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TRANSLATES OF EXPONENTIAL BOX SPLINES
AND THEIR RELATED SPACES

ASHER BEN-ARTZI AND AMOS RON

ABSTRACT. Exponential box splines (SB-splines) are multivariate compactly

supported functions on a regular mesh which are piecewise in a space St

spanned by exponential polynomials. This space can be defined as the in-

tersection of the kernels of certain partial differential operators with constant

coefficients.

The main part of this paper is devoted to algebraic analysis of the space H

of all entire functions spanned by the integer translates of an BB-spline. This

investigation relies on a detailed description of St and its discrete analog S*.

The approach taken here is based on the observation that the structure of St

is relatively simple when St is spanned by pure exponentials while all other

cases can be analyzed with the aid of a suitable limiting process. Also, we

find it more efficient to apply directly the relevant differential and difference

operators rather than the alternative techniques of Fourier analysis. Thus,

while generalizing the known theory of polynomial box splines, the results

here offer a simpler approach and a new insight towards this important special

case.

We also identify and study in detail several types of singularities which

occur only for complex SB-splines. The first is when the Fourier transform of

the BB-spline vanishes at some critical points, the second is when St cannot

be embedded in S" and the third is when H is a proper subspace of St. We

show, among others, that each of these three cases is strictly included in its

former and they all can be avoided by a refinement of the mesh.

1. Introduction and the main results. The first part of this paper is pri-

marily concerned with the analysis of an s-dimensional space %? which is intimately

related to the so-called "exponential box splines". In general %? is the intersection

of the kernels of a certain set of partial differential operators with constant coeffi-

cients. In the univariate case this set contains one ordinary differential operator.

We prove that %? is always finite dimensional and is spanned by products of poly-

nomials by exponentials so that in this sense the multivariate setting generalizes the

univariate case. In addition to the continuous case described above we investigate

a sequence space 5? which is the discrete analogue of %?. This space is defined by

the parallel partial difference operators.

In the second part of the paper we give a detailed algebraic analysis of exponential

box splines, based on the results on ff and S", focusing on the space of entire

functions spanned by the integer translates of an exponential box spline and the

pre-image of this space.   The analysis is carried out with an intensive aid of the
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differential and difference operators mentioned above and essentially avoids Fourier

analysis which is usually applied to similar problems.

In the sequel we first introduce the exponential box splines and review some of

their elementary properties. Then the spaces 2? and 5? are defined and some of the

main results are presented. Finally we give the outline of the paper and conclude

the introduction with several notations and conventions.

In the following | |, ( ), •, denote cardinality, linear span and scalar product

respectively. The exponential function exp(6x) is abbreviated as e$_(x).

Let r be a finite set consisting of pairs (not necessarily distinct) of the form

(1.1) 1 = U1,X1),        ^ E ls\{0}, X-! E C.

Let h be a positive scaling parameter. The exponential box spline based on T is a

distribution which is defined via its Fourier transform as

rh
(1.2) Bh(T\x) = J [ /   e^-^^dt.

l€TJo

It is known, [Ri], that under the assumption

(1.3) (fejier) = Rs,

Bn(F\-) is a compactly supported function. Its support is included in (and usually

equals) the convex polyhedron

(1.4) Rh(T) := \ J2 fcyfc,   0 < fc, < h V7 E r 1 .

When A-, = 0, all 7, Bh(F\-) is a piecewise polynomial function and is termed

"a polynomial box spline" or simply "a box spline". Polynomial box splines were

introduced by de Boor and DeVore, [BD], and investigated by de Boor and Hollig

[BH], Dahmen and Micchelli [DM1-3], Jia [Ji,2] and others. The general expo-

nential box splines were introduced in [Ri,2]-

Let us now present the distribution space and the sequence space which are

studied herein. Denote for x E Rs by Dx the distributional directional derivative

in the x-direction and by the Ex the shift operation defined by

(1.5) Exf-^f(--x).

Every K C T is associated with the following partial differential and difference

operators

(1.6) DK:=]J(Dxi-X1),

(1.7) V*:= Y[(I-eh^Eh^),

where / is the identity mapping. Here DK acts on 2'(RS), the space of all complex

valued s-dimensional distributions and Vj^ acts on both 2>'(US) and space of all

sequences defined on the lattice

(1.8) Zsh:={aEUa\h-laEla}.
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Now the distribution space corresponding to T is defined as

(1.9) #(T) = {fE 2f'(Us)\ DKf = 0, VK c T, 9 {{x^ervc} * Rs},

while the discrete space is defined analogously as

(1.10) 3%(T) = {u: 2sh] V*u = 0, WK C I\ 3 ({^}76r\K> * R8}-

It can be shown, [Rx], that for every K CF and f E 3t'(Us)

(1.11) V*f = Bh(K) * DKf.

