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FIELD THEORIES IN THE MODERN
CALCULUS OF VARIATIONS

ANDRZEJ NOWAKOWSKI

ABSTRACT. Two methods of construction of fields of extremals ("geodesic

coverings") in the generalized problem of Bolza are given and, as a conse-

quence, sufficient conditions for optimality in a form similar to Weierstrass'

are formulated. The first field theory is an extension of Young's field theory—

"concourse of flights" for our problem; the other describes a nonclassical treat-

ment of field theory which allows one to reject the "self-multiplier restriction".

1. Introduction.  Consider the generalized problem of Bolza:

,6

(1) minimize J(x,u) = /   L(t,x(t),u(t))dt + l(x(b))
Ja

subject to

(2) dx(t)/dt = f(t, x(t), u(t))     a.e. in [a, b],

(3) u(i)EU(t)     a.e. in [a,b],

x(a) = c, where c is any fixed point in Rn, x: [a, b] —* Rn is an absolutely continuous

function, u: [a,b] —► Rm is a Lebesgue measurable function (control function),

U: [a,b] —> Rm is a multifunction (i.e. U(t) is a subset of Rm for each t in [a, b]),

L: [a,b]x Rn x Rm -» R, f: [a,b] x Rn x Rm -► Rn, and I is allowed to assume

the value +00, i.e. I: Rn —> RU {+00}. In such a setting, this problem of Bolza

unifies many problems of the calculus of variations and optimal control problems.

The existence of a solution for the generalized problem of Bolza was studied by

R. T. Rockafellar in [11], necessary conditions were developed by F. H. Clarke in

[4, 5] and regularity properties of solutions by F. H. Clarke and R. B. Vinter in [7].

In [13] local sufficient conditions for optimality were developed by a method which

uses a canonical transformation of the "Hamiltonian inclusion". The existence

of such a transformation is guaranteed by assuming the existence of an auxiliary

function satisfying a certain inequality which is near the classical Jacobi conditions.

This paper aims at giving two methods of construction (from trajectories satis-

fying necessary conditions) of fields of extremals (often called "geodesic coverings")

for our problem and, as a consequence of that, at formulating sufficient conditions

for optimality in a form similar to Weierstrass'.

It is well known that in the classical setting of our problem (if we want to allow

for constraints), the classical field may not, in general, exist [1]. The modern treat-

ment of this case by Griffiths in [8] extends essentially the classical theory, however
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the smoothness and "nondegeneracy" of the problem are supposed there. Unfortu-

nately, in modern control theory most problems do not satisfy these assumptions.

Young, in his fundamental work [12, Volume II, Chapter II], described a new

type of field which he called "concourse of flights", that is more applicable to

contemporary problems; he presented it in the context of an autonomous problem

of least time. Yet, it still contains an undesirable multiplier restriction (strong

normality assumption of the problem). He wrote [12, p. 265]: "The latter (this

restriction), according to the experience of virtually everyone who has worked in the

field, may well be unavoidable in a sufficiency theory", and further: "It almost seems

that the extension of the standard classical method to problems with constraints

necessitates this restriction".

In §3 we present Young's theory in the context of our problem (with the multiplier

restriction). In §4 we describe a nonclassical treatment of field theory which joins

Young's ideas and certain suggestions of Griffiths [8] and also allows one to cast

off the "multiplier restriction". Thus this paper completes the program of studying

the generalized problem of Bolza from the point of view of standard variational

methods which are often thought of as "largely unavailable" in optimal control

theory (see e.g. [13, p. 562]).

Since we shall base ourselves on [12], we use most of its original notions.

2. Notions and general assumptions. Let £? be the collection of Lebesgue

measurable subsets of [a, b] and let 38 be Borel subsets of Rm. L x B denotes the

cr-algebra of subsets of [a, b] x Rm, generated by products of sets in 2? and £$. In

order for problem (l)-(3) to make sense, we suppose the following basic hypothesis:

For each sin Rn, the functions (t, u) —► L(t, s, u), (t, u) —► f(t, s, u)

are L x B-measurable. There are functions ky,k2 in L1(a, b) such

that, for t in [a,b], u in U(t) and sy,s2 in Rn,

(HI) \L(t,8y,u)-L(t,82,u)\   <  ky(t)]Sy  - S2\,

]f(t,Sy,u) - f(t,82,u)\ < k2(t)]sy - S2\.

The set {(t,u) E [a,b] x Rm\u E U(t)} is L x B-measurable. The

function I is lower semicontinuous and not identically +00.

If u(t) is a control function subject to (3) and x(t) is an absolutely continuous

function corresponding (by (2)) to u(t) and, for them, L(t,x(t),u(t)) is summable

and l(x(b)) is finite, then the pair x(t),u(t) will be called admissible and x(t) is an

admissible trajectory.

An admissible pair x(t),u(t) defined in the appropriate subinterval of [a, b] with

right end at b will be termed a line of flight (briefly l.f.) if it satisfies the following

principle (the maximum principle, see [5, 6]): there exist along x(t) a conjugate

vector function y(t), absolutely continuous in t with values in Rn, and a number

y° < 0 such that |y(£)| + \y°\ is nonvanishing and

(4) -^-Ey(t)dsf(t,x(t),u(t))+y°dsL(t,x(t),u(t))    a.e.,

y(t)f(t, x(t), u(t)) + y°L(t, x(t), u(t))

= sup{y(t)f(t, x(t), u) + y°L(t, x(t), u)\u E U(t)}     a.e.,
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(6) (~y(b), y°) is normal to epi I at the point (x(b), l(x(b))).

(The notation dsf refers to the generalized Jacobian of the function s —> f(t, s, u(t))

and, similarly, for dsL (see [3, 6]); epil means the epigraph of /; ydsf is matrix

multiplication; relation (6) is a general form of a transversality condition).

We term a canonical line of flight (briefly c.l.f.), a trio x(t),y(t), u(t) of functions

and a number y° such that x(t),u(t) define l.f. and y(t),y° are the corresponding

conjugate function and the number y° satisfying (4)-(6). In a usual way we define

an open arc of l.f. or of c.l.f.

The reader who wants to avoid problems of nonsmooth analysis, which are not

an essential subject here, may read this paper under the additional assumption that

the functions s —► L(t,s,u), s —* f(t,s,u) are C1. Then the sets dsL and dsf are

single-element sets whose elements are the derivatives Ls and /s, respectively.

To study any family of arcs of l.f. depending on a parameter a, let us define on an

open set G C Rp (Rp may be of some other dimension than Rn) a pair of continuous

functions t~(o~),t+ (a), a < t~(a) < t+(a) < b, a E G. We assume that t+(a) is C1

in G. We further suppose that G is a projection of a certain set G C Rp+k, k > 0,

whose elements will be denoted by (a, p). G does not have to be necessarily open;

instead of that, we assume that the operation of projection is standard (see [12,

p. 266]). Let 5" = {(t,a)\t = t~(a) > a, a E G}, S = {(t,a)]t~(a) < t < t+(a),

a E G}, S+ = {(t,a)\t = t+(a) < b, a E G}, [S] = S~ U S U S+. Similarly, we
denote by S*~, S* ,S*+ the sets of (t,a, p) for which t satisfies the same conditions

as in S-,S, S+, respectively, and (a, p) E G; [S*] = S*~ U S* U S*+.

In what follows we shall take into consideration not all l.f. but only those which

are subject to certain conditions imposed upon them.

3. Young's theory of the field—concourse of flights. In this section we

present Young's approach to the field from [12] for problem (l)-(3). To this effect,

we assume, as is done in the classical theory of the field and in [12], the normality

hypothesis:

(HN) the multiplier y° in (4)-(6) is equal to -1.

Further, denote by T c Rn+1 a set covered by graphs of trajectories of l.f. which,

in the sequel, may be reduced to a smaller one. For each point (to,xo) in T, we

write I (to, x0) for the value of

(7) f L(t,x°(t),u°(t))dt + l(x°(b))
Jto

where x°(t),u°(t) is an l.f. such that x°(t0) = xo- In general, the map (t,x) —►

I(t, x) in T may be a multifunction; this is why we exclude from our further consid-

erations (see [12, p. 266]) those l.f. which do not admit of the following hypothesis:

(H2) the map (t,x) —► I(t,x) is single-valued in T.

We shall say that a rectifiable curve C lying in T is bounded if I(t, x) is bounded

on the graph of C, i.e. "along" C.

For (^Oi^o) hiT, Y (to,xo),U (to, xo) denote the sets of values of all those y(t),u(t)

at to for which x(t),y(t),u(t) is a c.l.f. and x(t0) = xq- It is natural to expect that
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Y(t,x) and U(t,x), (t,x) E T, may not be single-valued. Hence, by an admissible

pair of functions

(8) y(t,x) EY(t,x),    u(t,x)EU(t,x),    (t,x) ET,

we shall mean single-valued functions y(t, x),u(t, x) in T such that, for each (to, xq)

E T there is a c.l.f. x(t),y(t), u(t) for which x(to) = xo, y(to,x(to)) = y(to),

u(t0,x(tQ)) = u(tQ).

