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THE BOX PRODUCT OF COUNTABLY MANY COPIES
OF THE RATIONALS IS CONSISTENTLY PARACOMPACT

L. BRIAN LAWRENCE

ABSTRACT. By proving the theorem stated in the title, we show that local

compactness in the factor spaces is not necessary for paracompactness in the

box product.

0. Introduction and theorems.

History. Over twenty years ago, A. H. Stone first raised the issue of normality

and paracompactness in box products ([Kn]-1964). The problem remains in large

part unsolved. Suppose A is a separable metric space. Is □"(A) paracompact?1

The answer is yes if A is locally compact and the Continuum Hypothesis holds

(M. E. Rudin, 1972-[Ru]); but if we take A to be the irrationals, then DW(A) is

nonnormal in ZFC (E. K. van Douwen, 1975-[vDi]). Is local compactness in A

a necessary condition for paracompactness in □W(A)? Our answer is no in the

presence of either of two combinatorial statements each of which is known to be

consistent with ZFC. (In addition to the papers cited in the preceding paragraph,

see [Ku, M, Roi, R02, vDj, Wi and W2] for the main results on normality and

paracompactness in □"(A).)

Cardinal numbers. For £,n E ww, define e <* n if (3n 6 uj) (Vm > n) (em < nm).

With respect to <*, let b be the minimal cardinality of an unbounded family and

let d be the minimal cardinality of a dominant (cofinal) family. These two cardinal

numbers have received much attention in recent years. First note that in ZFC:

uiy < b < d < c (c is the cardinality of the continuum of real numbers); there is a

<* well-ordered unbounded family of order type b, so b is regular; b < coid and the

value of d is the same for eventual domination as it is for strict domination where

we require £m < nm on all indices m.

It is consistent with ZFC to simultaneously change any of the above relations

to either strict equality or strict inequality. In particular, both the Continuum

Hypothesis and Martin's Axiom imply b = d = c. The equality b = d holds iff there
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is a well-ordered dominant family (scale). More generally, S. H. Hechler has shown

in [H] that if Af is a model of ZFC in which a and 0 are any two regular cardinals

with ujy < a < 0 < c, then there is an extension JV of M in which b = a, d = 0,

and the aleph value of c is unchanged.

If A is a locally compact metric space, and b = d or d = c, then □'"(A) is

paracompact (see [Wa] for references).

Spaces. Let Q be the rationals with the usual topology, and let X = Ou(Q). We

remark that both our theorem and proof remain valid if we replace X with any box

product of countably many countable metric spaces.

MAIN THEOREM. Suppose b = d or d = c. Then X is paracompact; more-

over, every open cover of X has an open pairwise disjoint covering refinement

(ultraparacompact). (This result is a corollary of the two auxiliary theorems stated

below.)

Equivalence classes. For each s E X, let

e(s) = {tEX: (3n E w)(Vm > n)(tm = sm)}.

Note that the image of e is a partition of X. Let T C X such that T contains

precisely one point from each equivalence class in the image of e (i.e., let T be a

transversal).

Order Hypothesis. There is a partial ordering < of T such that (T, ;<) is a tree

(as usual we mean that ^ is a reflexive, antisymmetric, and transitive relation for

which the set of all predecessors of any given point is well-ordered by <) where (1)

the height has order type < d (i.e., every chain has order type < d), and (2) for

each t ET, U(e(s): i ^ s} is open in X.

THEOREM 1.   The Order Hypothesis follows from either b = d or d = c.

THEOREM 2.   The Order Hypothesis implies that X is ultraparacompact.

Problem 1. Does the Order Hypothesis hold in ZFC? If the answer is yes, then

the paracompactness of X is also a result in ZFC. At the present time we can only

claim that the Order Hypothesis is strictly weaker than either of the combinatorial

statements since b = d and d = c are independent of one another.

Problem 2. Can we use the Order Hypothesis corresponding to the box product

of countably many locally compact separable metric spaces to prove in ZFC that

□w (Reals) is paracompact? For this type of product, we have that d = c implies the

Order Hypothesis, but we have no information on the case b = d; Theorem 2 remains

intact is we replace "ultraparacompact" with "paracompact" in the conclusion.

