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REGULARITY OF WEAK SOLUTIONS
OF PARABOLIC VARIATIONAL INEQUALITIES

WILLIAM P. ZIEMER

ABSTRACT. In this paper, parabolic operators of the form

ut — div A(x, t, u, Du) — B(x, t, u, Du)

are considered where A and B are Borel measurable and subject to linear

growth conditions. Let ip: fl —» R1 be a Borel function bounded above (an

obstacle) where fl C Rn+1. Let u € W1,2(n) be a weak solution of the

variational inequality in the following sense: assume that u > ip q.e. and

/  ut<p + A- Dtp- B<p>0
Jn

whenever f> €. W0' (Cl) and <p > u — if> q.e. Here q.e. means everywhere except

for a set of classical parabolic capacity. It is shown that u is continuous even

though the obstacle may be discontinuous. A mild condition on ip which can

be expressed in terms of the fine topology is sufficient to ensure the continuity

of u. A modulus of continuity is obtained for u in terms of the data given for

ip.

1. Introduction. In this paper we consider the question of pointwise regularity

of weak solutions of parabolic obstacle problems for parabolic operators of the

following type:

ut - div A(x, t, u, Vu) - B(x, t, u, Vu),

whose structure is defined by the inequalities

\A(x,t,u,£)\ < a0|f| + ay]u] +a2,

(1) Z-A(x,t,u,t:)>]c:]2-cy\u]2-c2,

\B(x,t,u,^)\<bo\^]+by\u\ + b2,

where ao is a positive constant and the remaining coefficients are nonnegative mea-

surable functions defined on an open bounded set Ci C Rn+1. For brevity and sim-

plicity of exposition, we will assume that these coefficients are bounded although

our results remain valid if they are assumed members of appropriate Lp-spaces.

Our results described below would remain valid if the inequality involving B would

include a term of the form 6|£|2, where b is a nonnegative constant, if we would

assume that the solution is bounded. The reader may consult [LSU, Chapter V]

for details.

The obstacle that we consider is an arbitrary Borel function xp defined on Q

that is bounded above.   Our main objective is to specify a condition on tp at a
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764 W. P. ZIEMER

point Zo = (xo,to) that will ensure the continuity of the weak solution u at zq-

Stated briefly, we show that u is continuous even though the obstacle tp may be

discontinuous. Moreover, the modulus of continuity of u is estimated in large part

by the fine properties (in the sense of parabolic potential theory) of the obstacle.

See Theorems 3.7, 4.4, and 4.5.

There is a vast literature on the regularity of solutions to elliptic and parabolic

variational inequalities. See [BI, BM, CK, DV, FM, MZ, and SV] for a small

selection of papers that are relevant to our situation. Before we discuss the defi-

nition of a weak solution to the parabolic obstacle problem, it may be helpful to

review the setting of the corresponding elliptic problem that was treated in [MZ].

For this purpose, let U be a bounded nonempty open set of Rn. Let K be the

subset of the Sobolev space Wl'p(U), p > 1, consisting of all v, such that v agrees

with a boundary function 9 on dU in a suitable way and v(x) > rp(x), for almost

all x E U, where rp is a function defined on U (the "obstacle"). Put

(2) I(v) = I F(x,v(x),Vv(x))dx
Ju

for v E K, where F is a function with suitable properties. Let

(3) <r=inf/(u)
v€K

and suppose there is a function uE K, such that

(4) I(u) = a.

This gives a general description of the classical obstacle problem where u is the

solution to the problem.

It is well known that if u E K is such that (4) holds and the function F satisfies

appropriate conditions, then

^A^(X'U(x)'Vu(X))^(x)dX
(5) i=iJU    s' *

f dF
+ /   —— (x, u(x), Vu(x))ip(x) dx > 0,

Ju °z

for all pEW^v(U) with

(6) p(x) > rp(x) - u(x)

for almost all x E U. This is a special case of the weak inequality

(7) V* / At(x,u(x),Vu(x))-^-(x)dx+ / B(x,u(x),Vu(x))p>(x)dx > 0
~~f Ju dxi Jyj

for all pEW0Up(U) with

(8) p(x) > rp(x) - u(x)

for almost all x EU. This was the inequality that was investigated in [MZ]. Thus,

the definition of weak solution that was employed was based on the assumption

thatueW1'p(£/),p> 1,

(9) u(x) > rp(x)
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for almost all x E U and u satisfied inequality (7) for all p) satisfying (8). Our

definition of weak solution to the parabolic obstacle problem will be patterned

after this one.

The main result in [MZ] is the following: assume that the obstacle function rp

is a Borel function on U that is bounded above. Let xq EU and suppose there is

a set A C Rn with the property that A is not thin at xo and that

(10) lim rP(x) = rP(x0),
X—.Xo
xeA

where rp(xo) = limr-^o V>(r) and rp(r) = sup{V>(z): x E B(xo, r)}. Then the solution

u is continuous at xo- The set A is said to be not thin (thin) at Xq if

/[yn^*.. «.,.
Jo [    i[B(xo,r)]    J r

Some authors use the terminology "fat at xo" instead of "not thin at xo-" Here

p > 1 is a number associated with the structure of the elliptic operator of the

obstacle problem and 7 is a capacity, the so-called p-capacity. The p-capacity of a

set E is defined by

l(E) = inf j f   \Vu\p: u E W1'p(Rn), E C int{u > 1} j .

This result should be compared to the question of regularity of weak solutions of

equations at a point xo of the boundary of an arbitrary open set U. It was shown

in [GZ] that a weak solution of an equation of the form (1) is continuous at xo if

Rn — U is not thin at xo. In case the prescribed boundary values are identically

one, this problem can be interpreted as an obstacle problem with the characteristic

function of Rn — U considered as the obstacle. Then condition (10) is equivalent

to Rn — U being not thin at xo-

Proceeding by analogy with the elliptic case, in the parabolic setting we consider

the obstacle as a Borel function rp defined on fi C i?"+1 which is assumed to be

bounded above. We consider u E W1,2(Q) to be a solution of the parabolic obstacle

problem in the following sense: we assume

(12) /  -ptu + A(x,t,u,Vu) -Vp-pB(x,t,u,Vu) >0
Jn

for all peWq'2(VL) with

(13) p(z) > rP(z) - u(z)

for almost all z E fi. We assume throughout that u(z) > rp(z) for almost all z E fi.

This definition is analogous to the one employed in the elliptic setting as described

in (7) and (8). The analysis of this paper could have been carried through by

assuming that u is merely an element of the space V2(Q) (see [LSU] for definitions

and development). The basic estimates that we obtain can be obtained for these

general weak solutions by employing integral averages of the solutions we consider.