Up to now, the basic tool for studying old and new "fields" has been the Hilbert

integral in its old and new forms (see e.g. [12, Volume I, Chapter I, Volume II,

Chapter II; 10]). Thus, on the class of bounded rectifiable curves C lying in T and

for admissible pairs of functions (8) such that

dt dx
{L(t,x,u(t,x)) - y(t,x)f(t,x,u(t,x))}—+y(t,x) —

are measurable functions of the arc length s along C, we define the functional

(called the Hilbert integral) by the curvilinear integral

(9)

/ {L(t, x, u(t, x)) - y(t, x)f(t, x, u(t, x))} dt + y(t, x) dx
Jc

= f '    {L(t(s),x(s),u(t(s),x(s)))
JO

dt dx
-y(t(s),x(s))f(t(s),x(s),u{t(s),x(s)))}—+y(t(s),x(s))—   ds

where t(s),x(s), 0 < s < sc, is the description of C. The rest of this section

will be devoted to the construction of a kind of "field" (Young's type of a field—a

concourse of flights) by means of our l.f. and c.l.f. for which the Hilbert integral just

defined does not depend on the choice of admissible pairs (8) and curves C C T

having the same ends.

Following [12, p. 271], we introduce a notion of an exact integrability of a set

or simply of an exact set. A subset T oi T will be called an exact set if, for

each bounded rectifiable curve CcT with end points (ty,xy), (t2,x2), having the

property that the expression [{L — yf}dt/ds + ydx/ds] at almost every point of C

takes the same value for all admissible pairs of (8), we have

/ {L(t,x,u(t,x))-y(t,x)f(t,x,u(t,x))}dt + y(t,x)dx
(10) Jc

= I(ty,Xy) - I(t2,X2)

for each admissible pair y(t,x) E Y(t,x), u(t,x) E U(t,x), (t,x) E T.

Spray of flights. First of all, we shall construct a family E of arcs of l.f. depending

on a parameter a, described by functions

(11) x(t,a),u(t,a),        (t,a)ES,

for which the study of the independence of the Hilbert integral is the nearest to

the classical considerations. By E* we denote a family of arcs of c.l.f. which cor-

respond to the arcs of E and which are obtained by giving with functions (11) the

corresponding function

(12) y(t,<r,p), (t,a,p)ES*.
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The definition of the functions x(t,a),y(t,a,p) will be supposed extended to the

sets [5],[S*]. The sets of pairs (t,x), where x = x(t,a) with (t,a) belonging

to S~,S,S+, [S], will be denoted by E~,E,E+,[E], respectively, and the sets of

values of triplets (t, x(t, a), y(t, a, p)) with (t, a, p) in S*~, S*,S*+, [S*] by E*~, E*,

E*+, [E*], respectively.

We write (when (t,a) E [S])

/b rb
L(T,a)dT,J   La(r,a)dr

for the expressions

L(t,x(t,a),u(t,a)),f(t,x(t,a),u(t,o)),

I(t+(cr),x(t+(a),a)), / L(r,a)dr + I+(a) = I(t,x(t,a)),
Jt

j La(T,o-)dT + L(t+(o-),o-)t+(o-) + I+(o).

The following hypotheses with those on t~(o),t+(a), G, G are fundamental for

our considerations and when they are satisfied, E is called a spray of flights and E*

a canonical spray of flights:

The functions L(t,a),f(t,a) are continuous in [5]; they have con-

tinuous derivatives La(t,a), fa(t,o-) in [S] and dL(t,x,u(t,a))/da,

df(t,x,u(t,o))/da for each fixed (t, x) in E, satisfying at x =

x(t,a) the relations

dL      dL(t,x,u(t,a))      ,  , .
(H3) -j£ = —     ga +Ls(t,x,u(t,o-))xa(t,a),

df      df(t,x,u(t,a))
a~ =-Z-+ fs(t,x,u(t,a))xa(t,a);
OCT OCT

for (t, a) in S, the functions s —> L(t, s, u(t, a)), s —* f(t, s, u(t, a))

are strongly differentiable at those x for which x = x(t, a) (if these

functions are of the class C1, then they are strongly differentiable).

,„., The function y(t,<r,p) is continuous in [S*], the function x(t,a) is

C1 in [S] and u(t,a) is Borel measurable in [S].

,„,< The maps S" —* E~, S —► E defined by (t,a) —> (t,x(t,a)) are

descriptive (see [12, p. 266]).

Note that the assumptions which are required for the existence of the classical

field in the "fixed endpoint problem" from the calculus of variations imply hypothe-

ses (H2)-(H5) and (HN).

For (t,x) E [E] C T, let Y^(t,x) C Y(t,x) and Us(t,x) C U(t,x) stand for the

sets of values of y(t,a,p) and u(t,a) at those (t,a, p) E [S*], (t,a) E [S] for which

x(t,a) = x. By yx(t,x) E Y%(t,x), Us(t,x) E U^(t,x) we denote an admissible pair

of functions y(t, x), u(t, x) defined in [E] and term them functions relative to E. An
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exact subset T C [E] for admissible pairs y(t,x) E Y^(t,x),u(t,x) E U^(t,x),

(t,x) E [E], will be termed a relative exact set.

Now, we shall study a spray of flights with the help of Hilbert integral (9). Thus,

assume we are given a spray of flights for which the set E+ is relative exact.

LEMMA 1. There exists a continuous derivative /+ in G, equal to —Lt£ — yx„

in S*+, i.e.

T+(a) = -L(t+(a),a)tt(a) - y(t+(a),a,p)xa(t+(a),a)

for (o~,p) in G.

PROOF. Let (to,o~o,Po) be any point of S*+. Let T be any sufficiently small

rectifiable curve in S+ which starts from (to, o-0) and has the description t = t+(aa)

where cra varies from ao to ay along a segment parallel to the a-axis of the rj-space.

Let C be the image of T in E+ under the map (t,a) —> (t,x(t,a)), with ends

(to, xo), (ty,xy). From the relative exactness of E+ we infer

I(t0,X0) -I(ty,Xy)

= I {L(t,x,u-z(t,x))-yT,(t,x)f(t,x,uT.(t,x))}dt + yT.(t,x)dx
Jc

(13) = j (L(t,a)-y(t,a,p(a))f(t,a)

+ y(t, a, p(a))xt(t, a))dt + y(t, a, p(a))xa(t, a) do

= I+(<Jo)-I+(o-y)

where p(a) is a continuous function suitably chosen (po = p(o~o)) according to the

standard projection. Since, along T, xt(t,a) = f(t,a), after dividing both sides of

the last equality in (13) by |<7o — °~i\, we obtain

lUlti + y^J^'^.
Fo - o~i I Jr \°~o - °~i I

By the continuity of Li+ +yxa on T, there exist limits, when rji —> ao, of both sides

of the last equality, i.e. we have -/+ = Lt+ -I- yxa at the point (to,oo,Po)- Since

T and (to,o~o, Po) were chosen arbitrarily, we conclude the assertion of the lemma.

LEMMA 2. Let T denote any rectifiable curve in [S] with (£n>0o) as the initial

point and (ty,oy) as the terminal one.  Then

I L(t,a)dt- I  /   La(r,<7)drJ da = I(to,x(t0,o-0)) - I(ty,x(ty,oy)).

PROOF. Consider in [S] the function

rb pb

Q(t,a)= l   L(r,a0)dT- /   L(r,a)dr
Jt0 Jt

which, by (H3) and Lemma 1, has a continuous derivative in [5]. We easily check

that Ldt— (ft La dr) da is an exact differential in the variable (t, a) of the function
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Q(t,a). Hence we have

j Ldt- ( j   Ladr\ da = Q(ty,oy) - Q(t0,a0)

= I(to,x(t0,Oo)) -I(ty,x(ty,Oy)),

as asserted.

COROLLARY 1.   In the set S*+ the quantity yxa + ft La dr is identically zero.

PROOF. Proceeding as in the proof of Lemma 1, we obtain from (13)

I(to,x(t0,a0)) - I(ty,x(ty,oy)) = / Ldt + yxa da

=      Ldt- I       ZCT dr J da+      lyx^+l       LG dr J J da.

Using Lemma 2 and continuing the proof of Lemma 1, we get the assertion of the

corollary.

LEMMA 3. Let C be a rectifiable curve lying, together with its terminal points,

in E~ or in E. Then C is bounded and there exist Borel measurable functions

yT,(t,x),u-£,(t,x) along C, relative to E. Furthermore, the functions yz(t,x),

L(t,x,uz(t,x)), f(t,x,u-z(t,x)) are bounded along it.

PROOF. By (H5), for each (t, x) of C, there exists a neighborhood on C that is

the image of some curve T. For those (t, x), we have

I(t,x)= I(t,x(t,a))=  / L(r,a)dr + I+(a).

Thus, by (H3), Lemma 1 and Borel's covering theorem, we find the boundedness

of C. The further assertions may be justified analogously as those of Lemma 25.1

of [12, p. 272] or by applying the measurable selection theorem from [2] to the

multifunction (t, x) —► {(t, a) E T \ x(t, a) = x} defined on C.

LEMMA 4.   On each arc of the canonical spray of flights E* the expression

fb~
(14) yxa+ j   Ladr

takes a constant value.

Let C be any rectifiable curve contained in E~ or E with the arc length de-

scription t = t(s), x = x(s), 0 < s < sc- Then the function I(t,x) restricted to C

becomes the function I(s) = I(t(s),x(s)) of the variable s in [0, sc], i.e. "along" C.