REMARK. To prove Theorems 1 and 2 we first need to distinguish a special type

of limit point in X and indicate its relationship with the cardinal number d.

1. Classification of limit points.

Baaic open sets. Let B be the collection of all subsets u C X such that u is a

cartesian product where each factor is the rational part of an open interval with

irrational endpoints. Note that B is a base for X where each member is both open

and closed.

Different kinds of limit points. Suppose Y C X and a E X where a is a limit

point of Y. If s is a limit point of Y fl e(s), then we will say S is an essential limit
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point of Y; otherwise, s is nonessential. (We remark that s is essential iff s is a

limit point of a countable subset of Y.) So we have partitioned the limit points of

Y into two disjoint sets.

Projections. For each s E X and each n E u>, let po,«(s) = s|[0,n), and let

Pn,<ri(s) = s|[n,w) (the vertical bar means restriction). For each u E B and each

n Eui, let pn(u) = {sn: s E u}, let po>n(u) = {Po,n(s)- s E u}, and let p„,w(u) =

{Pn,w(s). sEu}.

DEFINITIONS OF $ AND *. Suppose C CB and s EX. For each nEui, define

$n(C, s) = {u EC: pn,oj(s) E pn,w(u), and n is the least index with this property}.

Define

*(C, s) = {uEC: (Vn € w)(3m > n)(sm £ pm(u))}.

So for each C and each s, {$o(C, s), $1 (C, s),..., *(C, s)} is a partition of C.

LEMMA 1. Suppose C C B and s E X. Then s ia an essential limit point of

[JC iff s is a limit point of \J(\J{$n(C, s): n E uj}).

PROOF. Let Y = \J((J{$n(C,s): n E uj}). Necessity follows from the in-

clusion (JCfle(s) C Y*. For sufficiency assume s £ (JC (the alternative case

is immediate) and suppose that (Vu € B with a E u) (3t(u) E u) (3j(u) E uo)

(t(u) E U$j(u)(C,s)). Define x(u) E e(s) by p0J>u)(x(u)) = p0,j(u)(t(u)) and

Pj(u),u(x(u)) = P](u),uj(s). Then x(u) E u so s is a limit point of the image of x,

and x(u) E IJ $_;(„) (C, s) so the image of x is contained in Y. Thus 8 is a limit

point of Y fl e(a).

LEMMA 2. Suppoae C C B with ]C] < d. Then every limit point of\JC ia

essential.

PROOF. Let s E X. If we can show that s is isolated from [J*(C, s), then

the result follows by Lemma 1. For each u E ^(C,s), let j(u): uj —> w be the

strictly increasing sequence whose image is {m E uj: sm £ Pm(u)}, and choose

k(u): w-twso that for each m in the image of j(u), k(u)m is a nonzero integer

whose reciprocal is less than the distance between sm and pm(u). By hypothesis

we can now choose a sequence f: w —► w so that (Vu E *(C, s)) (3 an infinite

set i(u) C uj) (Vn 6 i(u)) (£„ > (fc(u) °i(u))n). We can also take £ to be strictly

increasing with all values nonzero. The increasing property of j(u) implies (Vn E uj)

{j(u)n > M)i so the increasing property of £ implies (Vn E uj) ((tl o j(u))n > £n).

Therefore (Vu 6 *(C,s)) (Vn 6 i(u)) (((oj(«))„ > (fc(u) o j(u))n). Let v E B

where s E v and for each n E uj, the diameter of pn(v) is less than the reciprocal of

£„. Then (Vu e *(C,s)) (Vm e Image(i(u)|i(u))) (pm(u)nPm(w) = 0).

COROLLARY. Suppose Y C X with ]Y\ < d. Then every limit point of Y is

essential; and therefore, (j{e(y): y E Y} is closed.

PROOF. Let s E X. For each y E Y with e(y) ^ e(s), let u(y) E B such that

y E u(y) and {n E uj: sn £ pn(u(y))} is infinite. By Lemma 2, every limit point of

\J{u(y): y EY with e(y) ^ e(s)} is essential, so s does not belong to the closure

and is therefore isolated from Y - e(s).

