € > 0

log®(B+¢) = sup {ﬂ /n log tr(w) du(w) + h(p) +¢ /ﬂ log tr(w) du(w)}

(55)

(56)
< elogc + log ®(5).
Thus,
(57) O(B+¢€) < ().

Of course, this implies that & is strictly decreasing and converges to zero at infinity.
This completes the proof of Theorem 2.

To continue the analysis, let f be the map of G*® into R™ defined for each
o € G, by

(58) {f©@)} =) Jon-
n=1

It follows from (14) and Lemma II that f is a continuous map of G*™ onto K.
DEFINITIONS. Set 6 = min(; j)eg{(t: diam J;)/diam J;} and let
a = min{A™(int J;)/(diam J;)™},

where A™ is Lebesgue measure on R™.
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LEMMA V. Suppose E C R™ with diam E' < min{diam J;}. Let
(59) B = {0 € G*|diam J, < diam E < diam J,||s|—; and EN J, # J}.
Then
(60) #B < (L/a)(2/6)™,
where L 1s the Lebesgue measure of the unit ball in R™.
PROOF. Note that if o € G*, then
(61) diam J,/diam Jy||o|-1 = (to(jo|-1),0(lo))diam Jo (o)) /diam J5(g)-1) > 6.

Thus, for each 0 € B, diamJ, > §diam FE. Since the sets J, with ¢ in B are
nonoverlapping and all lie in a ball, W, of radius 2diam F,

(62)
L(2diam E)™ = A™(W) > > A™(int J,)
oc€EB
> Z (diam Jg)m/\m(int Ja(,,D)/(diam Ja(la’l) )m
oc€EB
>a) (diamJ,)™ > a ) (6 diam E)™ > a(diam E)™6™#B.
o€EB o€EB
Thus,
(63) #B < (L/a)(2/6)™.

PROOF OF THEOREM 3. Since A, is irreducible, by the Frobenius-Perron
theorem, there is a unique strictly positive column vector

U1
(64) v = [ : }
Un

with Yo, v; =1 and Aqv = v. Thus, for each 1,

n
(65) v; = Zt?jvj = Z t%vj.
Jj=1

(+,9)€G

Define a probability measure i on G* by setting for each o € G*,

(66) i([o]) = t3vs(ol)>
where
(67) [o] ={r € G®: 7||;) = 0}.

To see that Kolmogorov’s consistency theorem may be applied it is sufficient to
note that if o € G*, then

Yoo aloxg) =Dt =15 Dt ol s
(68) (a(lo1).1)€C
= t3,(lo)) = R([0])-
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First, we will show that Z*(K) < +o0. For each p, we have

(69) Z (diam Ja)a = Z t diam J¢ (o))
o€G(p) o€G(p)

and since v is strictly positive,

= Y ilo])(diam J;(j01))* /va (o))

a€G(p)

< sup{(diam J;)*/v;} Y i([o])

o€G(p)
< sup{(diam J;)*/v;} < 400.

It follows from Lemma II that

(70) plln;o sup{diam J,|o € G(p)} = 0.
Thus,
(71) Z*(K) < sup{(diam J;)*/v;} < +oo0.

In order to show 0 < #*(K), transfer f to a probability measure on K. Let
u = jro f~1. We will show that there is some ¢ > 0 such that if E is a Borel subset
of R™ with diam E < inf{diam J;}, then

(72) u(E) < ¢(diam E)“.
Of course, this inequality implies
(73) 1/c < Z*(K).

Set B = {0 € G*|diam J, < diam E < diam J,||5—1 and EN J, # &}. Note
that if 7 € G*, and f(r) € E, then there is some o € B such that 7 extends o.
Therefore,

(74) WE) < 3 ilo).

For any o, we have

(75) [0] dlamJ = v,,(|,,|)/(diam Ja(|a]))a.
Using this equality, we find
(76) #(E) < (diam E)* sup{v;/(diam J;)* } #(B).