THEOREM 1. // the identity yxa + $* Ladr = 0 holds in S*~ or S*, then the

function I(s) is absolutely continuous along C and, for almost all s in [0,8c],

—7(a) = - {L(t(s),x(s),ux(t(s),x(s)))
(15) ds

dt dx
- yz(t(s),x(s))f(t(s), x(s), u-z(t(s), x(s)))}-^ - yx(t(a), x(s))~^

for each admissible pair yx(t,x) E Y^(t,x), uj-(t,x) E U-n(t,x), (t,x) E [E].



732 ANDRZEJ NOWAKOWSKI

Notice that expression (15) has the form similar to the classical one and, in

particular, to the original Weierstrass formula, but what is fundamentally different

in it is that the functions y-£(t,x),uj:(t,x) in (15) need not have unique relations

to the spray parameter a. This is exactly what allows one, already in the first step,

to avoid the restriction of a one-to-one covering of [E].

COROLLARY 2. Under the same assumption, the set E~ or E is a relative exact

set.

Although the problems considered in [10] and in this paper are a bit different,

quantities (14) here and (19) in [10] are, at least in their form, the same, thus the

proofs of Lemma 4, Theorem 1, and Corollary 2 are analogous to suitable proofs

of Lemmas 5.2 and 5.3 in [10] and, in fact, to the proofs of Lemmas 26.1 and 25.3

from [12, pp. 272-275] (see also the proofs of Lemma 4', Theorem 1', and Corollary

2' in §4).

A direct consequence of Corollary 1, Lemma 4, and Corollary 2 is

COROLLARY 3.   The set E~ and E are relative exact.

Our next step is to fit together many different sprays of flights.

Chain of flights. A finite or countable sequence of sprays of flights in T

(16) T,y,T,2,... ,EN,...

will be termed a chain of flights and the corresponding sequence of canonical sprays

a canonical chain if, for i = 1,2,... ,N,..., they fit together in inverse order so that

the set E*~~ corresponding to E* contains E*^fy corresponding to E*+1 (see [12, pp.

275, 276]). This implies that the set E*+1 of E,+ i is relative exact for Ej as well as

for Ej+i. If Ey of Ei happens to be a relative exact set, then all sets Ei and E~,

* = 1,2,..., N,..., are also relative exact sets and such a chain will be termed an

exact chain of flights.

The sets E~ and Ei of Ej will be termed constituent sets of a chain and E*~, E*

of E* canonical constituent sets of a canonical chain.

Let Gy be an open set of parameters a1, associated with the spray Ei. We

suppose one more hypothesis satisfied:

The function /+(<r1) = /(z^rj1)) has a continuous derivative /j",

in Gy. The map S+ -» E+ (£+ = {(b,x)]x = x(b,al),al E Gy})

iyir.\ has the following property: given any bounded rectifiable curve C

in Ey , there exists a rectifiable curve T in Sy~ such that C is its

image under the map (b, a) —» (b, x(b, a)) and the ends of C are

the images of those of T.

A chain of flights which satisfies hypothesis (H6) will be called a distinguished chain

of flights.

LEMMA 5.   For any distinguished chain of flights, the set Ey   is relative exact.

PROOF. Let C be any bounded rectifiable curve in Ey with the arc length

description t = b, x = x(s), 0 < s < sc, and let T be a rectifiable curve in Sy such

that C is its image, according to (H6). (If no such curve exists, we have nothing to

prove.) From (6) we find that, for almost every s in [0,sc], yz,i(b,x)dx/ds has the
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same value for all ys, (b, x) in Ye, . Proceeding similarly as in Lemma 3, we get that

there is a measurable and bounded function ys, (b, x) along C. Therefore, since dt =

0 in Ey , we have, for any admissible pair of functions ys1(t,x),u^l(t,x), (t,x) E

[Ei],   '

/  yx1(b,x)dx= / y(b,a1,p)x„i(b,a1)da1

= y'[-(-y(6,cT1,p),-l)(x<Tl(6,cT1),/+(cT1))]dcT1-^/+(a1)da1,

where p is a suitably chosen function of it1, according to the standard projection for

a finite number of small subarcs of T. Again, by (6), the first integral on the right-

hand side of the last equality is zero. Hence we easily infer the relative exactness

of the set Ey .

From Lemma 5, Corollary 3, and the definition of an exact chain of flights we

obtain

THEOREM 2.   Every distinguished chain of flights is an exact chain of flights.

A concourse of flights. Denote by K the family of all bounded rectifiable curves

lying in T, and by Tn, n = 1,2,..., a finite or countable system of disjoint subsets

of T whose union is T. Of course, any Tn should be a subset of some constituent

set of a chain or a subset of a few constituent sets of different chains.

A curve C C K will be called a fragment if its interior lies in some Tn. The class

of such fragments will be denoted by Ko- We need a situation in which K can be

derived from Ko- To this effect, we shall need two forms of the addition of curves:

fusion and embellishment, and two subtraction operations: cutting and trimming

(see [12, p. 277]).

In the sequel, about K and Ko we shall assume that if a curve belongs to K

or Ko, then each arc of the curve, and also its inverse arc, is an element of K or

Ko, respectively. Moreover, we shall assume that the operations of embellishment

and trimming can be carried out countably often under the restriction that from

elements of K we shall again obtain elements of K.

By means of the finite fusion and the countable embellishment, from the elements

of Ko let us compose a class Ky. From Ky we then define a subclass K2 of K whose

members are obtained by at most countable trimming. The method described by

Young [12, Volume II, §28] can be applied only when K2 = K.

In such a situation, Ko is called a repairable class of fragments, and the decom-

position of the set T into disjoint subsets T„ a repairable decomposition. Then the

set T will be termed the unimpaired union of the sets Tn.

A concourse of flights is a finite or countable infinite system of distinguished

chains of flights, such that T is the unimpaired union of the constituent sets of

these chains, and the set covered by graphs of canonical lines of flight, i.e. by

graphs of pairs of functions x(t),y(t), is the union of their canonical constituent

sets.

Let t(s),x(s), 0 < s < sc, be the arc length description of any bounded rectifi-

able curve C in T. We introduce the last hypothesis in this section whose object is
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to ensure that a certain integral exists along each bounded rectifiable curve in T.

There exists in T an admissible pair of functions y(t, x) E Y(t, x),

u(t,x) E U(t,x), (t,x) E T, such that the expression

\{L(t(s),x(s),u(t(s),x(s)))

(H7) - y(t(s),x(s))f(t(s),x(s),u(t(s), x(s)))}dt/ds

+ y(t(s), x(s))dx/ds]

does not exceed along C some integrable function of the arc length

s of C.

In the modern problems of the calculus of variations we are concerned with the

actual problem of a minimum in the entire set T. Considering a spray of flights

E, we have discussed on the model of the classical calculus of variations only what

happens in a certain subset Tn whose union turns out to be T. This means that

we have information about the class of fragments Ko and that we seek information

about the class of our original curves K.

Proceeding quite similarly as in the proof of Theorem 29.1 from [12, p. 280],

only changing expression (29.2) there to

/ {L(t, x, uv(t, x)) - yx(t, x)f(t, x, UT.(t, x))}dt + y^(t, x) dx
Jc

= I(ty,Xy) - I(t2,X2)

where (ty,xy), (t2,x2) are the initial and final points of C and yT,(t,x),u^(t,x) is

an admissible pair of functions relative to E, and expression (29.3) on p. 281 to

/ {L(t,x,u(t,x))-y(t,x)f(t,x,u(t,x))}dt + y(t,x)dx
(17) Jc

= I(ty,Xy) - I(t2,X2)

where y(t,x),u(t,x) is now any admissible pair of functions in T, we obtain the

following theorem and its corollary.

THEOREM 3. Assume that a concourse of flights exists and hypothesis (H7) ia

satisfied. Then the function I(s) is absolutely continuous in [0, ac] and, for almost

all s in [0, sc],

—7(3) = - {L(t(s),x(s),u(t(s),x(s)))

(18) - y(t(a),x(a))f(t(s),x(8),u(t(s),x(a)))}fs

-y(t(a),x(a))—

for each admissible pair y(t,x) E Y(t,x), u(t,x) E U(t,x), (t,x) E T.

COROLLARY 4. Suppose that the assumptions of Theorem 3 are satisfied. Then

T is an exact set and, in particular, relation (17) holds.

COROLLARY 5. Let us adopt the same assumptions. If C is any arc of an

admissible trajectory x(t) under a control u(t) starting at x(a) = c whose graph is

contained in T, then relation (17) is valid.
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In view of Corollary 4, it suffices to note that, by the definition of a concourse

of flights and Lemma 3, any arc of x(t) is a bounded rectifiable curve as it is only

a finite fusion of its subarcs which are contained in constituent sets.

As a consequence from Corollary 5 we obtain the following sufficient conditions

for a strong relative minimum of J.

THEOREM 4. With the same assumptions, let an admissible trajectory x*(t),

t E [a,b], x*(a) = c, under a control u*(t) be a member of our concourse. Then the

pair x*(t),u*(t) affords J(x,u) a strong minimum relative to all admissible pairs

x(t),u(t), t E [a,b], x(a) = c, for which the graphs of x(t) are contained in T.