2. Proof of Theorem 1.

Caae 1: Suppoae b = d. Our first step is to construct a special class of open

sets:   {pc(x): a E d, x E X}.   By our combinatorial statement b = d, we can
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choose a subcollection {X(a): a E d} C ww which is both dominant (cofinal) and

well-ordered with respect to <* (a collection of this type is often called a scale).

Let a: Q —* uj be a 1-1 correspondence. For each a E d and each n E uj, let 'y(a)„

be the minimum distance between any two distinct rational numbers belonging to

{(7_1(m): m < \(a)n + 1}. For each a E d and each (x,y) E X x X, let 8a(x,y):

uj —> Nonnegative Reals where the value on n is obtained by first taking the distance

between xn and yn, and then dividing this number by "y(a)„. Finally, for each a Ed

and each x E X, let pa(x) = {y E X: 8a(x, y) converges to zero}.

The collection {pa(x): a E d, x E X} is a base for the open inverse sets (with

respect to e) where the following elementary facts hold for each choice of a,0 E

d and x,y E X. (1) The set pa(x) is both open and closed and is a union of

equivalence classes (with respect to e). (2) If a < 0, then pa(x) D Pp(x). (3) Either

Pa(x) = Pcx(y), or pa(x) fl pa(y) = 0; so {pa(x): x E X} is a pairwise disjoint

open cover of X. (4) If both (o-(xn): n E uj) <* X(a) and (a(yn): n E ui) <* X(a),

and e(x) ^ e(y), then pa(x) fl pa(y) = 0-

Our second step is to use the dominance of {X(a): a Ed} and the observations

of the preceding paragraph to construct our partial ordering of T. For each x E X,

let v(x) = pa(x) where a is the least ordinal in d such that (a(xn): n Euj) <* X(a).

Note that for all x,y E X: either v(x) and v(y) are disjoint or one is contained

in the other; v(x) I> v(y) iff y E f(x); and u(x) = u(y) iff e(x) = e(y). For all

ty,t2E T, define ii < t2 iff v(ty) D v(t2) (equivalently, ii < t2 iii t2 E v(ty)).

Case 2: Suppose d = c. Then we can let -< be a well-ordering of T in type d.

Note that for each t ET, (j{e(s): t < s} is open because the complement is closed

by the Corollary to Lemma 2.

REMARK. The existence of a base {pa(x): a E d, x E X} for the open inverse

sets satisfying (1), (2), and (3) in the second paragraph of Case 1 implies that

under b = d, the quotient space induced by e (the nabla product) is d-metrizable.

The converse also holds, and the factors can be generalized to nondiscrete metric

spaces. This characterization of b = d is due to S. W. Williams in [Wi] and van

Douwen in [vDj]. J. Roitman showed in [Roa] that d = c can be characterized

by the existence of a base for the nabla product (with nondiscrete metric factors)

where the union of each < c subcollection is closed.

3. Proof of Theorem 2.

Hypothesis. Suppose the Order Hypothesis holds, and let K be a given open

cover of X. We use the lemmas below to construct an appropriate refinement.

Outline of the Proof. The refinement is defined by induction according to the lev-

els of the tree. LetB' = {uEB: (3r(u) ET) (uf)e(r(u)) ^0SiuC (j{e(t): r(u) <

t})}. Note that B' is a base for X where for all u,v E B', u and tj are disjoint

whenever r(u) and r(v) are incomparable. We define an order-preserving (with

respect to ■< in the domain and set-inclusion in the range) function C: T —> Power

Set (B1) such that for every t ET, Ct is a pairwise disjoint refinement of K which

covers U(e(s): s - 0 (we a^so reQmre that each member of Ct intersect this union,

and that Cs = Ct if s and t have the same set of predecessors). Then the union of

the image of C is an open pairwise disjoint covering refinement of K.

In defining C by induction the problem is to show that the union of each initial

segment of a branch of the refinement is closed. Since the cardinality of each initial
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segment is < d, this problem (by Lemma 2) is reduced to showing that each union

contains all of its essential limit points.