The notion of thinness in the parabolic context will be expressed in terms of thermal

capacity which is defined by

(14) capT(K) = sup{p(iT+1): p E M(K), E * p < 1}
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whenever K C Rn+1 is a compact set. Here M(K) is the set of all nonnega-

tive measures supported by K, E is the fundamental solution of the heat operator

d/dt-A, and * denotes the convolution in Rn+1. With this concept of capacity, we

refine the definition of a solution to the parabolic obstacle problem in the following

way. We now assume that the obstacle rp is defined everywhere except for a set of

capT zero. We will use the expression quasi-everywhere, q.e., to mean everywhere

except for a set of capr zero. We also assume that

(15) p(z) > rp(z) - u(z)     and     u(z) > rp(z)

for q.e. z E Rn+1. Finally, we will replace (11) by the expression

(16) / utp + A(x, t, u, Vu) ■ Vp - pB(x, t, u, Vu) > 0
Jn

for all tp > rp - u q.e., sptp C fi, and p E Wd'2(Clt) for each t. Here,

(17) fit = fin {(x,r):r = i}.

This can be proved by elementary regularization techniques. Observe that a solu-

tion of the obstacle problem is automatically a weak supersolution of the equation

ut = div A + B.
Regularity of weak solutions of parabolic obstacle problems has been considered

by Biroli and Mosco [BM] for operators of the form ut + Lu. Here L is the linear

operator L(u) = Di(a%:'(x,t)Dju) whose coefficients atJ are bounded, measurable

functions. The capacity they employ is defined by

cap(£) = inf | f \Vv]2dxdt: vEC^(Rn+1),v > 1 on a nhbd of E\.

Their notion of weak solution of the obstacle problem is as follows: The underlying

domain is Q = U x [0, T]. It is assumed that u > rp everywhere except for a set

of cap zero, that u is a weak supersolution of the equation ut + Lu = 0, and that

for every nonnegative function n E Cq0 and every constant fc such that fc > rp

everywhere except for a set of cap zero, we have

*ll(« - k)+n\]2LHu)(t) - f   [ mv[(u - fc)+]2 dxds
(18) 2 Jo Ju

+ [[ a'J(x,s)DjuDi[(u - k)+n2]dxds = 0
Jo Ju

for 0 < t < T. Equivalently, if one defines a test function

p = T]2(u- fc) + X{(z,s) : 0<s<t},

where \a denotes the characteristic function of a set A, then

/    [utp-[   j  alJ(x,s)DjuDl[(u-k)+n2]dxds = 0.
Jo J Jo Ju

They show that their notion of solution is in agreement with those used by Mignot

and Puel [MP] and Pierre [P], where the question of existence was investigated.

It is shown during the course of the exposition, that the results of this paper still

remain valid if this notion of solution had been adopted.
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There were two basic ideas in the paper [MZ] that led to the pointwise regularity

of the solution to the obstacle problem. The first was the observation that if

fc > sup rp in some open set V, then (u — k)+ behaves like a subsolution to the

equation in V. The analogous result is used in the present paper and its proof

carries over without difficulty. The second idea was to show that a solution to the

obstacle problem (which is a supersolution to the equation) has the property that it

is finely continuous at all points in its domain. This was accomplished by obtaining

an estimate of the rate of decay of rp~n /B(i , | Vu|p as r j 0. This type of analysis

is not suitable in the parabolic case and must therefore be replaced by another

argument to conclude that the solution of the obstacle problem is finely continuous

everywhere. We are able to supply such an argument thus yielding the pointwise

regularity of the solution. Our methods employ a combination of the truncation

procedure of De Giorgi and the Moser iteration technique.

2. Preliminaries. Points will Rn+1 will generally be denoted by z = (x,t)

where x = (xy,...,xn). The Sobolev space of real valued functions defined on an

open set fi C Rn+1 whose distribution first partial derivatives belong to L2(fi)

(L2oc(fi)) is denoted by W1,2(fi) (Wfc'fTJ)). The letter C will denote perhaps
different constants appearing within a discussion, but with the understanding that

they all depend on the same set of parameters. The integral average of a function u

will be denoted by fA u. Thus, fAu= ]A]~X jA u, where ]A] denotes the Lebesgue

measure of the set A.

A function u E W^2(d) is said to be a weak solution (subsolution, supersolution)

of

(19) ut = div A(x, t, u, Vu) + B(x, t, u, Vu)

in fi if

(20) /  -p>tu + A(x,t,u,Vu)-Vp-B(x,t,u,Vu)p = 0       (< 0, > 0)
Jn

for all nonnegative p E W01,2(fi).

We now introduce a geometric configuration that will be used throughout the

sequel. Consider a point zo = (xo,io) E fi. For each positive number r let

(21) R(r) = B(xo,r) x (i0 - |r2,t0 + \r2)

where B(x0, r) denotes the open ball in Rn centered at xo with radius r. Associated

with R(r) are the following subcylinders:

R+(r)=R(r/2),

D+(r) = R(rr/2) where r is chosen so that(r • r/2)2 < \r2,

(22) R~(r) and D~ (r) are reflections of R+(r) and D+(r),

respectively, in R(r) about the plane t = t0 - \r2,

R*(r) is a cylinder containing R~ and contained within D~.

We will need the following information concerning weak subsolutions (supersolu-

tions) of (19). It follows from the general theory as developed in [LSU and T2] that

weak subsolutions (supersolutions) of (19) are locally bounded above (below). Also,

we have the weak Harnack inequality that was first established in [T2, Theorem

4.1].
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2.1 THEOREM.   Let u E W1'2(Q) be a weak subsolution of (19).  Then there is

a constant C depending only on the structure (1), inf u, and r in (22) such that

r-(n+2)  f       r^ _ urXj tjj dx dt < c^,r^ _ pj^/a)] + m(r)
jR"(r)

where m(r) —> 0 as r [ 0 and p(r) = sup{u(z): z E R(r)}.

Notice that if u is nonnegative,

r-(n+i)  f     [Ll(r)-u(Xit)]dxdt<Cr-{n+2) [       [p(r)-u(x,t)]dxdt
jR(r) JR'(r)

where the constant C depends only on the ratio of the volumes |i?(r)|/|J?*(r)|,

because fR.rr\ u < fRtr\ u. Therefore, it follows from Theorem 2.1 that

(23) f      [p(r) -u(x,t)]dxdt-rO     as r | 0
jR(r)

where we recall that / denotes the integral average. The significance of (23) is

that R(r) contains the point zq whereas R*(r) does not. Thus, if we define A at

zo to be A(zo) = limr_oA'(r)i we can conclude from a result of [JMZ] concerning

Lebesgue points defined in terms of irregular sets (parabolic cylinders in our case)

that u(z) = A(z) for almost all z E fi. This discussion is based on the assumption

that the subsolution u is nonnegative. If u is bounded below by k, we arrive at

the same conclusions because the function u — fc is a nonnegative subsolution of

another equation with structure (1). Observing that A is an upper semicontinuous

function, we have the following result.