PROOF. Let x(t),u(t), t E [a,b], x(a) = c, be any admissible pair such that the

graph of x(t) is contained in T. From the exactness of the set T and from (5) we

have

J(x*,u*) — J(x,u) = I(a,c) — J(x,u)

= f ]{L(t,x(t),u(t,x(t)))
J a

- y(t, x(t))f(t, x(t),u(t, x(t)))} + y(t, x(t))f(t, x(t), u(t))] dt

- /   L(t,x(t),u(t))dt <0.
J a

Hence we infer the assertion of the theorem.

REMARK. Define the value function S(t,x) in the set T as

(19) S(t, x) = inf i f L(r, x(t), u(t)) dr + l(x(b)) \

where the infimum is taken over admissible pairs x(r),u(r), r E [t,b], whose tra-

jectories start at (t,x) E T and graphs are contained in T. By Theorem 4, the

infimum in (19) is attained and equals I(t,x), thus it can be defined by relation

(17). This means that the existence of value function (19) is determined by the

existence of a concourse of flights. From Theorem 3 we further infer that S(t, x) is

an absolutely continuous function of the arc length along any bounded rectifiable

curve contained in T. If we suppose T to have interior points at which the function

S(t,x) is differentiable, then, by Theorem 3, at those points S(t,x) satisfies the

partial differential equation

(20) St + H(t,x,Sx)=0

where H(t, x, y) = yf(t, x, u(t, x)) — L(t, x, u(t, x)). From the definition of u(t, x),

y(t,x) and from (5) we also find that

(21) min{5t + Sxf(t, x, u) - L(t, x, u) \ u E U(t)} = 0.

Formula (21) is called the partial differential equation of dynamic programming

and u(t, x) the optimal feedback control.

4. Nonclassical treatment of the "field" and concourse of flights. Most

considerations of §3 were carried out in the (t, x)-space. Only a few facts concerned

the y-space because of the occurrence of the variable y in the Hilbert integral

which was, however, defined in the (i,:r)-space.  This is the classical approach to
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field theory though many concepts are nonclassical; in particular, quite new is

the concept of a concourse of flights which joins many (countable!) generalized

classical fields—chains of flights—allowing us to account for several classical fields

simultaneously appears in a natural way when we want to work with constraints,

particularly with the Bolza problem (see e.g. [9, proof of Theorem 8.1, p. 35]).

In this section we present a nonclassical approach to field theory, using the

beautiful concept of a concourse of flights.

First of all, putting

(22) H(t,x,y,y°) = sup{yf(t,x,u) + y°L(t,x,u)\uE U(t)}

let us observe that (2) and (4) may be rewritten as

^p-EdyH(t,x(t),y(t),y°),

(23)
-^EdxH(t,x(t),y(t),y°).

In such a setting, x(t) and y(t) have the same preference; they simply satisfy a

system of generalized Hamiltonian equations. Thus we may choose that space to

handle which we prefer, and next, we should find a suitable independence integral

associated with a certain canonical family of pairs x(t),y(t) satisfying (23). It is

obvious that we should choose that space (where more restrictions for a suitable

family are needed) for manipulations, which allows us to cover a greater set in the

(£,z)-space by graphs of trajectories x(t).

If we have a "free endpoint problem", then the ends of x(t) are free and the ends

of y(t) are subject to certain conditions, contrary to a "fixed endpoint problem".

Thus we should also choose a "contrary" space in which we shall work with a "free

endpoint problem" and it is the (i,y)-space in which we shall carry out most of

our considerations from §3. In particular, we define a new independence integral.

It is well known that just in the study of extremal problems with constraints there

appeared multipliers. In our case (see the definition of l.f.) they are a function

y(t) and a number y°. So, it is natural to extend the (i,y)-space mentioned above

to the (£,y,y°)-space, and thereby, to include the "troublesome multiplier" in our

considerations, i.e. to cast off the "multiplier restriction".

The independence integral. In this section, similarly as in the previous one, for

the investigation of any family of c.l.f., we define a certain independence integral,

but now for curves lying in the (t,y,y°)-space. To this effect, we have to add one

coordinate x° to the (£,x)-space, described by the differential equation dx°/dt =

—L(t,x,u), i.e. for an admissible pair x(t),u(t), we have

-^- = L(t,x(t), u(t)).

The solution of this equation is defined as

rb
x°(t)=       L(T,x(r),u(r))dr + x0(b),        x°(b) = l(x(b)).

For a given l.f. x(t),u(t), we write z(t) = (-x°(t),x(t)) and, for a given c.l.f.

x(t),y(t),u(t),y°, we write p(t) = (y°,y(t)); so now, by the c.l.f. we mean the trio

of functions z(t),p(t),u(t). Further, denote by P C Rn+2 a set covered by graphs
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of p(t) such that z(t),p(t),u(t) is a c.l.f., which, in the sequel, may be reduced to a

smaller one; let T c Rn+1 denote the same as in §3. If (in,Po) belongs to P, then

we write V(to,Po) for the value of

,6

(24) yg /   L(t, x0(t),u0(t)) dt - x0(t0)yo(to) + y°l(x0(b)) = -z0(to)Po(to)
Jto

where z0(t) = (-x^(t),x0(t)), p0(t) = (yo,yo(t)), u0(t) is a c.l.f. such that p0(t0) =

Po- Of course, the map (t,p) —* V(t,p) in P might be a multifunction, and this is

why we assume the following hypothesis (compare (H2)):

fH2'1 *^e set ^ xs sucn tnat ^e map ^'^ ~~* ̂(*'p) *s single-valued in

A rectifiable curve C lying in P is called bounded if V(t,p) is bounded along

C. For (t0,Po) in P, Z(t0,p0) = (-X°(t0,p0), X(t0,Po)), U(t0,p0) denote the

sets of values of z(t), u(t), respectively, at io f°r which z(t),p(t), u(t) is a c.l.f. and

p(to) = Po- For (t,x) in T, U(t,x) means the same as in the preceding section

and P(t,x) is defined analogously to Y(t,x) therein, i.e. for (io,zo) E T, P(t0,x0)

denotes the set of values of p(t) at t0 for which z(t) = (—x°(t),x(t)), p(t),u(t) is a

c.l.f. and x(to) = xq. By an admissible pair of functions

(25) z(t,p) = (-x°(t,p),x(t,p))EZ(t,p),        u(t,p)EU(t,p), (t,p)EP,

we mean single-valued functions z(t,p),u(t,p) defined in P such that, for each

(to,Po) hi-P, there exists a c.l.f. z(t),p(t),u(t) for which z(to,p(to)) — z(to), p(to) =

Po, u(to,p(to)) = u(to). By an admissible pair of functions

p(t, x) = (y°(t, x), y(t, x)) E P(t, x),        u(t, x) E U(t, x), (t, x) E T,

we mean single-valued functions p(t,x),u(t, x) defined in T such that, for each

(io, xo) in T, there exists a c.l.f. z(t) = (—x°(t), x(t)), p(t),u(t) for which p(t0, x(t0))

= p(t0), U(t0,x(t0)) = U(t0), X(t0) = Xq.

On any bounded rectifiable curve C in P with the arc length description t(s),

p(s), 0 < s < sc, we define the curvilinear integral

(26)

I {y°L(t,x(t,p),u(t,p)) + yf(t,x(t,p),u(t,p))}dt + z(t,p)dp
Jc

= faJ ({yQ(s)L(t(s),x(t(s),p(s)),u(t(s),p(s)))

+ y(s)f(t(s),x(t(s),p(s)),u(t(s),p(s)))}^ + z(t(s),p(s))^j ds

for any admissible pair of functions (25) such that ({y°L + yf}(dt/ds) + z(dp/ds))

is a measurable function of the arc length s along C. This integral defines the

functional for the class of bounded rectifiable curves C and admissible pairs of

functions (25). Our task is to study its independence.

Similarly as in §3 we introduce the notion of an exact set, i.e. a subset P of

P is called an exact set if, for each bounded rectifiable curve C C P with ends
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(*i>Pi)> (*2>P2)i having the property that the expression ({y°L + yf}(dt/ds) +

z(dp/ds)) at almost every point of C takes the same value for all admissible pairs

(25), we have

/ {y°L(t,x(t,p),u(t,p))+yf(t,x(t,p),u(t,p))}dt + z(t,p)dp
(27) Jc

= V(ty,Py)-V(t2,P2)

for each admissible pair z(t,p) E Z(t,p), u(t,p) E U(t,p), (t,p) E P.

Since the general concept of the study of the independence of functional (26) is

quite similar to Young's theory, we use the same notions of a spray of flights, a

chain of flights, and a concourse of flights.

Spray of flights. Let E denote (see (11)), analogously as in §3, a family of arcs

described by functions

(28) z(t,a),u(t,a),(t,a) E S.

Further, by E* we denote a family of arcs of c.l.f. which correspond to the arcs of

E and which are obtained by giving to functions (28) the corresponding function

p(t,a,p),(t,a,p) E S*.

As before, z(t,a),p(t,a, p) will be supposed extended to the sets [S], [S*], and the

sets E~,E, E+, [E] means here exactly the same as in §3. But now, E*~,E*,E*+,

[E*] will denote the sets of values of pairs (t,p(t,a,p)) with (t,a,p) in S*~,S*,

S*+,[S*], whereas those of pairs (t,z(t,a)) with (i,rj) in S~,S,S+,[S] will be

D-,D,D+,[D].