In 3.1 we introduce an auxiliary concept, O-closed, and show that if a pairwise

disjoint subcollection of B is 8-closed, then the union contains all of its essential

limit points. Thus, (j Ct is topologically closed if Ct is O-closed. So as part of

our induction hypothesis we assume that Ct is 6-closed. We then give a procedure

for extending Ct to a larger ©-closed collection which in addition covers e(t). The

remaining sections of the paper serve this purpose.

In 3.2 we extend ■< to a partial ordering of X so that the restriction of -< to each

equivalence class is a well-ordering of a special type. Also, each class is inserted

directly after its representative in T. For each u E B, a point l(u) E u is distin-

guished (l(u) may or may not be in T), and a subcollection A C B is defined by

A = {u E B: (Vz E u) (l(u) < x)}. Note that A C B'. We construct our refinement

of if as a subcollection of A.

We cover e(i) by induction according to the well-ordering of e(t) given by the

restriction of -<. (So we have inductive processes at two different levels: among

different classes, and inside individual classes.) The special nature of the well-

ordering implies the following proposition. Suppose points are covered in order

using members of A. Then the union of each initial segment is closed in e(t).

However, we also need a O-closed extension of Ct-

In 3.3 we introduce a second auxiliary concept: the product of two members of

A. In reference to a function h: A x A —► ui + 1, for each (u, v) E A x A, we define

uv E A by po,n(uv) = Po,n(«) and pn^(uv) = pn,u(u) f~l pn,u(v), where n = h(u,v)

(if h(u,v) = uj, then uv = u). We then establish a second proposition. Suppose

that for each pair of new sets admitted in the course of covering e(t) the following

equation holds: uv = u. Then our extension of Ct is 8-closed.

In 3.4 we unify the lemmas and proceed with the induction arguments to com-

plete the proof of Theorem 2.

3.1. ©- closed collections.

DEFINITIONS OF a,r, AND /. Let a: Q —► u> be a 1-1 correspondence. Let

t : X -+ uuj defined by r(s)n = max{cr(sm): m < n} ii n > 0, and r(s)o = 0. Let

/: B —> X defined by l(u)n = er-1(m) where m = min{cr(sn): s € u}. Note that

l(u) E U.

LEMMA 3. Suppose C C B with C pairwise disjoint, s E X, and n Eui. Then

<&n(C,a) ia infinite iff {r(l(u))n: u E $>n(C,a)} ia unbounded.

PROOF. Sufficiency follows from the fact that r o / followed by projection is

single-valued. For necessity suppose $„(C, a) is infinite. For each u E §n(C, s), let

t(u) E u defined by Po,n(t(u)) = Po,n('(u)) and pn,u(t(u)) = pn,u(s). C is pairwise

disjoint so i is 1-1; in turn, since each value of i agrees with s on [n,uj), po,n °t is

1-1. The conclusion now follows since for a fixed n, an infinite number of distinct

n-tuples collectively assume an infinite number of integer values.

DEFINITION OF O-CLOSED. For each u E B, let 6(u): uj -► Power Set (X)

defined by 9(u)„ = {s E X: (u E $n(B,s)) k (r(a)n < r(l(u))n)}. A collection

C C B is O-closed means that (Vu E C) (Vn E uj) (0(u)„ C |J C).

LEMMA 4. Suppose C Q B with C pairwise disjoint and Q-cloaed, a E X, and

nEw auch that $„(C, s) is infinite.  Then s E (J C.
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PROOF. By Lemma 3 we can choose u E $n(C,a) with r(a)n < r(l(u))n. So

s E 0(u)n, which in turn is a subset of (J C by hypothesis.

LEMMA 5. Suppoae C C B ia pairwiae disjoint and Q-closed. Then (JC con-

tains all of its essential limit points.

PROOF. Let s E X — \JC. By the contrapositive of Lemma 4, $n(C,s) is

finite for each n E uj, so we can choose u E B with s E u such that (Vn E uj)

(pn(u) C Q - (J{pn(v): v E $„+i(C,s)}). Since 3>o(C,s) is empty, u does not

intersect any set belonging to \J{$n(C,s): n E ui}. By Lemma 1, s is not an

essential limit point of |J C.