2.2 THEOREM.   If u E Wl>2(Q) is a weak subsolution (supersolution) of (19)

that is bounded below (above), then

lim j-      \u(x,t) - u(xo,to)\dxdt

(24) ~°T™
= lim +      |p(r) — u(x,t)|dxdi = 0

r-,° JR(r)

for all zo = (xo,to) E fi. In case u is a supersolution, p(r) must be replaced by

X(r) = ini{u(z): z E R(r)}. Thus, weak subsolutions (supersolutions) of (19) are

defined at all points of fi and are upper (lower) semicontinuous.

We now recall the concept of thermal capacity, capT, that was defined in (14).

In terms of it, we define a set A C Rn+1 to be thin at zo if

f1 capT[fi-(r)n^]dr

Jo      capT[J?"(r)]     r

where R~(r) is described in (22). We will need the following lemma later in the

development.

2.3 LEMMA.   If {Ai} is a sequence of sets each of which is thin at zq, then there

exists a sequence of real numbers {ri} such that (J^U ^« I"1 R~{ri) is thin at zq.

PROOF. Because A, is thin at zo, it follows that

lim.nfcaPr[i?-(r)nAt]=o
r-»o capT [R~ (r)]
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For each i, choose rj such that

rr' capT[Atn R~(r)]dr < 2_{i+1)

Jo        capT[R~(r)]      r

Then,

f1 capT[Aj n R~(n) fl R~(r)] dr

Jo capT[R~(r)] r

fr' capT[Ai D R~(r{) C\ R~(r)] dr

~ Jo capr[i?-(r)] r

f1 capT[Aj n R- (n) fl R~ (r)] dr

Jr. capT[R-(r)] r

< 2-(*+1) + Ccap^A, n fl-(r<)][rp - 1]

<2~l     tor ri sufficiently small.

Here we have used the fact that cap[i?~(r)] ~ rn. Since capT is countably subad-

ditive, the result now easily follows.      □

3. The main results. We now consider a solution u E W1,2(U) to the obstacle

problem as described in (15) and (16). Thus, the obstacle rp is assumed to be

defined q.e. on fi and is bounded above. Also, the solution u is a supersolution of

(19). Our first result states that u behaves like a subsolution when truncated below

away from the obstacle.

3.1 THEOREM. Suppose there is a constant M such that rp(z) < M for all

z E R(r) where r < 1 and is small enough so that R(r) C fi. Then, there is a

constant C depending only on the structure (1) and r in (21) such that

\ f 11/2
ess sup(u - M)+< C \ f     [(u-M)+]2dxdt       +m(r)
R(r/2) \_JR(r)

where m(r) ->0 as r —► 0.

PROOF. Let v = (u - M)+ and for fc > 0, define w = (v - k)+. Now define

a test function p by p(z) = -w(z)n(z)2 where n(x,t) E C0x(R(r)t). Note that

w(z) < u(z) — rp(z) for z E R(r) except perhaps for a set of capT-capacity zero and

therefore it follows that p is an admissible test function for (16). Consequently,

(25) //      utp + A(x,t,u,ux) ■ Vp - B(x, t,u,ux)p > 0.
J jR(r)

Now

//      utp= wtp
JjR(r) JJR(r)

and

Vp = -2wnVn - n2Vux{u>M+k}

where Xa denotes the characteristic function of a set A. Therefore (25) takes the

form

/ / wtp - r]2A ■ Vu - 2wr)A ■ Vn - Bwn2 > 0.
J jR(r)n{u>M+k}
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Using the structure (1), we then have

// n2wwt+rj2]Vw\2 dxdt
J jR(r)n{u>M+k}

< // Cyr)2\u]2+n2w[by\Vw\+b2]u\+b3]dxdt
,     . JJR(r)n{u>M+k}

(26) ff
+ 11 2wn]V n\[ao\V w] + ay]u] + a2] dx dt

J JR(r)n{u>M+k}

+ c2 // rfdxdt.
J jR(r)n{u>M+k}

This can be written as

// n2wwt + n2\Vw\2 dxdt
J JR(r)n{w>0}

< // n2w[by\Vw\ +b21 w\ +b2(l +M + fc) + 63] dxdt
,„_, JJR(r)tl{w>0}

{*■') ff
+ 11 2wn\Vr)][ao\Vw\+ay\w\+ay(l + M+ k)+a2]dxdt

J JR(r)n{w>0}

+ // n2[4ci|tu|2+8ci(l-(-M2-r-fc2)-r-C2]dxdi.
J JR(r)n{w>0}

After several applications of Young's inequality, this becomes

// r}2wwt-\—rj2\Vw]2 dxdt
J JR(r)n{w>0} 3

(28) <Cy ff w2(n2 + ]Vn]2)dxdt
J JR(r)n{w>0}

+ C2(k2 + \) ff r]2dxdt
J JR(r)n{w>0}

where Cy,C2, and A are constants that depend only on the coefficients in the

structure (1) while A depends also on M.

Let us now assume that the cut off function n vanishes in a neighborhood of

ti = t0 - f r2 and r2 = i0 + \r2. Then it follows from (28) that

/ 2 j n2\Vw]2dxdt<K f 2 f w2(r)2 + ]Vr)]2)dxdt

(29) +C(fc2 + A) f 2 f n2dxdt

+ C / u>2r?|7?t|dxdi.

Choose t* E (t0 - fr2, i0 + \r2) so that

/ n2w2(x, t*)dx> - sup / rf2w2(x, t) dx
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where the sup is taken over all t E (to — fr2, to + \r2). If the test function p is

replaced by X[t0-3r2/4,t']P (see (16) and (17)), one obtains from (28) that

(30) sup / n2w2(x,t)dx+ / n2\Vw\2dxdt
t    J Jt,    J

is dominated by the right side of (29). Therefore, recalling that w = (v — k)+,

sup f n2[(v-k)+]2(x,t)dx+ f " f r]2]V(v - k)+]2 dxdt
t    J Jt,    J

<Cy f2 /(w-fc)+2(r?2 + |Vn|2)dxdt
(31) Jti    J

+ C2(k2 + \) f * f        n2dxdt
Jr,    J{v>k}t

+ C j      f(v-k)+2r]]nt]dxdt.

We now wish to make a change of variable in (31) that will have the effect of

causing the term that involves A to vanish. For this purpose, we will first rescale

(31) with the result that the basic parabolic cylinder R(r) is replaced by R(l).

Thus, if we define v(x, t) = v(xo + rx, to + r2t) ■ r_1 and fj similarly, then v and fj

will satisfy (31) in R(l) provided r < 1. Rather than invoking the notation v, and

fj, we will now assume that (31) has been rescaled and all integrals are taken over

R(l).
We now will proceed to reformulate (31) so that A is eliminated. Let A = 2A1/2

and define v = v + A. There are two cases to consider.