We write (when (a,p(a)) E G) V+(a) for the expression

V(t+(o),p(t+(o),o,p(o))).

We assume the following hypotheses:

(H3') = (H3).

The function z(t,a) is C1 in [S] and u(t,a) is Borel measurable in

[S]. For given (ero>Po) in G and any small neighborhood Go C G

(H4') of ao, there exists in Go a function p(a) such that p(oo) = po, all

points (a, p(a)) for a E Go lie in 67, and p(t,a) = p(t,a,p(a)) is

C1 in {(t,a) | t~(a) < t < t+(a), a E G0}-

The maps 5*" -> E*~, S* -+ E* defined by (t,a,p) -► (t,p(t,a,p))

are descriptive in the following sense: given any sufficiently small

rectifiable curve CcE*~ (orCcE*) issuing from (to,p(to,&o,Po)),

there exists a sufficiently small rectifiable curve T C S~ (or T C S)

(H5') issuing from (t0,a0) such that each small arc of C issuing from

{to,p(to,<?o,Po)) is the image under the map

(t,a) -* (t,p(t,a,p(a)))

of a small arc of T issuing from (io,<?o) where p(a) is as in (H4').
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The maps S~ —► D~, S —> D defined by (t,a) —» (t,z(t,a)) have

the following property: given any arc Cz C D~ (or Gz C D)

with the description ii < r < t2, (—x°(t),x(t)) where x(t) is

a trajectory of an admissible pair x(t),u(t), t E [a,b], x(a) = c,

(H8) x°(i) = ftbL(T,x(r),u(T))dr + l(x(b)) issuing from (ty,z(ty,oy)),

there exists a rectifiable curve T C S~ (or T C 5) issuing from

(ty,o~y) such that every small arc of Cz issuing from (ty,z(ty,oy))

is the image under the map (i, a) —* (t, z(t, a)) of a small arc of T

issuing from (ty,oy).

If hypotheses (H3')-(H5'), (H8) with those on t~(a),t+(a), G are satisfied, then

E will be called a spray of flights and E* a canonical spray of flights.

Note that these assumptions are analogous to (H3)-(H5) except the assumptions

on z(t,a) and p(t,a,p) which are now stronger and this is still an undesirable

restriction. It is so because we, in fact, still use the analogous technique of proofs

as in Young's theory.

For (t,p) E [E*] C P, let Z^(t,p) C Z(t,p) and U^(t,p) C U(t,p) stand for the

sets of values of z(t,a) and u(t,a) at those (t,a, p) E [S*] for which p(t,a,p) = p.

For (i, x) E [E] C T, P^(t,x) C P(t,x) denotes the set of values oip(t,a,p) at those

(t,a,p) E [S*] for which x(t,a) = x. By z^(t,p) E Z^(t,p), u%(t,p) E U^(t,p) and

PT.(t,x) E Px(t,x), ux(t,x) E U-s(t,x) we denote admissible pairs of functions

z(t,p),u(t,p) and p(t,x),u(t,x) defined in [E*] and [E], respectively, and term

them functions relative to E. An exact subset P C [E*] for z(t,p) E Z^(t,p),

u(t,p) E Uz(t,p), (t,p) E [E*], will further be termed a relative exact set.

Assume we are given a spray of flights for which the set E*+ is relative exact.

We state analogous lemmas and theorems as in Young's theory.

LEMMA 1'. For each (oo,Po) E G, there are a set Go C G and a function p(a),

described in (H4') such that there exists a continuous derivative V+(o) in Go, equal

to -y°Lt+ - (xy)tt+ — zp„, i.e. for a in Go and t = t+(a),

V+(a) = -y°(a,p(a))L(t,a)t+(a) - jt(x(t,a)y(t,a,p(a)))t+(a) - z(t,a)pu(t,a)

where p(t, a) = p(t, a, p(a)).

PROOF. Let (to,a0,po) be any point of S*+. Let T be the same as in the proof

of Lemma 1 and let Go, p(a) be as in (H4'). Now let C be the image of T in

E*+ under the map (t,a) —► (t,p(t,a,p(a))) with ends (to,Po),(ty,Py). From the

relative exactness of E*+ we get

V(t0,Po)-V(ty,py)

= / {y°L(t,xv(t,p),uz(t,p)) +yf(t,xz(t,p),uz(t,p))}dt + zx(t,p)dp
Jc

= J (y°(a, p(a))L(t,a) + y(t, a, p(a))f(t,a) + x(t, a)yt(i,a, p(a))) dt

+ z(t,a)pa(t,a)da

= V+(a0)-V + (ay).

Proceeding analogously as in the proof of Lemma 1, we obtain the assertion of our

lemma.
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LEMMA 2'. Let T denote any small rectifiable curve in [S] with (io,0o) as the

initial point and (ty,oy) as the terminal one. Then there exist a set Go C G and

p(a) in Go (see (H4')) such that

j  -(z(t,a)p(t,a))dt+— (z(t,a)p(t,o))do = V(to,p(to,o0)) -V(ty,p(ty,Oy))

where p(t,a) = p(t,a,p(a)).

The proof follows directly from the definition of the function V(t,p).

Similarly, as in Corollary 1, we obtain

COROLLARY 1'.   In the set S*+ the quantity pza is identically zero.

We also have (compare to Lemma 3)

LEMMA 3'. Let C be a rectifiable curve lying, together with its terminal points,

in E*~ or in E*. Then C is bounded and there exist Borel measurable func-

tions ZY,(t,p),UY,(t,p) along C relative to E. Furthermore, the functions z^(t,p),

L(t,xz(t,p),uz(t,p)),f(t,xx(t,p),ux(t,p)) are bounded along it.

LEMMA 4'. On each arc of the canonical spray of flights E* the expression pz„

takes a constant value.

PROOF. The proof is quite similar to that of Lemma 4. But, for the reader's

convenience, we present the details. Let (t',a',p') be any point of S* and z'(t) =

(—x° (t),x'(t)), p'(t) = (y° ,y'(t)),u'(t) the corresponding values of the functions

z(t,a'),p(t,a',p'),u(t,a'), t E [t',t+(a')). Further, let a stand for any coordinate

of the vector a EG. By performing in different orders the operations of integration

in i and differentiation in a, on relation (2), and then differentiating in i, we get

the following relation calculated at the point (t,a'), t E [t',t+(a')):

(29) —xa(t,a) = —f(t,a)
at oa

and, analogously, at this point we find

(29°) -^x°a(t,a) = -^L(t,a).

From (4) and (H3') we obtain at (t,a'), for almost all i in [t',t+(a')),

xQ(t,a)—y'(t) = -y'(t)fs(t,x'(t),u'(t))xa(t,a)

-y°'Ls(t,x'(t),u'(t))xa(t,a)

and, by the definition of y°, we have at this point

-xl(t,a)l/=0.
We add both sides of the last four equalities with (29) and (29°) multiplied by y'(t)

and y° , respectively. As a result we obtain at the same (t,a')

^-(p'(t)za(t,o)) = y'(t)-^(f(t,a) - f(t,x(t,a),u'(t)))

+ y0'-£-(L(t,o) - L(t,x(t,a),u'(t))).
oa
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Hence, using (H3') and next (5), we get

Tr(p'za) = 0     at (t,a') for almost all i in [t',t+(a')).
at

Integrating this equality in the interval [i',i+(<r')), we easily conclude the proposi-

tion of the lemma.

We put V(s) = V(t(s),p(s)) along any rectifiable curve C in E*~ or E* with

the arc length description i = t(s), p = p(s), 0 < s < sc-

THEOREM 1'. // the identity pza = 0 holds in S*~ or S*, then the function

V(s) is absolutely continuous along C and, for almost all s in [0, ac],

±V(a) = - ({y°(s)L(t(s),xx(t(s),p(s)),ux(t(s),p(s)))

(30) +y(8)f(t(a),xz(t(8),p(3)),uv(t(a),p(s)))}£s

for each admissible pair z^(t,p),u^(t,p),(t,p) E [E*].

PROOF. We limit ourselves to the case when C is contained in E*. The proof of

the second assertion is analogous. Let e(s) = (dt/ds,dp/ds) stand for the direction

of the tangent to G defined for a.e. s in [0, sc]- Let s0 be any point in [0, sc]

such that e(s) is approximately continuous at it. We set io = t(so), (yo\yo) =

Po = p(«o) = (y°(so),y(so)), e0 = e(s0), i0 = dt(s0)/ds, p0 = dp(s0)/ds. Let

Zo = ( —Xq,xo), Uo be any admissible vectors from the sets Z-z(to,po),U-z(to,po)

and let (to,ao,Po) be any point in 5* for which p(to,ao,Po) = Po, w(io,0o) = uo-

We also put /0 = f(t0,x0,u0) and L0 = L(to,x0,u0).