By Lemma V, sup{v;/(diam J;)®}#(B) is bounded by some fixed ¢ > 0. Therefore,
(72) holds and Theorem 3 follows.

DEFINITIONS. For H € SC(G) and 7 = (i1,...,%p) € G(p) such that 1, € H €
SC(G) and ¢p—; ¢ H, define

(77) K (1) = {f(w)|w extends 7 and Vq > p, w(q) € H}.

Let C = {r € G*|3H € SC(G) with 7(|r|) € H and 7(|r| — 1) ¢ H}.
PROOF OF THEOREM 4. It follows from the factor theorem, (6) that

(78) o =max{ay|H € SC(G)}.
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For each w € G, there exist a positive integer p(w) and H(w) € SC(G) such that
if ¢ > p(w), then w(q) is in the vertex set of H(w) and w(p(w) — 1) is not in the
vertex set of H(w). Obviously,

(79) K =] K(@).
T€C

For each 7 € C,
(80) A (K(r)) =t2Z%(Ku(r(|7]))) < +o0.

Thus, K has o-finite #* measure. From (78) and Theorem 3, #*(K) > 0.

Case 1. Suppose M = {H|ayg = o} consists of incomparable elements. Since
A *(K(r)) =0, unless 7(|7|) € H € M, we have

ZUK)<S Y. > ZHK(T)
HeM r€C
r(Ir))eH

(81) <2 2| L FUKD)

HeEMjeH | reC
r(Ir))=3

<> Y U EaG) | D e

HeM jeH T€C
r(lr))=J

So, Z*(K) is finite provided this last inner sum is finite.

If r € C and 7(|7|) = 7, then 7 travels through some transient points and possibly
through points of some of the strongly connected components Hy with ag, < a.
Thus,

82 Yote<| J] a+eof | II a+go| 11 [1+Zt;’].

T€C i€Trans i€Trans HoeSC(G) JEH;
r(I7))=3 (1K)EG (k)G amgre

The first two factors are fixed finite numbers. To see that the third factor is finite,
it suffices to fix Hyp with oy, < o and note

oo
(83) Yore=d" N
s€H; n=2|j|=n

We apply the root test to this last series:

1/n
—a(H H
(84) |:Z t?] < ;2% 2 a(Ho) % Z t?( o)

ls|=n
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Now, since the construction restricted to Hy is still a construction, Lemma II is
applicable and

1/n 1/n

(85) lim Z ty <TH, *(Ho) Fim Z 1(Ho)
n-—00
l3]=n 3EH;
l3|]=n

Since Hy is irreducible, the proof of Theorem III shows that the sums }_ H; ta(H°)

are uniformly bounded. The root test now yields the convergence of the series.
Case 2. In this case, there exist distinct elements H; and Ho in M and a path
~ = (g1,.-.,9k) such that g; € Hy, gx € Hy and ¢g; ¢ HHUH,, if1 <1 < k.
Let us assume that H; = {1,...,m;}, Hy = {m1 +1,...,m; + my}, g1 = 1 and
gk =mp + 1.
For each g, set
(86) E, = {r € G(g)lr C Hy and r(g) = 1},
(87) F; ={n€G*ln=1*7*0, wheret € E,;, 0 € Hy, o(1) =m; + 1},
and
(88) F,={neG®n=1+A%0, wherer € E, 0 € H3°, o(1) =m; + 1},
where 4 = (g2,...,9k—1). Let
vm1+1
(89) VH, = :
Um,+ma2
be the strictly positive column eigenvector of Ag, o With Y ;% v, 4+; = 1. Define
fiq on Fy by
(90) fig([r * ¥ x 0]) = (t7t5t5) Vs (o))

where 0 € H; and o(1) = m; + 1. As before, transfer i, to 4, a measure on K(1)
and, therefore, on K. For each r, set