Case 1. fc > A. Using (31) with fc replaced by A; — A, we have

sup f n2(rl-k)+2(x,t)dx+ f 2 f r)2]V(v-k)+\2dxdt

= sup / n2(v- (fc-A)+2(x,t)dx

+ f2   f n2]V(v-(k-A))+\2dxdt
Jr + l J

<C f2 f(v-(k-A))+2(r12 + \Vr1\2)dxdt

+ C((k-A)2 + X) f 2 f n2dxdt
Jr,    J{v>(k-A)}t

+ C f 2 f(v-(k-A))+2n]m\dxdt

<C f2 f(v-k)+2(ri2 + \Vr]\2)dxdt

+ C(k2-A2 + X) f2 f        n2dxdt
Jr,    J{v>k}t

+ C f2 f(v-k)+2n]r)t\dxdt.
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Observe that fc2 — A2 + A < fc2 and therefore

sup     n2(v-k)+2(x,t)dx+ /     f n2]V(v - k) + \2 dxdt
t    J Jr,    J

<C f2 f(v-k)+2(n2 + \Vn]2)dxdt

(32) JT1    J,r2     ,

+ Cfc2/     / n2dxdt
Jr,    J{v>k}t

+ C (v-k)+2r)]nt]dxdt

whenever fc > 0. This yields the desired result in this case.

Case 2. 0 < fc < A. From (31),

(3.3)

sup f n2[(v-k)+]2(x,t)dx+ [' f n2\V(v - fc)+|2dxdt
t    J Jr,    J

= sup fri2[(v-0)+]2(x,t)dx + f 2 /V|V(?;-0)+|2dxdi
t    J Jt,    J

<C f 2 /'[(v-0)+]2(?72 + |V/?|2)dxdt + c7A f2 f n2dxdt
Jr,    J Jr,    J{v>0}t

+ C r f[(v-0)+]2n\vt\dxdt

= C f 2 f(v-(k-A))+2(n2 + \Vr)\2)dxdt + CA f * f n2 dxdt
Jr,    J Jr,    J{v>k-A}t

+ C f 2 f(v-(k-A))+2n]r,t]dxdt

= C f 2 f(v-k)+2(r,2 + ]Vr1]2)dxdt + CX ( ' f n2 dxdt
Jr,    J Jt,    J{v>k}t

+ C f     f(v-k)+2n]nt]dxdt.

If |A < fc < A, then A = (\A)2 < fc2 and we have achieved the desired form (32).

If 0 < fc < fA, then v(z) - k > f A for all z E R(l). Hence, (v(z) - fc)+2 > A, and
again the desired inequality (32) follows.

We now wish to put (32) into a form that will be suitable to perform a Moser-type

iteration. This will then lead to the conclusion of the theorem.

To this end, rewrite (32) as

sup f        (r]2(v2 -2rlk + k2))dx+ f 2 f n2]V(v - fc)+|2 dxdt
t    J{v>k}t Jr,    J

(34) <cf2 f        (n2 + \Vn\2)(v2-2vk + k2)dxdt
Jr,    J{v>k},

+ C j      f v\Vt\(v2 -2vk + k2)dxdt.
Jt,    J{v>k}t
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For P > 1, multiply both sides of (34) by k0~2 and integrate with respect to fc. By

Fubini's theorem we have

C(0) sup f n2v0+1 + j^j I j n2v0-11Vv]2 dx dt

< CC(f3) f f(n2 + |Vr?|2)^+1 dxdt

+ CC(p) f f n\vt\v0+1dxdt

where

tn-n-7-7+1-
This implies that

—!— sup f n2v0+1dx + f f ^vP-^Vvfdxdt
(35) P + 1   t   J J J

<C f f(rj2 + \Vn\2)v0+ldxdt + c( f n\rit\v0+1 dxdt.

We now appeal to a well-known iteration scheme cf. [T], to conclude from (35) that

\f 11/2
ess supv <C \ v2dxdt
R(l/1) [Jr(1)

Recalling that v = v + A and v = (u - M)+, the conclusion of the theorem follows

by rescaling.    □

3.2 REMARK. The reader will have no difficulty in verifying that Theorem

3.1 remains valid if the notion of the solution to the obstacle problem is taken in

the sense used by [MP, P], or [BM] as discussed in (18), §1. With this notion of

solution, if one considers the test function <p = n2[u- (M + k)] + , then (25) becomes

an equality and the remainder of the argument remains essentially unchanged.

We now will establish the fine continuity of subsolutions of (19) by employing a

technique introduced in [GZ2].

3.3 THEOREM. Let u E VK1,2(fi) be a bounded weak subsolution (supersolution)

of (19).  Then for each zq E fi and e > 0, the set

fi n {z: u(z) < u(z0) - e}    (fi n {z: u(z) > u(z0) + e})

is thin at zq.

PROOF. We will only consider the case in which u is a subsolution, the other

case being treated by an analogous argument.

Because u is a subsolution, we have from Theorem 2.2 that u is upper semicon-

tinuous and therefore the set

E(z0,e) = fin{z: u(z) < u(z0) - e}

is open. Consider the parabolic cylinder R(r) as described in (21) and let K be any

compact subset of R~(r)C\E(zo,e). Consider the thermal capacity of K, capT(K),

as defined in (14) and let u denote the equilibrium measure of K. Let c = E * v

denote the corresponding equilibrium potential. Let p: Rn+1 —► R1 be a smooth
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function with compact support such that j p(z)dz = 1. With p as a modifier, let

v$ = ps * v and Cg = E * vg. Since R~ (r) n E(zo, e) is open we may choose 6 > 0

so small that

(36) spt v6 C R" (r) n E(z0, e).

Let 1 < ry < r2 < 4/3 and let n be a smooth cutoff function such that spt n c

B(xo,r2(r/2)), n = 1 on B(xo,ri(r/2)) and |Vn| < C/ro- We will consider n as

defined on Rn+1, independent of i.

Fix ty such that to~\r2 < ty < to — j^r2 where t0 — ̂ r2 is the lower t-coordinate

of R~(r/2). We may choose 6 sufficiently small so that

(37) cs(x,t)=0     iort<ty.

Let w = [u — (u(zq)—e)]+ and define f(w) = p(r)—w2, where p(r) = sup{w(z): z E

R(r)}. Note from Theorem 2.1 that p(r) —► e as r J. 0, w = 0 on E(zo,e), and that

f(w) > e on E(zo,e).