Denote by T a rectifiable curve in 5 such that small arcs of the curve G, issuing

from (io,Po), are, in accordance with (H5'), the images under the map (t,a) —>

(t,p(t,a,p(a))) of small arcs 7 of T issuing from (io,0o)- Let now

t = i(v),    a = a(v),    vEl=[0,h],

be the arc length parametric description of 1, such that the point (io,0o) should

correspond to the value of 0. Next, define a continuous increasing function a = s(v),

v E I, such that s(0) = So, which satisfies in / the relations

(31) t(s(v)) = t(v),        p(s(v)) = p(t(v),a(v),p(a(v)))

where p(a) is suitably chosen according to (H5') and (H4'). We shall write p(t,a)

for p(t,a,p(a)).

Denote by As and AV the corresponding differences in s and in V(s) at the

ends of a small arc of G issuing from (io, po), being the image of 7. By assumption,

pza = 0 along 7. Hence, and from Lemma 2', we conclude, taking account of (31),

that

— (z(t,a)p(t,a))dt+—(z(t,a)p(t,a))da- / p(t,a)za(t,a)da

(32) = j ({y°(a(v),p(a(v)))L(t(v),a(v)) + y(t(v),a(v),

p(a(v)))f(t(v)Mv))}^+z(t(v),a(v)) ^) da(v).
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Since p(t,a),L(t,a), f(t,a),z(t,a) are continuous on 7 we deduce that they are

bounded in I. This, along with (32), implies the uniform boundedness of the ratio

AV/As for all sufficiently small As. Thus the function V(s) is locally Lipschitz

and, hence, absolutely continuous in [0, sc]- This proves the first assertion of the

theorem.

To prove the second, it is enough to show that

lim — = -({y%L0 + yofo}io + z0p0)     as As -* 0.

But this is quite analogous to the corresponding part of the proof of Lemma 25.3

in [12, Volume II] if we take there

p = p,(v) = ({y°L + yf} dt/da + zdp/da) - ({ygio + yo/o}*o + 2oPo)-

COROLLARY 2'. With the same assumption, the set E*~ or E* is a relative

exact set.

PROOF. For each fixed rectifiable curve G lying in E*~ or E*, the function V(s)

is absolutely continuous and satisfies (30) for all admissible pairs zx(t,p),uj:(t,p),

(t,p) E [E*]. By Lemma 3', we may integrate (30) along G and, as a result, we

obtain the equality which defines the relative exactness.

An immediate consequence of Corollary 1', Lemma 4' and Corollary 2' is

COROLLARY 3'.   The sets E*~ and E* are relative exact.

By Theorem 1' and Corollary 3', we have information about curves in E*~ or

E*, i.e. in the (i,p)-space but, in fact, we seek information about curves lying in E~

or E, i.e. in the (i, z)-space. Thus, let Cz denote any small arc contained in D~ (or

D), with the description ii < t <t2, (—x°(t), x(t)) where x(t) is a trajectory of an

admissible pair x(t),u(t), t E [a,b], x(a) = c, x°(t) = f L(r,x(T),u(r))dT + l(x(b)),

issuing from (ty,z(ty,ay)). We also represent Cz in terms of its arc length s as

t = t(s), z = (x°(s),x(s)) = z(s). Let further T denote a rectifiable curve in S"

(or S) such that small arcs of Cz issuing from (ty,z(ty,ay)) are, in accordance with

(H8), the images under the map (t,a) —► (t, z(t,a)) of small arcs of T issuing from

(ty,oy). We represent V in terms of its arc length A by functions i(A),rj(A), so that

the point (ty,o~y) corresponds to A = 0. We can then define a continuous increasing

function s(A) having its inverse A(s), which satisfies the relation

(33) i(s(A)) = i(A),        z(a(X)) = z(t(\), a(X)).

In turn, let Cp be the image under the map (t,a) —► (t,p(t,a,p(a))) of T, where

p(a) is suitably chosen in accordance with (H4'), issuing from

(ty,p(ty,ay)) = (ty, p(t y, (7y, p((Ty))) = (ty,py) = (ty,y\,yy).

We easily see that to small arcs of T issuing from (i 1,0-1) there correspond small

arcs of Cp issuing from (ii,pi). Thus we can express the final points of the small

arcs of Cp as a function of s. Denote by (i2,P2) the terminal point of Cp which

corresponds to that of Cz. (t2, —x°(t2),x(t2)).

By the same arguments as in Lemma 3, along arc ii < r < t2, x(r) lying in

E~ (or JS), there exist Borel measurable functions p^(t,x),u^(t,x), (t,x) E [E];

moreover, the functions pz(t,x),L(t,x,uz(t,x)),f(t,x,ux(t, x)) are bounded along

it.
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LEMMA 6.   With the above notationa, the following relation

(34)
V(ty,Py) - V(t2,p2) - x(t2)y2 + x(ty)yy + x° (t2)y° - X°(ty)y°y

= /   (yx(t,x)L(t,x,ux{t,x))+yz(t,x)f(t,x,ux(t,x)))dt-pz(t,x)dz
Jcz

holda for each admissible pair p^(t,x),u^(t,x), (t,x) E [E].

PROOF. The proof is similar to the proofs of Theorem 1' and Lemma 25.3 from

[12, p. 273]. Thus, we only sketch it. For convenience, we assume that (ty,z(ty,ay))

is a point of approximate continuity of the derivative (dt/ds, dz/ds) of the function

(t(s),z(s)) Let 7 be a sufficiently small arc of T issuing from (ty,ay), defined in

the interval / = [0, A2] of values of A, i.e. the functions i(A),fj(A) are defined in /.

Denote by AV the difference in V(t, p) at the ends of a small arc of Gp issuing from

(ii,Pi) and being the image of 7. Since the set E*~(E*) is relative exact, therefore

taking into account the above notations and the relations from (33), we obtain

- AV - x(i(X2))y(i(X2),a(X2),p(a(X2))) + x(h)yy

+ x°(i(X2))y0(a(X2),p(a(X2)))-x0(ty)y°y

= f (y°(a, p(a))L(t, a) + y(t, a, p(a))f(t, a)
J-i

+ x(t, a)yt(t, a, p(a))) dt + z(t, a)pa(t, a) da

- / (zt(t,a)p(t,a) + z(t,a)pt(t,a))dt + (p(t,a)zt7(t,a) + z(t,a)pa(t,a))da
J1

= j^(y\a(X),p(a(X)))L(t(X),a(X))

+ y(t(X),a(X),p(a(X)))f(i(X),a(X)))fs-p(i(X),a(X)) g   ds(X).

Proceeding quite analogously as in the corresponding part of the proof of Theorem

1', we find the assertion of the lemma.

Chain of flights. The definitions of a chain of flights and a canonical chain are

assumed the same as in §3 (with new meanings of a spray of flights and a canonical

spray of flights).

If, in the set S:*+ = {(i,^1^1) |i = t+(al), (al,pl) E G1} of E* (G1 is a set of

parameters (a1 ,pl) associated with the canonical spray EJ) of a canonical chain of

flights, the quantity pzay is identically zero, then, by Lemma 4' and Corollary 2'

(see Corollary 3'), the sets E*x", E\ of EJ of the canonical chain are relative exact

and, thus, all the sets E* and E*~ of E*, i = 2,..., N,..., of this chain are also

relative exact; such a canonical chain will be termed an exact canonical chain.

The sets E~ and Ei oi Ej of a chain of flights are constituent sets here, too, but

now, canonical constituent sets of a canonical chain are E*~ ,E* of E* (defined in

this section).

A canonical chain for which the set S*+ of Ej has the form {(t,a1,p1)\t =

b, (al,px) eG1} will be called a distinguished canonical chain.

LEMMA 5'. Given any distinguished canonical chain, the quantity pzay is iden-

tically zero in the set Sy+ of EJ.
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PROOF. It suffices to notice the smooth (by (H4')) function (x(b,a1),l(x(b,a1))),

a1 E G1, is a parametric description of the graph of the function l(x) restricted

to the projection of £+ of Ei onto the x-space, and that the tangent space at

each point of this graph is spanned by the columns of the matrix (xai,l^,) where

l+(al) = l(x(b,ax)), and, at last, to use (6).

Analogously to Theorem 2 we have

THEOREM 2'.   Each distinguished canonical chain is an exact canonical chain.

A concourse of flights. The general concept of a concourse of flights is here the

same as in Young's theory. We only change the space in which we study exact

sets. Thus, we now denote by K the family of all bounded rectifiable curves lying

in P, and by Pn, n = 1,2,..., a finite or countable system of disjoint subsets of

P whose union is P and such that each Pn should be contained in some canonical

constituent set of a canonical chain.

Analogously as in §3 we define the classes of curves Ko,Ky, K2 and the condition

that P is the unimpaired union of the sets Pn.

Denote by M the family of all arcs of admissible trajectories x(t), t E [a, b], such

that x(a) = c and their graphs are contained in T. An arc from M will be called a

fragment if its interior portion lies in some Tn (Tn,n = 1,2,..., are the same as in

§3). The class of such fragments is denoted by M0. If the class M can be derived

from M0 by a finite fusion, then the set T will be termed the unimpaired union of

the sets Tn.

A concourse of flights is a finite or countable infinite system of distinguished

canonical chains such that P is the unimpaired union of the canonical constituent

sets of these chains, while T is the unimpaired union of their constituent sets (i.e.

the constituent sets of their projections: the chains of flights).