(91) Uy = Z ll,q.
=1

The fact that K does not have finite #* measure follows from the next two claims:
Claim 1. There is some ¢, 0 < ¢ < 400 such that for each r, there exists some
b, > 0 such that

(92) vy (E) < c¢(diam E)?,

provided diam F < b,.
PROOF OF CLAIM 1. Let b, = inf{diamJ,|0c = 7 %4 * m; + 1, where 7 €
Ug<r Eq} and let diam E < b,. Let

(93) B = {7] € U Fy|diam(Jy,) < diam E' < diam Jp|p|-1 and EN J,) # Q} ,
q<r
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and for each g, let
(94) B, ={n€ Bn € F;}.

The sets B, are pairwise disjoint and

E) =Y u(B) <Y > iglln])

q<r q<rn€B,
(95) < ) #By(diam E)* sup{v;/(diam J;)*|my + 1 < i < my +my}
q<r

< #B(diam E)“.
Set S equal to the last supremum. Using Lemma V, we have
(96) v (E) < S(L/a)(2/6)™(diam E)*.

Since S, L, a, and é are independent of r the claim follows.
Now, Claim 1 implies

o #ow)2 jim ()2 (%)iﬂq(&h (1)tf: >
9= q=17€E,

The proof of the theorem follows from the next claim.

Claim 2. 3222 | Y rek, tf = 0.
By the Frobemus-Perron theorem, there is a unique strictly positive row vector

u = (ug,...,Unm,) with }_u; = 1 such that
(98) uAHha = u.
It also follows that

1 n
(99) ; Z ela . l)AH‘ a)
converges to u; > 0, where e; is the unit vector (1,0,...,0) in R™!. But,
(100) Dot = e, (L., 1)AY, o)
TEE,

This means the series diverges and Theorem 4 follows.
We can now analyse each K;. To do this, let C; = {H € SC(G)| there is a path
from 7 to some vertex of H}.

THEOREM 5. dim K; = a; = max{ay|H € C;} and K; has positive, o-finite
A% measure. Moreaver, A% (K;) < oo if and only if Mj = {H € Cjlag = a;}
consists of incomparable elements.

Theorem 5 is proved by defining G’ to be the restriction of G to all vertices ¢
such that there is a path from j to 7 and noting that K; only depends on this part
of the graph G.

EXAMPLE 1. The simplest way to obtain a construction with ¢(0) = 1 is to loop
something on itself. Thus, G has one vertex 1 and T} ; is a similarity contracting
J1 into itself. Of course, K is a singleton. There are more interesting possibilities
here. For example, take two sets J; and Ja, loop J; on itself, loop J2 on itself and
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map J; into J;. Again, ®(0) = 1, but now K has exactly one limit point. One
can continue this procedure to generate sets K with Cantor-Bendixson order n, for
each integer n. With a generalization of directed constructions to infinite graphs
G, one can build countable compact sets with derived set order a, for any given
o< wp.

EXAMPLE 2. Let Ty(c, ) consist of those z’s in [0, 1] for which any r consecutive
base b digits in the b-ary expansion of z sum up to at least c. We will derive
the dimension a of each set Ty(c,r) from our results. The dimension of these sets
has also been given by Drobot and Turner [7]. Our results show, in addition that
0 < Z%*(Tp(c,r)) < 0.

For each (e1,...,e;) € {0,...,b—1}", let

(e1,-..,6r) = {z €0, 1]| the b-expansion of z begins with ey,...,e,}.
Of course, there are countably many z’s which have more than one expansion. We

can safely ignore these. Let Jy,...,J, enumerate the sets (ei,...,e,) such that
T
(101) Y ei>c
=1

The graph G is determined as follows. Suppose J; = (e1,...,e,) and J; = (e}, ..., €}).
Then (7,7) € G if and only if J; begins with the shift of J;. That is,

(102) (€2, ... er) = (€1, €0_1).