Let H = d/dt - A denote the heat operator. For almost all t2 E (ty,t0 — \r2),

we have that

(38) ^

f2 f(Hc)(r1f(w))dxdt= f2 f ctr,f(w)dxdt+ [' f Vc ■ V(r, f (w)) dx dt
Jt,   J Jt,   J Jt,   J

= / cnf(w)(x,t2)dx- /      / c(r)f(w))tdxdt

+ j     fvc-V(nf(w))dxdtfcnf(w)(x,t2)dx

/*2    r rti    r
I ncf'(w)wt dxdt+ Vc ■ V(r)f(w)) dx dt

because n is a function of x only.

Now define a test function p = ncf'(w) E Wr)'2(Qt)-   Then, because u is a

subsolution and p < 0,

f 2 f{mf'{w))ut +A-Vp-Bp>0

or

/tl     f ft2     c
/ ncf(w)tdxdt- /     / A(x,t,u,Vu) ■ V(ncf'(w))dxdt

<- B   (ncf'(w))dxdt,

that is,

- f2 I ncf'(w)wtdxdt- f * f(r]c)A-Vwf"(w) + A-V(nc)f'(w)dxdt

< - f2 f B-(ncf'(w))dxdt.
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Because we have assumed that u is bounded, we may use the structure (1) with

the understanding that the terms involving |u| are incorporated in the constants

a2,b2, and c2. Thus, we have

/t2     r ftl     f
\ rjcf'(w)wtdxdt + c I        (nc)[\Vu]2 - c2]dxdt

-2 wA-V(r)c)dxdt

<- f2 fB-(r]cf'(w))dxdt.

Thus,

/ti     c rt2     r

/ ncf'(w)wtdxdt + c /     / (nc)[\Vw]2 -c2]dxdt

<f    f w[]Vw] + a2]]V(nc)]dxdt

+ j2 J[]Vw]+b2]]r1cf'(w)\dxdt

<C nw[]Vw]+a2]]Vc\dxdt + C cw[]Vw\ +a2]]Vr)]dxdt

+ c []Vw] + b2][ncw]dxdt.

Hence, by several applications of Young's inequality and using the fact that w is

bounded,

-/ ncf'(w)wtdxdt + ^ (r)c)\Vw\2 dxdt

-if' /|Vc|2dxdt + C£H [' fn2[]Vw] + a2]2dxdt
(39) Jtl   J   t2 Jtl  J

+ C(w) f2 f c]Vw]]Vn]dxdt + C£(w) f    f n2]Vw]2 dxdt

/ti   f /■*2    r
n2w2dxdt + C(w) I nc+ ]Vn]dxdt.

Also,

(40) J[cvf(w)](x, t2) dx<^J c2(x, t2) dx + C£ j[n2f(w)2](x, t2)dx

and

f2 fvc-V(nf(w))dxdt

(41) - I / V |Vf|2 dxdt + Cef2f |V(ry/(u.))|2 dxdt

-ifI'v?'2 dx dt+Ce 12 /"Vr?|/(w)l2 + [2^i Vwii2 dx dt-
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Hence, from (38), (40), (39) and (41),

f f(Hc)(Vf(w))dxdt

< \\jc2(x,t2)dx + j2 j|Vc|2 dxdt]

+ C(e,w) \f2 fn2]Vw]2+f2 f c]Vr)]\Vu\   + C f ' f nc + ]Vn\

+ j n2f(w)2(x,t2)dx + C(w) f 2 j n2dxdt

+ C(w) f 2 ( n2w2 dxdt+ f2 f | V??|2/H2 dx dt.

We now consider all but the first two terms in the above inequality; that is,

all terms whose coefficients are not e/2. We will determine the rate at which

these terms approach zero as r j 0. All of these terms except those involving

|Vu|, |Vuj|, and the last term are 0(rn+1). In fact, they are all 0(rn+2) except

the term involving |Vn|. The remaining terms, [Jt2 /n2|Vu>|2,/( 2 f ffivl l^u|],

and jt 2 / | V?7|2/(ii;)2 can be estimated by technique involving the weak Harnack

inequality [T2]. This technique was one of the main contributions of [GZ, Theorem

2.1] in the elliptic case and of [Z, Theorem 4.2] in the parabolic case. Thus, it follows

there are constants C and A depending only on the structure (1) and the bound

for u such that the essential supremum over t2 E (ty,ty + j§r2) of these terms is

bounded above by

(42) C[p(r)-p(r/2)+ar]r".

Next, we estimate the terms involving e in (41). Using the fact that eg < 1, note

that

CapT(/0 = vg(Rn+1) >  f 2 [(Hcg)cgdxdt

(43) U        t2

= \ f $(x,t2)dx+ j' ( \Vcg]2dxdt.

Moreover, since n = 1 on a neighborhood of K, we have for all small 8 > 0,

j2 !(Hcg)(nf(w))dxdt> j' f(Hc6)(n(p(r)-w2))dxdt
(44) Ju   J Jt,   J

> p(r)capT(K) - / (Hcg)(r)w2)dxdt.

Now Hcg = vg and 8 was chosen so small that spti^ C E(zq,e).  But w = 0 on

E(zo,e) and therefore the last integral above is zero. Hence, from (44),

(45) J'  f(Hcg)(r1f(w))dxdt>£capT(K).

Thus, from (42), (43), and (45)

(46) (£/2)capT(K) < C ]p(r) - p(r/2) + ar] rn.
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Because K is an arbitrary compact subset of R~(r) fl E(zo,e) and because of the

inner regularity of thermal capacity, it follows from (46) that

.caPT[i?-Wn^0,g)]^^)_/z^+Qrj

It is a simple matter to verify that

So   [Mr)-p(0+ar]^<oo,

and thus, the proof is complete.    □

3.4 DEFINITION. A function u: fi —* R1 is said to be finely continuous at

zo E fi if there is a set E such that E is thin at zq and

lim        u(z) = u(zo)     where  R~ = I) R~(r).

z€(n-E)nR~ r>u

3.5 COROLLARY. Let u E VF1,2(fi) be a bounded weak subsolution or superso-

lution of (19).  Then u is finely continuous at each point zo E fi.

PROOF. Consider the case where u is a subsolution. From Theorem 3.3 we have

that fi fl {z: u(z) < u(zo) — £} is thin for each e > 0. Let {e^} be a decreasing

sequence tending to 0 and let Ei = fi fl {z: u(z) < u(zo) — £i}- From Lemma 2.3

there is a sequence of real numbers {r^} —► 0 such that E = Ui^i E% ̂  R~(ri) ls

thin at zo- Now suppose that Zi ^> zo, Zi E (fl — E) f)R~. For each positive integer

jo there exists a positive integer io such that if i > io, then Zi E R~(fj) for some

j > io- Thus, Zi £ Ej. This implies that u(zi) > u(zo) — £j > u(zq) — £j0 for all

i > io- Consequently,

liminf     u(z) > u(z0)
Z—.Z0

z€(n-E)r\R~

and the conclusion follows with reference to Theorem 2.2. In case u is a superso-

lution, apply the preceding argument to — u which is subsolution to an equation of

the form (19).    □

We now discuss the condition on the obstacle rp that will ensure the continuity

of the solution as discussed in the introduction.