The last formula allows us to produce sequences in <f?%(If) by restricting elements

of J^(r) n C(RS) to the lattice points. This close relation between the two spaces

is used here to bound the dimension of ^"(T) in terms of the dimension of S%(T).

The following sets, independently introduced in [DM2] and [J2], are useful for

local analysis of ^(r):

(1.12) brh(x) = {aE2sh\x-aERh(T)}.

&£(•) can be viewed as a map from Rs to subsets of 1sh. Every maximal open set

where b\(-) is constant is termed a T-h cell. The union of all cells is denoted by

Ah(T). It is easy to see that An(T) is open and dense in Us. Also, it is known

[Ri], that the exponential box spline Bh(T) and each of its translates by a E Tsh

are infinitely differentiable on Ah(T).

Another set which plays an important role in the investigation of J%*(T) and

<9h(T) is the set of all "bases" in T

(1.13) JfT) = {J C T| \J\ = a, ({x^^j) = R°}.

Given J E 3(T) the notation Xj stands for the s x s matrix whose columns are

{X^}-,€J-

Since spaces of functions on Rs which are spanned by exponential polynomials

frequently occur in this paper, we find it convenient to refer to such spaces as "PE

spaces". Analogously the restriction of a "PE space" to the lattice Tah is called "a

PE sequence space".

The main results on %?(Jf) and <5^(r) are summarized in the following theorem.

THEOREM 1.1.   Assume ({x-J-yer) = Ra-  Then

(a) ^(T) and S*h(r) are finite dimensional PE spaces.

(b) dimX(r) = |JfT)|.
(c)dim^(r) = EjeJ(r)|detAJ|.

(d) For any x E A^(r) the set bj^(x) is unisolvent for interpolation by elements

of &h(Jf) namely any data on b\(x) is uniquely interpolated by 5*h(T).

We also derive a necessary and sufficient condition for the existence of a unique

interpolant / E ^(T) to every u(-) E S%(T).

In the case A^ = 0 all 7 (= the polynomial case), the results stated in Theorem

1.1 are due to Dahmen and Micchelli [DMi_3]. In particular, the polynomial case

of Theorem 1.1(b) was proved in [DM2] by simultaneous induction on |r| and s.

The method taken here is essentially different: we establish first Theorem 1.1 for the

"splitting" case (termed simple) in which fif'T) is spanned by pure exponentials.

The passage to the general case is executed by a unified limiting process primarily

based on the following theorem.
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THEOREM 1.2. Let L be a positive number and n a positive integer. Denote

by E(n,L) the set of all s-dimensional functions of the form 5Z?=1 Cjeej(x), where

cy,... ,cn are complex numbers and the exponents 01,... ,dn satisfy the following

condition: maxi<r<s;i<j<n \6_l\ < L. Let {Hj}'jLy C E(n,L) be a sequence of linear

spaces.  Then there exists a subsequence {Hjl }fffy and a function space H such that

(a) dimH = mindimi/j =: d.

(b) Every f E H is a limit in the C°°(IRS) topology of a sequence {/,, \fjl E Hj^l}.

The fact that <%*(r) is closed under differentiation (D-invariant) and <5^(r) is

closed under translates by a E Zsh (shift-invariant) is of fundamental significance

here. The following theorem gives a characterization of a finite dimensional space

which satisfies such invariance properties.

THEOREM 1.3. (a) Every finite dimensional D-invariant distribution space is

a PE space.

(b) Every finite dimensional shift-invariant sequence space is a PE sequence

space.

Theorem 1.3(a) can also be stated with D-invariance replaced by translation-

invariance. Thus, for the space of tempered distributions rather than 2f'(Us) this re-

sult follows directly from the Whitney-Schwartz theorem, [S2, Theorem VI], which

says that every closed translation-invariant space of tempered distributions con-

tains a dense PE subspace. Yet, the analogous results to the Whitney-Schwartz

theorem for other spaces are usually not valid. E.g., for C°°(RS) the claim is true

only for s = 1 (see [Si,G]).

In §2 we prove Theorem 1.2 and apply this theorem to show that

(i.i4) dim^(r) > |j(r)|.