If (¢,5) € G, then T; ; is the natural linear map which takes J; onto (ey,...,é€r,€}).
Thus, T} ; has similarity ratio 1/b. Clearly, the graph G itself is strongly connected.
So, 0 < Z*(Tp(c,b)) < o0, where « is the dimension of Ty(c,b). Notice that if M
is the incidence matrix of G, then

(103) Ag = (1/b)° M.

Thus, det(Ag — I) = (1/b)?™ det(M — bPI). Therefore, b* = p(M), the spectral
radius of M. Or,

(104) a = log(p(M))/logb.

EXAMPLE 3. Consider the construction given by J; = [0,1/3], J2 = [1/3,4/9],
J3 =[5/9,2/3] and J4 = [2/3,1]. The similarity maps are the orientation-preserving
maps such that Ty maps [0, 1] onto J;, T2 maps [1/3,2/3] onto Jo, T3 maps [1/3,2/3]
onto J3 and T4 maps [0, 1] onto J4. Thus, ¢t; = t2 = t3 = t4 = 1/3. The directed
graph G is given by the diagram:

FIGURE 1
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If (¢,7) € G, then T; ; = T;. The strongly connected components of G are H; =
{1,4} and H, = {2,3}. Clearly,

(105) o, =ag, =a=In2/In3.

Since there is a path from H; to Hs, Theorem 4 applies and we know that K has
infinite, but o-finite measure. It is rather easy to see what K is in this construction.
One simply takes the standard middle-third Cantor set and in each complementary
interval attach a similar copy of the middle-third set. Thus, on level n we will have
2™ copies of the middle third set. So,

(o] [o o]
(106) Z(K) =Y 2°[(1/3)"H]* =) (2/3%)"(1/3%) = oo
n=0 n=0
A ratio graph directed construction consists of a directed graph G with vertex
set consisting of the integers 1,...,n and positive numbers t; ;, where (¢,7) € G
such that
(a) for each i, 1 < i < n, there is some j such that (7,5) € G, and
(b) if the path component of G rooted at the vertex ; is a cycle:

[7:1, e ,iq,iq+1 = ’ill,

then
q
(107) 1T tiesiesr < 1.
k=1

A realization of a ratio directed construction consists of a sequence of nonoverlap-
ping compact subsets of R™: Ji,..., Jn, such that each J; has a nonempty interior
and a family of similarity maps T;, .. ;. where (i1,...,%) € Gk, for k=2,3,4,...
such that the similarity ratio of Tj, .. ;, is given by

k—1
(108) T tigsiass
q=1

and such that the family of sets J,, where o € G forms a nonoverlapping Cantor
scheme. Here, if 0 = (41,...,%) € G*, with k > 2, then J; = T, (Jo(x))-
The object constructed by a realization of a ratio directed construction is

(109) K:ﬁ U 7%

p=1 |0€G(p)

A geometric graph directed construction is a particular type of realization of a ratio
directed construction.

Notice that all the proofs given in the paper depend only on the ratios except
for the proof of Lemma I. This lemma will hold once a realization has been given.
Thus, the dimension and measure of the set K can be calculated exactly as before.
This result generalizes Moran’s ratio theorem. Again, one should note that this
theorem depends only on the ratios employed.

EXAMPLE 4. This example is due to J. Marion [9]. Let Ey,...,E, be com-
pact subsets of R™ having the property that there is some & > 0 such that for
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J=1,...,n, E; is the disjoint union of a;; subsets similar to E; each with reduc-
tion ratio &, of ag; subsets similar to E3 each with reduction ratio £, etc. Thus, in
particular E; is the union of ) - ; a;; pairwise disjoint sets. Let A be the integer
valued matrix {a;;}. Assuming that A is primitive, Marion shows that for each
k=1,...,n
0< #“(Eg) < 00

where a = —log(spectral radius A)/log €. This result follows from Theorem 3 of
this paper and we assume only that A is irreducible. In order to see this, note that
we can assume that the sets E4, ..., F, are disjoint. Let