3.6 DEFINITION. Let rp: Rn+l —► R1 be defined at all points except perhaps for

a set of capacity zero. For zq E fi, let rp(r) = ess sup{rp(z): z E R(zo,r)} where

the ess sup is taken in the sense of capacity. Let rp(zo) = limrjo V>(?")- ̂ e say that

rp is upper regular at zo (in the fine topology) if there is a set A which is not thin

at zo such that

(47) lim rP(z) = rP(z0).
Z—.Z0

zeA

3.7 THEOREM. Let rp: Rn+1 -> R1 be upper regular at z0 E fi. Let u E

iy1,2(fi) be a solution of the obstacle problem (15) and (16). Then, u is continuous

at Zq-

PROOF. Since u is a weak supersolution of (19), u is locally bounded below and

from Theorem 3.1 that u is locally bounded above.   Thus, from Theorem 2.2 we
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have that u is lower semicontinuous on fi. Therefore,

(48) lim 'miu(z) > u(zq).
Z—.ZO

zen

Also, we conclude from Corollary 3.5 (again using the fact that u is a supersolution)

that there is a set A thin at zq with

(49) lim     'miu(z) =u(zo).
Z—.ZO

ze(n-A)

In view of (48), if u were not continuous at z0, we would have, for some e > 0,

(50) lim supu(2) > u(zo) + 2e.
Z—>Zo
zen

Because rp is assumed upper regular at zo, it follows that

U(£) = {z:rP(z)>rP(zo)-£}

is not thin at Zo- Consequently, there is a sequence {rj} —► 0 such that

(51) CapT[(V-A)nU(£)C\R-(zo,rJ)] >0

for j = 1,2,_Since u > rp everywhere on fi except for a set of capacity zero, it

follows from (49), (50) and (51) that u(zo) > ip(zo) ~£- Choose r0 > 0 and M such

that rp(ro) < rp(zo) + £ and V>(r0) < M < rp(zo) + £ < u(zq) + 2e. It follows from

Theorem 3.1 that

\f 11/2
(52) ess sup(u - M)+ < C    f      [(u - M)+]2 dx dt        +m(r)

R(r/2) (JR(r)

for all r < ro. First, suppose that u(zo) < Af. Since (u(z) — M)+ < \u(z) — u(zo)|,

it follows from Theorem 2.2 that the right side of (52) tends to zero as r J. 0.

Therefore,
lim supu(^) < M < u(zo) + 2e

Z—.ZQ

zen

contradicting (50). If u(z0) > M, then (52) holds with M replaced by u(z0) and

we conclude ess supR/r/2-,(u — u(zo))+ —* 0 as r J. 0. That is

lim supu(z) < u(zo),
Z—.ZO

zen

again contradicting (50).

4. Estimates of the modulus of continuity. In this section we will obtain

estimates of the modulus of continuity of the solution u in terms of the obstacle rp.

For this purpose, throughout this section we will consider a point zo E fi such

that

(53) u(zo) = hm suprp(r) = rp(zQ).
r—>-0

Let

p(r) = sup[u(z) - rp(r)]+,    X(r) = inf [u(z) - rp(r)]+,

(54) RW *!r)

u(r) = sup u,    u(r) = inf u,    rp(r) = ess sup rp,
R(r) R(r) R(r)

and define v(z) = p(r) - [u(z) - rp(r)]+.
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Note that (53) is the only case of interest, for if u(zo) > rp(zo),the lower semi-

continuity of u would imply, for r sufficiently small and some open set U containing

zo, that u(z) > rp(r) for all z E U. Then, u becomes a weak solution in U and is

therefore Holder continuous there, cf. [AS, T2].

4.1 LEMMA. There are constants C and C depending only on the structure (1)

and r in (22) such that

u(r) - u (T-\ > C /        [p(r) - [u(x, t) - rP(r)]+] dx dt - Cr
V2/ JR'(r)

for all r such that R(r) C fi.

PROOF. For each number fc such that 0 < k < p(r), let w = (v — k)~ and define

a test function ip by p = —r)2w. Because of the restriction on fc, it is clear that

w < u — rp and therefore <p is admissible in (16) whenever n E C0x(R(r)). The

development proceeds exactly as in (25) and (26) leading to (28) with (v — k)+

replaced by (v — fc)-. We wish to reformulate (28) where now w = (v — fc)-

so that the term involving A does not appear. This proceeds exactly the same

way as in the proof of Theorem 3.1. Thus, first rescale (28) by defining v(x, t) =

v(xo + rx,to + r2)r~1 and fj similarly. Then w = (v — k)~ and fj satisfy (28) in R(l)

provided r < 1. As in the proof of Theorem 3.1, we will not invoke the notation

v, w, and fj but rather assume that (28) has been rescaled and all integrals are taken

over R(l). Now with the understanding that (28) has been rescaled, let t> = v + A

and proceed as in Theorem 3.1. We then find

(55)

// r]2(v-ky vtdxdt+- n2]Vv]2dxdt
J JR(l)D{v<k] 3 J JR(y)r\{v<k}

<C fj [(v-k)-]2(r,2 + ]Vn]2)dxdt + Ck2 ff n2 dxdt.
J JR(i)n{v<k} J JR(i)n{c<fc}

Note that fc is now required to satisfy 0 < fc < p(r)r~x + A.

From elementary considerations, we may assume that i; > £ > 0. The results

may then be extended by taking e —* 0. Let T > 0, 7 > 0 and put rlr = inf{T, ii},

rjT = rlffn. If nr is substituted for n in (55), we obtain

(56)

- ff vpV (fc - v)vt dx dt + \ ff 4V|V?;|2 dxdt
JjR(l)n{v<k} 3 J JR(y)n{v<k}

< C ff [4V +l2vp'2\VvT\2n2 + vp]Vr,]2][(rl - k)']2dxdt
J JR(l)d{v<k}

+ C ff vpV2[(v - k)~}2 dxdt + Ck2 ff vpn2 dxdt.
JJR(l)n{v<k} JJR{l)n{v<k}

Let L = L(r) = p(r)r_1 + A and 0 > 2. We would like to multiply both sides of

inequality (56) by k~2l~0^1 and integrate with respect to fc from 0 to 00. However,
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fc is restricted by 0 < fc < L. We thus proceed in the following way. Note that

- f°° ff       n2vp(k-v)vtk-2'<-l}-1dk
Jo     JJ{v<k}

+ \f°° ff        r/^IVtffc-2^-1 dk
3 io     JJ{v<k}

= - f    ff        n247(fc-i;)j}tfc-2^-/?-1dfc
Jo    JJ{v<k}

+ \fL ff        tfvpWvfk-^-0-1 dk
3 Jo   JJ{v<k}

- f°° ff        r,2vp(k - tO^fc-2^-1 dk
Jl     JJ{v<k)

+ \T II        n2vp\Vv\2k-2i-0-1 dk
3 Jl   JJ{v<k)

= Iy+I2 + h + I4.