Let t(s),p(s) = (y°(s),y(a)), 0 < s < sc, be the arc length description of any

bounded rectifiable curve G in P. We assume

There exists in P an admissible pair of functions z(t,p) E Z(t,p),

u(t,p) E U(t,p), (t,p) E P, such that the expression

{y°(s)L(t(s),x(t(s),p(s)),u(t(s),p(s)))

(RT)
+y(s)f(t(a),x(t(a),p(s)),u(t(s),p(s)))}-+z(t(s),p(s))£

does not exceed along C some integrable function of the arc length

sofG.

Proceeding similarly as in the proof of Theorem 29.1 of [12, p. 280] changing

suitable expressions (compare §3), we find

THEOREM 3'. Assume that a concourse of flights exists and hypothesis (UT) is

satisfied.  Then the function V(s) is absolutely continuous in [0, sc] and, for almost
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every s in [0, sc],

(35)

£v(a) = - ({y0(a)L(t(8),x(t(8),p(a)),u(t(a),p(a)))

+ y(a)f(t(8),x(t(8),p(8)),u(t(8),p(s)))}~+z(t(8),p(s))^j

for each admissible pair z(t,p) E Z(t,p), u(t,p) E U(t,p), (t,p) E P.

COROLLARY 4'. Suppose that the assumptions of Theorem 3' are satisfied. Then

P is an exact set and, in particular, we have the relation

,o^ f {y°L(t,x(t,p),u(t,p)) + yf(t,x(t,p),u(t,p))}dt + z(t,p)dp
(36) Jc

= V(ty,Py)-V(t2,p2)

where (ii,pi), (i2,P2) are the initial and final points ofC and z(t,p),u(t,p), (t,p) E

P, is an admissible pair of functions.

Suppose the same as above. Let Cx denote any arc of an admissible trajectory

x(t) under control u(t),t E [a,b], such that x(a) = c and the graph of x(t) is

contained in T. We assume Cx defined in [ii, t2] C [a, b] and, for i in [ty, t2], we set

cb

x°(t) =  /   L(t,x(t),u(t)) dr + l(x(b)).

Define Cz as an arc with the description ty < t < t2, (—x°(t), x(t)).

By hypothesis, there is a decomposition of T into disjoint subsets Tn, each of

which is a subset of every constituent set Q of the chains of flights of our concourse,

such that Q meets Tn. We define the families M and Mo as above. Of course, our

Cx belongs to M. Denote further by Cx a subarc of Cx defined in [t i, *2 ] which

belongs to M0; Cz is a subarc of Cz corresponding to Cx. Let E be any spray of

flights of one of our chains, such that Cx meets either the set E~ or the set E of E,

i.e. Cx lies in some Tn wholly contained in E~ or in E. In accordance with (H8) and

the considerations preceding Lemma 6, there is a rectifiable curve Cp corresponding

to the arc G2, contained in the set E*~ or E* of E*, with ends (iy,Pi), (i2,P~2)>

which (by Lemma 3') is bounded. Hence, by Lemma 6, we have equality (34) for

Cz. The arc Cx is a finite fusion of members of Mo, thus there is a rectifiable

curve Cp corresponding to Cz, contained in P, with ends (ii,pi) = (ii,y°,yi),

(*2,P2) = (t2,y2,y2), which is bounded. In this manner we have proved

COROLLARY 5'.   With the above hypotheses and notations, the relation

(37)
V(ty,Pl) - V(t2,p2) - x(t2)y2 + x(ty)yy + x° (t2)y°2 - X°(ty)y°y

= f2[(y°(t,x(t))L(t,x(t),u(t,x(t))) + y(t,x(t))f(t,x(t),u(t,x(t))))
Jt,

- (y°(t,x(t))L(t,x(t),u(t)) + y(t,x(t))f(t,x(t),«(«)))]dt

holds for some admissible pair p(t, x),u(t, x), (t, x) E T.

The last corollary allows one to use the theory described in this section for

establishing sufficient conditions for a relative minimum of J.
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THEOREM 4'. Assume that a concourse of flights exists and hypothesis (UT)

is satisfied. Let a trio of functions z*(t) = (-x°*(t),x*(t)), p*(t) = (y°*,y*(t)),

u*(t), iG [a,b], such thatx*(a) = c, x°*(t) = tfL(T,x*(r),u*(r))dr + l(x*(b)), be

a member of our concourse. Then the pair x*(t),u*(t) affords a strong minimum

to —y°*J, in fact, to

-j   (y0*L(t,x(t),u(t))+y*(t)(^-f(t,x(t),u(t))^yt-y°*l(x(b))

relative to all admissible pairs x(t),u(t),t E [a,b], x(a) = c, for which the graphs of

x(t) are contained in T.

PROOF. The proof follows directly from Corollary 5' (equality (37) is taken with

ty = a, t2 = b, py = p*(a)), from the definition of V(t,p) and (5). Indeed, for any

admissible pair x(t), u(t), t E [a,b], x(a) = c, such that the graph of x(t) lies in T

and for the notations corresponding to it (by Corollary 5'), we have

(38)

y°* f L(t,x*(t),u*(t))dt + y°*l(x*(b))-y°* f L(t,x(t),u(t))dt - y°*l(x(b))

= V(a,p*(a)) + x(a)y*(a) - x°(a)y°* - V(b,p2) - x(b)y2 + x°(b)y°2

= f [y°(t,x(t))(L(t,x(t),u(t,x(t))) - L(t,x(t),u(t)))
J a

+ y(t, x(t))(f(t, x(t), u(t, x(t))) - f(t, x(t), u(t)))] dt > 0.

REMARK 1. The expression in square brackets under the last integral in (38) is

the Weierstrass excess function for the Lagrangian

y°L(t,x,u) + y(t)(dx/dt — f(t,x,u))

(compare [12, pp. 222-224]).
REMARK 2. First of all, let us observe from (4)-(6) that if, for at least one

P = (y°,y) in P, y° i1 0, then we can always make a set of values of the multiplier

y° to have a nonempty interior in R or even to be the entire half-plane in R. Then,

from (35) we infer that there exists a partial derivative Vyo(i,p) at each (t,p) E P

with y° 7^ 0, and that it is equal to x°(t,p); so, for any such (t,p), X°(t,p) is a

single-element set whose element is Vyo(t,p).

Next, define the dual value function Sf)(t,p) in the set P as

(39) SD(t,p) = inf J -y° j" L(t, x(t),u(t)) dr - y°l(x(b)) \

where the infimum is taken over admissible pairs x(t),u(t), r E [t, b], whose trajec-

tories start at x(t,p), x(t,p) E X(t,p), and graphs are contained in T. Proceeding

similarly as in the proof of Theorem 4', from Corollary 5' we obtain that, for each

(t,p) E P the infimum in (39) is attained and equals y°:r0(i,p). This means that

the existence of the dual value function Sp is determined by the existence of a

concourse of flights, thus it can be calculated from relation (37).

Now, suppose P to have interior points at which the function V(t,p) is differen-

tiable; then by (35), at those points V(t,p) satisfies the partial differential equation

Vt + H(t,p,Vy) = 0
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where Vp(i,p) = (V>(i,p), Vy(i,p)) = (x°(t,p),x(t,p)), H(t,p,v) = y°L(t,v,u(t,p))

+yf(t,v,u(t,p)) and u(t,p) is any element of U(t,p). From the definitions of

U(t,p), X(t,p) and from (5) we also find that at those points

(40) min{Vt + yf(t,Vy,u) + y°L(t,Vy,u)]u E U(t)} = 0.

Formula (40) may be considered as the dual partial differential equation of dynamic

programming and u(t,p) as the dual optimal feedback control.

5. Examples. This section consists of two numerical examples.

EXAMPLE 1. Consider the optimal control problem

(41) minimize/   (a(t)x2(t) + b(t)u2(t))dt - 3z2(l)

subject to

^l = B(t)u(t)    a.e. in [-2,1],

u(t)EU(t)    a.e. in [-2,1],

x(-2) = c,

where c is any fixed point in (-1,0],

„w = (12-  -1S,S1-    6W=((S;   ~litih
I 0,       -2<i<-l,       w      \ 1/r,     — 2 < * < —1,

1, -Ki< 1,

m = \   -1'    '€'«UJ» U{t) = {[0,r]U{-r},     -IVtV-l,
0,       ie/fc2u{-2}, ii . j   i    /.

r E (1, +oo), /fcl = (-1 - l/23fc+1, -1 - l/23fc],

Ik2 = (-1 - l/23fc+2, -1 - l/23fc+1], 7fc3 = (-1 - l/23fc+3, -1 - l/23fc+2],

oo

k = 0,1,2,..., |J (/fcx U Ik2 U Ik3) = (-2, -1].
fc=0

Canonical lines of flight x(t),y(t),u(t),y° satisfy the following conditions:

(42) ^1 - 2a(i)a;(i)     a.e.,

max{y°6(i)u2 + y(t)B(t)u + y°a(t)x2(t) \ u E U(t)}

(43) = y°b(t)u2(t) + y(t)B(t)u(t) + y°a(t)x2(t),    a.e.

y(l) = 0x(l),    y° = -l.
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This implies that

x(t,Cy) = Cyt3,      y(t,Cy)=GCyt4,      u(t,Cy) = 3cyt2, t E [-1 - l],   Cy E R,

x(t,c2) = -c\,    y(t,c2)=c\,    u(t,c2)=0,        i€[-2,-l], c2G[-l,l],

x(t,c3) = -r B2(a)d8 + c3,    y(t,c3) = -c3,    u(t,c3) = -rB2(t),

< e [-2,-1], c3€ (-00,-1],

x(t,c4) = c4 B2(s)ds + C4,    y(t,c4) = -c4,    u(t,c4) =-c4rB(t),

t 6 [-2,-1], c4€(0,l/r),

x(t,c5)=r B2(a)da + c5,    y(t,c5) = -c5,    u(t,cb) = rB2(t),

i€[-2,-l], c5€[l/r,+oo).