3.2.  Well-ordering equivalence classes.

DEFINITIONS OF / AND g. Let /: X -> w by defining f(s) to be the least index

n with pn,w(s) = Pn,u>(t) where t ET and e(s) = e(i). Let o: Xx X —► w + 1 defined

by setting ff(s, i) equal to the least index n with pn,ui(s) — Pn,u(t) if e(s) = e(t),

and otherwise, let g(s, t) = uj.

DEFINITION OF < ON X - T. Extend ■< to a partial ordering of X so that for

all x,y E X:

(1) if a and i are distinct elements in T with x E e(s) and 7/ E e(t), then x < y

iff s -< i;

(2) if e(i) = e(j/) and /(j) < f(y), then x <y;

(3) if e(z) = e(w), /(x) = f(y), and fj(i„_i) < <r(yn-y) where n = ff(i,y), then

x< y.

Note that (2) and (3) imply that -< well-orders each equivalence class and places

its representative in T in the initial position. Also, for each x E X, {y E X: x < y}

is an open set.

DEFINITIONS OF A AND A. Let A = {u E B: (Va: E u) (l(u) < x)}. Let

A = {C C A: C is pairwise disjoint; each member of C is a subset of some member

of K; ]C\ < d}. Note that if u G B and s G u, then there exists v €\ A with s = l(v)

and v Qu. So in the presence of the Order Hypothesis, {v E A: a = l(v)} is a local

base at s.

LEMMA 6.   Suppose t ET, a E e(t), and C U D E A such that:

(1) CUD covers {x E e(t): x -< s},

(2) (j C is closed in X, and,

(3) (Vu € D) ((l(u) E e(t))k (l(u) < s)).

Then s either belonga to (J(C U D) or ia iaolated from (J(C U D).

PROOF. Suppose s £ \J(C\JD). Partition the predecessors of s in e(t) as follows:

place x and y in the same partition set provided that (3n < f(a)) ((g(s,x) =

g(s,y) = n)& (x„_i = yn-y))-

Claim 1. The partition defined above is finite. The first step is to separate

x and y if g(s,x) ^ g(s,y). Since each of x and y precedes s, f(s) is an upper

bound for the image of this restriction of g, so the first step yields a finite number

of sets. If g(s,x) = g(s,y) = n, then the second step is to separate x and y in

case x„_i ^ 7/n-i- By the definition of < on X, each of xn-y and yn-y belongs

to {q E Q: a(q) < tr(sn_i) or q = in_i (the second possibility can occur when

n = f(s))}. So each set constructed initially is broken into only a finite number of

subsets in the second step, thus completing the proof of Claim 1.
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A unique representative for each partition set is distinguished by the property

of agreeing with a on all but one coordinate. Let Z be the set of all points of this

type (so Z is a particular transversal of the partition). By Claim 1, Z is finite. Let

E = {uECuD: u intersects Z}. Since Z is finite and C U D is pairwise disjoint,

E is finite. So we can choose w E B with a E w such that (Vu G E) (Vi < f(s))

((si $ Pi(u) -* pi(u) npi(w) = 0)k (si E Pi(u) -> pi(w) C Pi(u))). Note that by

our starting assumption on s, the first condition implies (Vu E E) (uDw = 0).

Claim 2. (j D n w = 0. Let tj E D. By (3) of the hypothesis, l(v) E e(t) and

/(tj) -< s. Let x E Z where x belongs to the same partition set that contains /(tj).

By (1) of the hypothesis, we can choose u E C U D with x Eu. So u E E. Either

u = TjoruriTj = 0. In the first case tj n w = 0 by the first condition in the

choice of w. In the second case, if m = g(x, /(tj)), then po,m(u) fl Po,m(v) = 0 (by

u fl tj = 0) while po,m(u>) C po,m(u) (by the second condition in the choice of w

and the equality Sj = Xi for all i ^ g(s, x) — 1); so again we have that tj fl w = 0,

thus completing the proof of Claim 2.

By Claim 2, s is isolated from (j D; and by (2) of the hypothesis together with

our starting assumption, s is isolated from (j C.

Lemma 7.   Suppose t ET and s,x,y E e(t) with s < x < y.   Then g(s,x) <

g(s,y).