The last two integrals, J3 and I4, can easily be evaluated since v < L. Thus,

I3= - (°° ff        n2vp(k - rl^tk-^-0-1 dk
Jl   JJ{a<k}

= -f°°ff      n2vpvtk-2^-0 dk
Jl   JJ{v<k}

+ l°° II        tfvpvvtk-2-!-0-1 dk
Jl   JJ{v<k]

£-2-y-/3+l     ff
=-// 772Vr/?vt dxdt

27 + /?-l J J{V<L)       T

l~2i-0 rr       n 2__ J J
+ -——3-// n'vjJvvtdxdt

27 + P   JJ{v<L)

= -CyLL'2''-0 ff        n2vpvtdxdt
J J{v<L}

,  LL-^-O  ff 2.2^   ,    ,H-/ / 77 Vrr'vtdxdt
21 + f3   JJ{,<L}      T

+ -——5-// nivT'vvtdxdt
27 + /? JJ{v<L}

where

C * 1
1      27 + /3-l      27 + /3"
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Hence,

I3 + I4 = CyL-2"*-0 ff        n2vpvt dx dt
J J{v<L}

£-2-y-/3    ff
-  r,    , a   / / V2vp(L - v)vt dxdt

27 + P   JJ{v<L)

The integrands in the integrals Iy and I2 can be estimated by (56) and therefore

h + h < C ̂  If        [r,2vp + 7247_2|V^IV + 47|Vr?|2]
Jo    JJ{v<k}

■[(v-k)-]2k~2-'-0-1dk.

Thus, we have so far,

- f°° ff        n2vp(k - v^tk-2"1-0-1 dk
Jo     JJ{v<k)

+ 1 I" II        r724>|Vi,|2fc-2^-1 dk
3 Jo    JJ{v<k}

^C I    II        tfvP + l2vp-2]Vv]2n2 + vp\Vr,\2][(v - fc)-]2fc-2^-1 dk
Jo    JJ{v<k}

-CyLL'2''-'3 ff        n2vpvt dx dt
J J{v<L}

£-2-1-0    ff
~    1~±R    / / 13j>P (L ~ »)% dX dt

27 + P   JJ{v<L}

+ -- // 7724'r|V7;|2dxdf.
27 + /? 3jJ{€<L}       T

Using again (56), the sum of the last two terms is estimated above by

C^TJ f//fi(1)[72^2|v"V + ̂ |v??|2 + "'^"L)~?

= I" II     h2vp-2]Vrl]2r,2 + vp]Vn\2 + v2vp][(v - L)-]^-2^-1) dk.
Jl   J JR(y)
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Thus, we have

- f°° ff        n2vp(k - fj^tk-2^0-1 dk
Jo      J J{v<k}

+ 1 I" If        r,2vp]Vv]2k-2^-0-1 dk
3 Jo     JJ{v<k}

<C ^ II     [724'Y"2|V«|2^2 + 4Y|Vt?|2 + 7724^][(t; - fc)-]2fc(-2^-1> dk
Jo   JJr(i)

+ C f°°ff     [724'y-2|V7;|2772 + vp\Vn\2 + n2rlp][(v - fc)-]2fc(-2^-1) dk
Jl J Jr(i)

-CyLL'2^-0 ff        n2vpvtdxdt
JJ{v<L)

= C r ff     [724'7-2|Vt)|2772 + vp]Vrj]2 + V2vp][(v - fc)-]2fc(-2^-/5"1) dk
Jo     J JR(l)

-Cy(21 + p-l) f°° ff      n2vpntk-2~i-0dk.
Jl   JJr(i)

Now let T —► oo to obtain

(57)  ^

-ffl        r12v2'1(k-v)vtk-2'<-0-1dk
Jo      JJ{v<k]

+ \T II        rfv^Vv]2^2^-0-1 dk
3 Jo      JJ{v<k}

<C r ff        [727j2-?-2|Vf)| V + tj^IVt/I2 + n2v2^][(v - fc)-]2fc(-2^-/3-1) dfc
Jo     JJ{v<k}

We now analyze the terms in the above inequality that involve |Vtj|2. The term

on the left becomes

,    1    m //     n2\Vv\2v-0dxdt
3(27 + /3)7yR(1)     '

whereas the term on the right can be estimated above by

—^C- //      <?2|Vt,|2tr"dxdt.
21 + p-2jJR(l) "      '

By taking 7 sufficiently small, this term can be absorbed by the left side of (57).

The term on the left side of (57) involving vt is equal to

i^hff     n2(v2-0)tdxdt,     if/?>2,
1 - P J Jr(i)

Cy ff     n2(logv)t dxdt,     110 = 2.
J Jr(i)
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^hus, (57) now yields

Kill     n2(f(v))tdxdt + -^—ff     n2v-0]Vv\2dxdt
,58)       J J mi) 2i + PJJR(i)

<CyC ll     (r,2 + ]Vr,]2)v2-0dxdt+^- fj     v]Vt]v2~0dxdt
JjR(l) 21+1JJr(1)

where f(v) = tj(2-/?)/2 if 0 > 2, f(v) = logt; if 0 = 2, Ky = Cy/(2 - 0) if 0 > 2,
and Ky = Cy if 0 = 2. Simple estimates of the constants involved and an argument

similar to that used in Theorem 3.1 reveal that (58) can be written as

sup    f'n2f(v(x,t))2dx+ f2 f ]V(nf(v))]2dxdt
te(t,,t2)J Jt,   J

< C\0] j'2 j(n2 + ]Vn]2 + 2n]r,t])f(v)2 dxdt

when 0 > 2 and as

j 2 jn2f(v)tdx + K f 2 jn2]Vf(v)]2dxdt

<C f 2 f n2 + \Vn\2dxdt

when 0 = 2. K and C are constants that depend only on the structure (1).

These inequalities are precisely of the form needed to implement the Moser iteration

scheme which yields weak Harnack inequalities, cf. [AS,T2]. Thus, we have

ess inf v > C I        vdxdt.
«(l/2) 'fl.(l)

By rescaling, we have that

u(r) - u(r/2) > ]u(r) - rj>(r)] - ]u(r/2) - rp(r)] +

=    inf   v>C /        [p(r) - [u(x,t) - rP(r)]+] dxdt - Cr,
R(r/2) Jr'(t)

thus establishing the conclusion.    □

We now establish a similar inequality for [u — u(r)]. We continue to use the

assumption and notation introduced in (53) and (54).