D ={(1,%,5)1 <1< ai;}.
By Marion’s hypothesis, there are disjoint sets

{Eul(li,5) € D}
such that for each 5, 7 =1,...,n,

E; = E(,i,9)
(49)

and E;; ; is similar to E; with ratio £&. The directed graph for the construction has
D as its vertex set. There is an edge from (I, 1, 5) to (r, s,t) provided that ¢ = ¢t. The
similarity map indexed by this edge is the one determined by Marion’s hypothesis.
It has reduction ratio £. Since the sets Ey; ; are disjoint, there is some § > 0 such
that if each Ej;; is replaced by J; ;, its closed § neighbourhood, they are still
disjoint. We now have a graph directed construction with incidence matrix Ag.
A direct application of Theorem 4 shows that 0 < #*(E)) and the #“ measure
of Ei is o-finite, where a = — log(spectral radius Ag)/log é. To obtain Marion’s
result we first check that

spectral radius of Ay = spectral radius of A.

To see this consider a column vector v = {v(r s 1)|(r, 5,t) € D} such that Agv = lv.
So,

V(i) = Z A((1,3,5),(r,8,8)) U(r,s,t)-
(r,s,t)
Since a((1,i,5),(r,s,¢)) = 0 unless ¢ = ¢, and is one if 7 = ¢,

A’U(lvivj) = Z v(r’sv":)'
(r,3)

(r,8,4)€D
This sum depends only on . So, there are numbers wy, ..., w, such that v, ; ; = w;.
Thus,
Aw; = Z Ws
(r,3)
(r,8,4)€D

> T

s=11<r<a, s

n
= E Ag ;Ws.
s=1
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Or, \w = A'w. It follows from this that the spectral radius of A is the spectral
radius of Ag.

Finally, we note that with some effort it can be shown that A is irreducible if
and only if Ag is irreducible.

EXAMPLE 5. This example is due to H. Cajar [10]. It generalizes the example
of Drobot and Turner and is related to similar results concerning sets determined
by their arithmetic expansions. These results are referenced in Cajar’s book. Let
g be an integer, g > 2 and C = {0,1,...,9 — 1}. Let ! be an integer greater than
one and B C C'. We will consider the g-ary expansion of numbers z in [0, 1]. For
our considerations we can neglect countable sets. If E;’i 1%/ g*, with each z; € C,
then bi(z) == (z;,ZTit1,--.,Tivi—1)- Set Xp = {z|Vi bi(z) € B}. Now, Xp can
be determined as a graph directed construction as follows. First, build a graph
on B by having a directed edge from b, = (bl,...,b}) to (b%,...,b%) provided
(b3,03,...,8}) = (b2,...,b% |). This directed graph may not be the graph of a
construction since there may be some vertex with no arrow coming out of it. So,
lop off all such vertices and edges into such vertices. We obtain a derived graph.
Iterate this procedure. Evidently, we will obtain the empty set or else we will
obtain a directed graph which satisfies condition 2(a) and is a construction. In
the first case, Xp = @. In the second case, we obtain a subset D C A! such
that Xp = Xp. The graph on D obviously directs a construction of Xpg. The
construction matrix A is the function: A(by,by) = 1/g' if by,b, € D and = 0
otherwise. Thus, dimy(Xpg) = a, where the spectral radius of A, = 1. But,
Ay = (1/9)*Ag, where Ag is the incidence matrix of D. So, we have the equation
1 = g—= (spectral radius Ag). Thus,

dimpy (Xp) = log(spectral radius Ag)/logg.

It is easy to see that if M is the incidence matrix of G, then M and Ag have the
same spectral radius. Thus,

dimpy (Xpg) = log(spectral radius M)/logg.

This is Cajar’s formula. From the results of this paper, we know, in addition that
the #* measure of Xp is positive and either finite or o-finite. One can construct
examples to show that both cases are possible.
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