PROOF. Define i,j,k E uj by i = f(s), j = f(x), and fc = f(y). By (2) in the
definition of < on X, i < j < fc; and as a consequence, g(s, x) < j and g(s, y) < fc.

Case 1. Suppose i < j or j < k. Then i < k which implies g(s,y) = fc.

Case 2. Suppose i = j = fc. By (3) in the definition of < on X, if g(s, y) < g(s, x),

then either x precedes each of s and y in the well-ordering or follows each of s and

y, and this result contradicts the hypothesis.

DEFINITION OF h. Define h: Ax A —►w + las follows. Let h(u, v) be the least

index n such that p„>w(/(u)) G pn,u(v) and t(/(tj))„ < r(l(u))n if such an index

exists; otherwise, let h(u, v) = uj. Note that by the definition of /, if h(u,v) < uj,

then (Vm > h(u, tj)) (r(/(Tj))m < r(/(u))m). Also, if l(u) = /(tj), then h(u, v) = 0.

LEMMA 8. Suppose u,v G A, with e(l(u)) = e(l(v)). If furthermore l(u) < l(v),

then g(l(u), /(tj)) < h(u, v).

PROOF. The case l(u) = l(v) is immediate. Assume l(u) -< /(tj). Let n =

g(l(u),l(v)). Define s E X by sm = l(v)m for all m ^ n — 1, and s„_i = /(u)n_i.

Claim, a -< /(tj). Define i,j,k G uj by i = f(s), j = f(l(u)), and fc = /(/(tj)).
Then either j < k forcing i < fc, or j = k forcing i = fc. In the first case, s < l(v)

by (2) in the definition of -< on X. In the second case, by (3) in the definition of -<

on X, a(l(u)n-y) < o(l(v)n-y), so s < /(tj) follows from sn_i = /(u)n_i.

If h(u, v) < n, then s Ev, and by the Claim, this contradicts v E A.

LEMMA 9. Suppose u,uo,v,vo E A with uq Q u, vo C tj, l(u) = l(uo), and

l(v) = l(vo).  Then h(u,v) < h(uo,vo).

PROOF. Suppose n < h(u,v). Then either pn,oj(l(u)) ^ Pn,u(v), and thus

Pn,u(l(uo)) £ Pn,u,{vo)\ or t(/(tj0))„ = r(/(Tj))„ > r(l(u))n = r(/(u0))n. In neither

case does n = h(uo,vo).
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3.3. Method of refinement.

DEFINITION OF THE PRODUCT. For each (u,v) E A x A, define the product

uv E Abyp0,„(uTj) = p0,n(u) andpn>w(uTj) = pn%u(u) C\pn,u(v) wheren = h(u,v) <

uj; and if h(u,v) = uj, then let uv = u. Note that utj C u; and l(uv) = l(u) by

the definition of h, so utj e A. The equation uv = u holds iff h(u,v) = uj, or,

Pn,ui(u) C pn<u(v) where n = h(u, v) < uj. Also, if l(u) = /(tj), then utj = u n tj.

LEMMA 10. Suppose s,t E X with e(s) = e(t) and s <t, and auppoae u,v E A

with l(u) = s and l(v) = t.  Then uC\ t  = uvf] t , where  t  = {x E e(t): x <t}.

PROOF. Since utj C u, one inclusion is immediate. Let x EuC\ t . By u G A,

s < x. Let n = h(u,v). By Lemmas 7 and 8, g(s,x) < g(s,t) < n, so pn,u(x) =

Pn,u(s) E pn,u(uv). This result together with po,n(x) E Po,»(u) = Po,«(utj) implies

that x E uv.

LEMMA 11. Suppose u E A and C is a nonempty subcollection of A such that

either:

(1) C is pairwise disjoint, or,

(2) (Vtj G C) ((e(l(u)) = e(l(v)))k (l(u) < /(tj))), and, the restriction of I to C

is 1-1.

Let w = P|{utj: v EC}.  Then w E A, w Cu, and l(w) = l(u).