Notice that the trajectories x(i,ci) meet at the common point (0,0), yet assump-

tion (H2) is satisfied.

Now, from the above c.l.f. we form the following canonical sprays of flights:

EX1: x(t,ayy) = (l+a2y)t3,    y(t,ayy) = 6(1 + a2y)t\

u(t,ayy) = S(l+a2yy)t2,        i£[-l,l], ffu € R,

T,*21: x(t,a21) =a\ytz,    y(t,a21) = Oa^yt4,    u(t,a21) = 2,a22yt2,

re [-1,1], a2y E (-1,1),

EJj: x(t,a3y) = -(1/r + a231)t3,    y(t,a3l) = -6(l/r + a231)t4,

u(t,a3y) = 3(l/r + a%y),        EG [-1,1], a31 E R,

E41: i(i,a4i) = rj41i3,     y(i,er4i) = 6<r41i4,     u(i,cr4i) = 3<r4ii2,

tE [-1,1], (T4i e(0,l/r),

E22: x(t,a22) = -a\2,    y(t,a22) = 0a\2,    u(t,a22) = 0,

(€[-2,-1],  (722 €(-1,1),

EiV x(t,alkj) = -r j     B2(s)ds - (l+a2k]),

y(t,alk])= 0(1+a\kj),    u(t,alkj) = -rB2(t),

t E Ikj, alkj ER, k = 0,l,..., j = 1,2,3,

E*3kj: x(t,a3k3) = r j     B2(s)ds + (1/r + a23kj),

y(t,a3kj) = -6(l + of,y).    u(t,a3kj) = rB2(t),

t E hj,a3kj E R, k = 0,1,..., j = 1,2,3,

E4fcj: x(t,a4kj) = a4kj/      B2(s)da + a4kj,    y(t,a4kj) = -a4kj,

u(t,a4kj) = -a4kjrB(t),        t E Ikj, a4kj E (0,1/r),

* = 0,1.i = 1,2,3.
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Next, we join the sprays of flights in four distinguished canonical chains of flights:

t*   y*^21! ^22'

^*     y1*        v1*        Y1*       V**        V*
•L,lliZj101'2j102'2-'103'2jlll'2j112' ••• i

E*      V*        V*        V*31' ^301' ^302' ^303' ' • • i

E*     V1*       V1*411 ^401' ^402'-

These chains form a concourse of flights (we easily check that hypotheses (H3)-(H7)

are fulfilled, and that a set T covered by the graphs of l.f. is the unimpaired union

of the constituent sets of these chains).

Thus the pair

m_jc, i€ [-2,-1], _ f 0, t 6 [-2,-1),

*ij      l-ci3,    i€[-l,l],        UlJ"\-3ci2,    iG[-l,l]

affords (41) a strong minimum relative to all admissible pairs x(t),u(t),t E [—2,1],

x(—2) = c, for which the graphs of x(t) are contained in T.

EXAMPLE 2. Consider the optimal control problem

(44) minimize/   (a(t)x2(t)+ b(t)u2(t))dt

subject to

^p-=B(t)u(t)     a.e. in[-l,7r],

u(t) E U(t)     a.e. in [-l,7r],

x(-l) =x(n) = 0,

where

|-l/2,       0<i<7T, =   f   1/2,       0<i<7T,
I 0, - 1 < i < 0,       w      1 1,         - 1 < i < 0,

{1, 0<i<rr,

-1, tElklUlk3,

0, tElk2U{-l},

r [-1,1],   o<i<rr,
U(t) = \ ,J'       -   -   '     r > 0

I [-r,r],      -l<t<0,    ~

/fej = (-l/23fc+1,-l/23fc^-1],        fc = 0,l,..., j = 1,2,3,

oo      3

U [jh^ (-1,0].
k=0]=l

C.l.f. x(t), y(t),u(t), y° satisfy (42), (43) with new a(t),b(t), B(t), U(t) and y(7r) E

R, -y° E [0, +oo), |y(7r)| + y° ^ 0. Hence we calculate that

y° =-1,    z(t,ci) = ci sini,    y(t,ci) = ci cost,

u(t,Ci) = Cy COSt, t E [0,7r],   Cl E (-1, 1),

y° =-1,    x(t,c2) = sign c2c2 sini,    y(t,c2) = sign c2c2 cost,

u(t,c2) = signc2c2 cost,        t E [t(c2),n - t(c2)], c2 € (-tt/2,-1] U [l,7r/2),
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where t(c2) E [0,7r/2] is a solution of the equation sini = i/|c2|, t(c2) > 0 for

M > i,

y° = -l,x(t,c2) = sign c2i,

y(t, c2) = signc2(-±t2 + c2 cos t(c2) + t2(c2)/2),

u(t,c2) = signc2,        i€[0,t(c2)], c2 S (-tt/2,-1] U [1,tt/2),

y° =-1,    x(t,c2) =signc2(-t + 7r),

y(t,c2) = signc2(\t2 + irt + c2cosd- \d2 - rrd),u(t,c2) = -signc2,

te[ir-t(c2),ir], c2 E (-tt/2, -1] U [1,ir/2), d = rr-t(c2),

V°(c3) = c3,    x(t,c3) = 0,    y(t,c3) = 0,

u(t,c3) = o,   *e[-I,*], c3e(-i,o),

f°
y° = -l,    x(t,c4) = -c4       B2(s)ds,    y(t,c4)=c4,

u(t,c4) = c4B(t),        te[—1,0], |c4| < min(l,r).

If r < 1 (or r = 1), then

f°
y° = -1,    x(t,c5) = -sign c5r       B2(s)ds,    y(t,c5) = sign c5(r + c2),

u(t,c5) = sign(y(t,c5)B(t))r,        t E [-1,0], |c5| < y/l-r (or c5 E R).

If r > 1, then

f°
y° - -1,    x(t,c6) = -c6 /   B2(s)ds,    y(t,c6) = c6,

u(i, c6) = c6B(t),        tE [-1,0], c6E [1, r] U [-r, -1].

All trajectories meet at the point (0,0) but hypothesis (H2') is fulfilled.

We form the following canonical spray of flights for the case r = 1 (we proceed

analogously in the other cases):

so: y°(°~o) = cr0,    x(t,ao) = 0,    y(t,ao)=0,    u(t,ao) = 0,

t€[-l,7r], <t0 G (-1,0),

SJi: j/° = — 1,    z(i,cr) = an sini,    y(t,a) = ayy cost,

u(t,a) = ayy cost,        t € [0,7r], an = 1 — cr2, a E (—1,1),

ZUj-.y ° = -l,    x(t,a) = -ayy       B2(s)ds,    y(t,a) = ayy,

u(t,a)=ayyB(t), tElk3, k = 0,1,..., j = 1,2,2,,

^21: 2/° = —1,    x(i,fj) = (T2i sini,    y(t,a) = a2y cost,

u(i,cr) = <t2i cost,        i € [0,7r], fj2i = -1+a2, a E (-1,1),
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S2fci:y° = -1,    x(t,a) = -a2yl   B2(s)ds,    y(t,a) = a21,

u(t,a)=a21B(t),        tElkj, k = 0,1,..., j = 1,2,3,

s3i: 2/° = "I,    x(t,a31) = sign<73i(-i + 7r),

y(t,<?3i) — signa3i(|i2 +7ri + <r3icosd- \d2 - rrd),

u(t,031) = -sign«73i, t € [7T - t(a3y),ir],

°3i E (-tt/2, -1) U (1, tt/2), d = rr - t(a31),

s32: V° = -1,    x(t,a31) =sign(73i(T3ismt,

y(*,^3i) = signa3la3y cost,    u(t,a31) = signa31a31 cost,

*€ [t((T31),7T-t(fJ3i)],

Z*33:y° = -l,    x(t,(r3i) = signfj3it,

y(^,CT3i) = signcr3i(-|i2 +rj3iC0si((T3i) +i2(<73i)/2),

u(t,a31) = signa31,        t E[0,t(a31)],

S3fci:2/° = -1.    x(t,a31) =-signy(t,a31)       B2(s)ds,

y(t,o3l) = signa3y(a3yCOst(a3y) + t2(a3y)/2),

u(t,a31) =sign(y(t,a3l)B(t)),        tElkj, k = 0,1,..., j = 1,2,3.

We join the sprays of flights in three distinguished canonical chains of flights:

v*   y*    y*
^lli Zj101'Zj102, • • • '

^21' ^201'^202' ••• >

31> z-'32, ^33' ^SOl' 2-,302i-

These chains, along with Eq, form a concourse of flights (in the sense of §4).

Thus the pair x(t) = 0, u(t) = 0, t E [— l,n], affords (44) a strong relative

minimum.

REMARK. We would like to stress that the second example cannot be solved by

the construction from §3.
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