4.2 LEMMA. There are constants C andC depending only on the structure (1)

and r in (22) such that

(59) u(^)-u(r)>C /       [u(x,t)-u(r)]dxdt-C'r
V2/ JR'(r)

for all r such that R(r) C fi.

PROOF. The proof is almost identical to Lemma 4.1, but less complicated. Let

v(z) = [u(z) — u(r)] and for each positive number fc, let w = (v — fc)-. The test

function this time is defined as p> = rfw. Since p > 0, it is admissible in (16)

and the proof now proceeds as in Lemma 4.1 by multiplying both sides of (56)
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by k2l~0~1.   Since there is no restriction on fc, one may integrate the resulting

inequality from 0 to oo to obtain the desired result.    □

4.3 REMARK. Observe that Lemmas 4.1 and 4.2 remain valid if the notion

of solution to the obstacle problem as discussed in (18) had been adopted. In the

proof of Lemma 4.1, the test function p = -rj2(v — fc)- was employed. However,

it can easily be seen that (v — fc)- = [u — (p — k + rp(r))]+. This is clear if p = fc.

If p < fc, note that tj < fc if (u - 4>(r))X{u>$(r)} — A* — k. Thus,

(v - fc)- = (fc - v)x{v<k} = (k-p + (u- ip(r))x{u>i,(r)})X{v<k}

= (k-p+(u- ^P(r)X{u>M,(r)})X{u>n-k+iP(r)}

= (k- P)X{u>ix-k+,p(r)} + (u- 1p(r))X{u>ii-k+ij>(r)}

= [u- (p - k + rp(r))]+.

Hence, we could have used the test function <p = n2[u — (p — k + rp(r)]+ as allowed

in (18) to arrive at (28) with (v — fc)+ replaced by (v — fc)-. Similar considerations

show that Lemma 4.2 could be achieved with this alternate notion of solution.

We now establish an estimate for the modulus tj(r) = u(zo) — u(r).

4.4 THEOREM. Let u E W1>2(Q) be a solution as in (15) and (16). Let A C fi

be a set that is not thin at zo and such that

lim rp(z) = rp(zo).
Z-+ZQ

zeA

Let

rp(r, A) = ess ini{rp(z): z E R~(r) fl A}     and      e(r) = rp(z0) — rp(r,A) +r

where the ess sup is taken in the sense of capacity.  Then there exist constants Cy

and C2 such that for sufficiently small s > 0,

«M**> + tt-W-*(^)*)
whenever r < s/2.

PROOF. Notice that capT[i?-(r) n A] < capT[A(zo,£(r)\ where A(z0,£(r)) =

R~(r) fl {z: u(z) > u(zo) — £(?")}• We proceed as in the proof of Theorem 3.3,

the only difference being that this time u is a supersolution. Thus, let k(r) =

rp(zo) — £(r) and define w = (u — k(r))~. Therefore Vu = —Vwx{u<k(r))■ Let

m(r) = supR(r) w and define f(w) = m(r)-w2. Note that / = m(r) on A(zq, e(r)).

As in the proof of Theorem 3.3, define a test p = ncf'(w) and proceed to obtain

an estimate similar to (44):

(60) ^capT(R~(r)nA) < ^MCaPr(A(z0,£(r)))

< C[m(r) - m(r/2) + ar]r".

Referring to [GZ, Theorem 2.7], we see that (60) implies that there exist constants

Cy and C2 such that for sufficiently small s > 0,

(61) m(r)<Cyexp(-C2jSA(t)j)
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whenever r < s/2. Here

i/jt,    __,       //r(t)nA\
A(i) = C-1caPr (-^-j •

Thus, we obtain

u(zo) - u(r) = rp(zo) - u(r) = m(r) + e(r),

and the conclusion is established.    □

We now are able to establish a bound for the modulus ui(r) = u(r) - u(zo). In

the following it is assumed that (53) is in force.

4.5 THEOREM. Let r0 = sup{r: R(r,z0) = R(r) C fi}. Then for r < |r0 and

a < 1, there are positive constants Cy,C2, depending only on the structure (1) and

t in (22) and 8 > 0 which depends on a as well such that,

w(r) < Cy    (r/r0)6 Q(r0) + rp~(p) - <P(z0)

( „  I"        [R~(t)nA\ dt\

whenever a > 0 ia aufficiently amall and p < s/2. Here, p = p(r,r0) = rarQ~a and

A ia aa in Theorem 4.4.

PROOF. Appealing to Lemma 4.1, we have

u(r) -u(L)>C -f       p(r) dxdt- -f       [u(x, t) - rp(r)]+ dx dt - Cr.
y2J JR'(r) JR'(r)

This may be written as

[u(r) - u(z0)] - [u(r/2) - u(z0)] > C[(u(r) - u(z0)) - (rP(r) - rP(z0))]

- -f       [u(x,t)-rP(r)]+dxdt-C'r
JR'{T)

or as

«(r/2) < (1 - C)Q(r) + C"[rP(r) - rP(z0) + r]

+ f        [u(x,t) -rp(r)]+ dxdt.
jR'(r)

Observe that u(r) < rp(r) for otherwise u(^o) ^ u(r) > rp(r) > rp(zo) = u(^o)-

Hence, by Lemma 4.2,

f       [u(x,t)-rp(r)]+dxdt<f       [u(x,t) - u(r)]dxdt
Jr*(t) Jr-(t)

< C[u(r/2) - u(r) + r]

= C[u(r/2) - u(z0) + u(z0) - u(r) + r]

< Coj(r) + Cr.

Thus,

w(r/2) < (1 - C)Q(r) + C"[rP(r) - r}(z0) +r]+ Cu(r) + Cr.

The result now follows from Theorem 4.4 and [T2, Lemma 2.2].     □

By combining the results of Theorems 4.4 and 4.5, we obtain the following bound

on the oscillation w(r) = u(r) — u(r). With the same hypotheses as Theorem 4.5,

we have the following corollary.
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4.6 COROLLARY. For r < |ro and a < 1, there are poaitive conatanta Cy and

C2, depending only on the atructure (1) and r in (22) and 8 > 0 which depends on

a as well such that,

w(r) < Cy   (r/r0)6to(ro) + (r}(p) - ±(p, A))

( „   ['        i/R-(t)nA\ dt\
+ ̂ -C2J2pCapT(-1^-)J)+p

whenever s > 0 is sufficiently small and p < s/2. Here, p = p(r,ro) = rarQ~a and

A is as in Theorem 4.4.

In particular, if rp(r) - rp(r) < Cr0 for some 0 > 0, then A can be taken as Rn+1

and therefore there exists 8 > 0 such that co(r) < Crs.
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