PROOF. We need only show that tvj is open. The other properties then follow

immediately from u E A, uv C u, l(uv) = l(u). The following two facts imply

that w is open: (Vn G u) (pn(w) = f){Pn(v): v = u, or v E C with h(u, v) < n});

(Vn E uj) ({tj g C: h(u, v) = n} is finite). The second fact follows from the proof of

Lemma 3 if we take the first hypothesis, and from Lemma 8 and the 1-1 property

of l\C if we take the second hypothesis.

Definition of R. Suppose CCA such that (Vu,tj g C) (e(l(u)) = e(l(v))),

and the restriction of / to C is 1-1. For each u G C, let u' = P|{TiTj: tj G C with

l(u) < /(tj)}. By Lemma 11(2), u' is open. Let R(C) = {u1: u G C}.

LEMMA 12.   Suppose CCA such that:

(1) (Vu,tjgC) (e(l(u)) = e(l(v))),

(2) the restriction of I to C is 1-1,

(3) (Vu G C) (Vtj G R(*u)) (uv = u), where *u = {w E C: l(w) < l(u)}.

Then (\/u,v E R(C)) (uv = u).

PROOF. Suppose u,v E C and let u' and tj' be the corresponding members

of R(C). We will prove that u' C tx'tj' (uV C u' follows immediately from the

definition of the product). Also by the definition of the product: u' C uV iff

Pn,u(u>) Q Pn,u(v'), where n = h(u',v'); and in turn, the projections of tj' are

intersections of projections of certain members of C. Suppose w E C with /(tj) <

l(w). Let ny = h(u',v'), let ri2 — h(v,w), and let m = max{ni,U2}. We need to

show that Pm,uW) C pm^(w) (we can assume m < uj since otherwise, u' = u'v' is

immediate (if ny = uj) or w is irrelevant in the construction of tj' (if ri2 = uj)).

Case 1. Suppose l(u) ^ /(tj). By Lemma 11(2), l(u') = l(u) and l(v') =

/(tj), so by Lemma 8, g(l(u), /(tj)) < ny. Also by Lemma 8, g(l(v),l(w)) < n2.

Thus g(l(u),l(w)) < m. By m > ny and the above application of Lemma 11(2),

r(l(v))m < r(l(u))m; and by m > n2, r(l(w))m < r(l(v))m. So h(u,w) < m, and

this together with u' C uw implies Pm,w(u') C pm,u{uw) C pm^(w).
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Case 2. Suppose /(tj) -< l(u) < l(w). By Lemma 7, g(l(u),l(v)) = g(l(v),l(u)) <

g(l(v),l(w)). As we noted in the preceding paragraph, g(l(v), l(w)) < n2 by Lemma

8. So g(l(u), l(w)) < m. The argument can now be completed by the same sequence

of ideas used in the conclusion of Case 1.

Case 3. Suppose /(tj) < l(w) -< l(u). Let z be the set in R(*u) that corresponds

to tj. Then tj' C z C vw. By (3) of the hypothesis, u = uz. By Lemma 9,

h(u,z) < h(u',v') < m, so we have the following sequence of inclusions:

Pm,uj(u') Q pmtU(u) C pm,w{uz) Q Pm,u,{z) Q Pm,u(vw) C PmiU1(w).

LEMMA 13.   Suppose C U D E A such that:

(1) C is Q-closed,

(2) (WED) (e(l(u))C(j(CUD)),

(3) (Vu G D) (Vtj G C) (Vn G w) (p„,w(u) np„,o» ? 0 -► Pn,u(«) £ Pn,w(«))»

(4) (Vu,tjgD) (utj = u).

T/ien CU D is Q-closed.

PROOF.  Let u G C U .D, let n G w, and let s E Q(u)n. We need to show that

sGU(<?U£>).
Case 1. Suppose u G C. Then s E (JC by (1) of the hypothesis.

Case 2. Suppose u E D. Let t E e(l(u)) be defined by po,n(t) = Po,n(s) and

Pn,u>{t) = Pn,w(Ku))- By (2) of the hypothesis, we can choose v ECUD with t E v.