§3 is devoted to the proof of Theorem 1.3. In §4 it is first shown that S^h(T) and

<^"(r) are finite dimensional PE spaces. Then their structure is analyzed in detail

with special emphasis to the "simple" case. The proof of Theorem 1.1 is completed

in §5.

Substituting / = Bh(F\K) in (1.11) one obtains the identity, [Rx],

(1.15) V%Bh(T\K) = DKBh(T),        VifcT.

This simple formula is our basic tool in the investigation of exponential box splines

made in §6. There we define for u: Tsh

(1.16) Bh(T) *hu:= £ u(a)Bh(T\ ■ -a),

and view Bh(T)*h as an operation from the space of all sequences defined on 1sh.

Our aim is to characterize the space Hh(r) of all entire functions in the range of

Bn(T)*h. The main relations between Hh(r), X(r), &h(T) and Bh(T)*h are as

follows.

Theorem 1.4.

fll7l (a)H,(r)c^(r).
1 '    ' (b) Bh(T) *n maps S%(T) onto Hfc(r).
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The analysis of H^(r) is completed in §7 where we establish necessary and

sufficient conditions for equality in (1.17) and derive a formula for dimHh(r). To

describe some of the results of that section denote:

(1.18) OfT) = {lECs\3J E J(r), 9 x7 • 0 - X1 = 0 V-y E J}.

Then we have

THEOREM 1.5.   Consider the following three conditions:

(a) Bh(T\-i6)^0, V0ES(T).
(b) h(£ -02) <£ 2ni2s\0, V0\02 E B(T).

(c)Hh(T)=^(T).
Then (a) => (b) =*> (c).

It is also proved that in the univariate case conditions (b), (c) of Theorem 1.5

are equivalent. Yet, with the aid of a bivariate counterexample we show that in the

multivariate case the implication (c) => (b) is not valid.

In this paper we consistently use standard multivariate notations. Thus for

a E Is, x E Us we use \a\ = a, + ■ • • + as, D^) = d^/dx"1 ■■■dx°° and

x— = rn=i x,■' ■ The space of all s-dimensional polynomials is denoted as usual by

it. Also we find it convenient to denote for every K C T

Xk '■= {x^}l€K,        XK := {A7}7€/<-,        (K) := (XK).

A vector x^ (with 7 E T) is sometimes treated as the pair (x ,0). So DXk =

Yl^^Dx , Bh(X}<) is the (polynomial) box spline based on (Xk,Q) etc. When

concerning a set of a single element we usually omit brackets; thus D1, V^"\ T\7
sx   \

are used rather than the rigorous notations D^1', V^-7 , T\{7}. Whenever it is

possible we may identify a function space with its restriction to the lattice points.

Finally, to simplify the definition of 3?(T) and <f7k(T) we denote

(1.19) 3?(T):={K cT](r\K)iLRs}.

With the aid of this notation we may write

sT(T) =     f|     kerDK,        <9h(T)=     f|     kerV^.
K&T(T) K€^(T)

2. A lower bound for dim^(F). We make here the first step in the analysis

of ̂ (T) and <5^(r) by showing that

(2.1) dim^f(r) > |J(T)|.

In case Ar = 0, this result is Theorem 2.2 in [DM2] which was proved there by

induction on |T| and s. The method used here differs from that of [DM2]. First

we prove (2.1) for "simple" defining sets and then apply Theorem 1.2 to extend the

results to general T's. The proof of Theorem 1.2 is postponed to the end of this

section.

Given a defining set T and 9eCs denote

(2-2) Te_={lET\x1-9-X1 = 0},

and define (compare with (1.18))

(2.3) e(r) = {£ecs|(ri) = Rs}.
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The elements of 0(r) will be referred to as "nodes". Note that for 7 E T and

9 E Cs, D^ee_(-) = 0 if and only if 7 6 Te_. Now, for 9 E &(T) and K E Jt(T) one

has by definition (T\K) ^ Rs and consequently (2.3) implies K n Tg ^ 0. Thus

DKee_ = DK\T°-(DKnT°-e9_) = 0,

and we conclude

PROPOSITION 2.1.   For each 9 E S(T), ee_(-) E %*(T). In particular dimX(r)

> |e(r)|.

Let J E J(r); since J is a "basis" it determines a unique 9 E &(T) for which

i. ■ x-, - Xrj = 0, V7 6 J. Moreover, every 9 E Q(T) can be obtained in this way

because (Te) = Rs and thus contains some J 6 J(r). Hence we conclude

(2.4) \3(T)\ > |6(T)|.