Claim, s Ev. By i G tj, po,n(s) E Po,n(v). We will show that pn,ui(u) C p„tU(v),

from which pn,u(s) E pn,u(v) follows by the choice of s. The above inclusion holds

by (3) of the hypothesis if tj G C, and by (4) of the hypothesis and h(u,v) < n

if tj G D. The inequality h(u,v) < n is a consequence of two facts: p„iW(/(u)) =

Pn,u(t) E pn,u/(v) by the choice of i and tj, and r(l(v))n < r(t)n = t(s)„ < r(l(u))n

by the choice of i and s.

3.4. Transfinite induction.

LEMMA 14. Suppose C is a Q-closed member of A and t E T such that C

covers e(s) for each s < t. Then there is a collection D such that C U R(D) is a

Q-closed member of A that covers e(t).

PROOF. To construct D we will use transfinite induction on e(t) ordered by -<.

For the induction hypothesis, suppose D has been partially constructed so that the

conditions listed below are satisfied (for each u E D, let *u = {v E D: l(v) -< l(u)}):

(1) C U R(D) E A;
(2) (Vu G D) (l(u) is the least element of e(t) - (J(C U R(*u)));

(3) (Vu G D) (Vtj g R(*v7)) (uv = u);

(4) (Vu G D) (Vtj G C) (Vu G u) (p„,w(u) np„,w(u) ^ 0 -r pn,u(u) C p„,w(tj)).

(If we define (4') to be the same as (4) except with R(D) in place of D, then (4)

implies (4').)

First note that by Lemma 12, the above hypothesis implies (Vu,tj g R(D))

(uv = u); so by Lemma 13, if C U R(D) convers e(i), then C U R(D) is 6-closed.

Therefore, we need to show that in the case where e(i) is not yet covered, our

collection can be extended while preserving each of the conditions of the induction

hypothesis.

Claim. Let x be a minimal element of X such that i < x and (Vu G D) (l(u) -< x),

and let y E e(t) with y < x. Then y E \J(C U R(D)). First note that by Lemma
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11(2), {/(u): u E D} = {l(u): u E R(D)}. Suppose y <£ (JC and y does not

belong to the image of / restricted to D. Let u E D such that l(u) is the least

element of {/(tj): (tj g D)k (y < l(v))}. By (2) of the induction hypothesis, we

can choose w E *u with y E zq = f]{wv: (v E D)k (l(w) < l(v) ■< l(u))}. Let

zy = (~){wv: (v E D)k (l(u) < l(v))}. By Lemma 10, y E Z\. Let w' = zo fl Zy.

Then y Ew' E R(D). This completes the proof of the Claim.

Let s be the least element of e(t) - (J(C U R(D)). By the Claim, x < s. By

Lemmas 2 and 5, (JC is closed in X. Therefore t,s, and C U R(D) satisfy the

hypothesis of Lemma 6, so we can choose wy E B where s E wy, wy is a subset

of some member of K, and wy is disjoint from (J(C U R(D)). Since {tj g A: s =

/(tj)} is a local base at s, we can choose w2 E A with s = l(w2) and w2 C wy.

By the contrapositive of Lemma 4, <&n(C,s) is finite for each n G uj, so we can

choose ws E A with s E w3 and 103 C 77j2 such that (Vn G u>) (Vtj G 3>n+1(C, a))

(Pn(v) flpn(w3) = 0), and (VnEu) (Vtj G $„(C,s)) (pn,w(w3) C pn^(v)). Finally,

if D is nonempty, then let u = f){w3v: v E R(D)}\ otherwise, let u = w3. By

Lemma 11(1), u E A,u C w3, and s Eu. By virtue of Lemma 9 and the intersection

that defines u, (Vtj g R(D)) (uv = u). Adjoin u to D. Then the extension satisfies

each condition of the induction hypothesis.

LEMMA 15.   There is an open pairwise disjoint covering refinement of K.

PROOF. By Lemma 14 and transfinite induction, there is an order-preserving

(with respect to < in T and set inclusion in A) function C: T —> A such that for

every i G T, Ct is a ©-closed member of A that covers U(e(s) ■ s < t} (we also

require that each member of Ct intersect this union, and that Cs = Ct if s and t

have the same set of predecessors). Then the union of the image of C is a refinement

of K with the required properties.
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