Equality in (2.4) does not hold in general. One may have several J's which cor-

respond to the same 9 E &(T). E.g., in case Ar = 0 the only node in 6(r) is 0.

In order that equality holds in (2.4), it is necessary and sufficient that for each

9 E O(r) the set Tg will contain exactly s elements (namely Tg will be a "basis"

from J(r)).
DEFINITION 2.1. We say that T is a simple defining set if |J(r)| = |6(r)|.

In a simple case Proposition 2.1 can be restated as follows.

PROPOSITION 2.2.   Assume T is simple.  Then dim^"(T) > \J(T)\.

In order to extend this last result to general defining sets, we need to know how

often one encounters simple defining sets. This question was answered in [Ri] in

the following way.

PROPOSITION 2.3. Let X be a set of n nontrivial vectors in Rs. Assume (X) =

Rs. For each X E Cn, denote by T\ the defining set composed of (A. A). Then the

set {X E Cn|r,x is simple} is open and dense in Cn. Its complement is the union

of finitely many hyperplanes of C™.

Now, we combine Theorem 1.2 together with Propositions 2.2 and 2.3 to derive

THEOREM 2.1.   For every defining set T dim^(T) > \J(T)\.

PROOF. Let r be fixed. Proposition 2.3 ensures the existence of simple defining

sets {Tk}kLi such that Xrk = Ar for all k and Ar     —►   Ar. By Proposition 2.2
fc—»oo

dim^(rfc) > |j(rfc)| = |j(T)|,

for all k. Also since {Art}fc^=1 are all equal and {Art}fc?=i is convergent, it follows

that UfcHi @(rfc) is bounded, say by L > 0. Now if fk E %*(Tk) and fk   -*   f in
k—* 00

C°°(RS) topology then for every K E 5?(T)

DKf=  lim DK*fk=0
k—>oo

where {Kk}kLy are the corresponding sets in {^(Tk)}kLn and thus / E ^(T).

Application of Theorem 1.2 with n replaced by |J(r)| completes the proof.    □

We now turn to the proof of Theorem 1.2. This proof is primarily based on the

following lemma.
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LEMMA 2.1. For each k E N, L > 0 and compact M C Rs there exists a

constant c = c(k, L, M) such that if f E E(k, L) and

(2.5) |#(a)/(Q)|<e,        0<|a|<fc,

then

(2.6) |/(x)| < ec,       VxeM.

PROOF. Clearly we can and shall assume e = 1. Define R = R(M) =

supxeM ||x||oo- Fix x° E M and choose y E Rs and 0 <to < R such that \\y\\oo — 1

and x° = yin- Define

v(t) = f(ty)-

It follows from (2.5) that

(2.7) \f{j)(0)\ = \(Dy)Jf(0)\<s^ <sk,        j = 0,...,k-l.

Also, since / € E(k, L) we have that (p(t) = J2j=i cjeXj(t) where

(2.8) \X]\ = \9J-y\<sL.

Therefore, <p(t) lies in the kernel of

fc

l[(D- X3) = Dk + ak-iD"-1 + ■ ■ ■ + ao,

3=1

where D = d/dt and the coefficients ao,..., afc-i satisfy

(2.9) |flj| <Ly :=2k(l + sL)k.

Writing this differential operator in the usual matrix form we have

/     '  x        /   0      1    0    ...        0     \   ,
ZA        ooi...      0   )      *\

(2.10) .        =       j : .

\tpwj    I  ° ••■     1    I Ktpt*-1))
^ V-Oo    •     •    ...    -ak-yj     ^

Thus denoting the matrix in (2.10) by A we find that

/     <P(0)     \

(2.11) <p(to) = (l,0,...,0)eAt° .

\<p(k-V(0)J

From (2.9) we infer that He^Ha, < ekLlt°, so (2.7) together with (2.11) yields

\f(x°)\ = \<p(t0)\ < kskekLlt0 < kskekLiR.

Since x° E M was arbitrary the proof is completed by setting

c = kske{k2k(l+sL)k\R(M)_      D

The following result easily derived from Lemma 2.1 will be the crux in the proof

of Theorem 1.2.
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COROLLARY 2.1.   Let {fj(x)}^Ly C E(n,L). Assume

(2.12) D[^fj(0)   -»   aaEC,        0<\a\<2n.
J-.00

Then {fj}'jL1 is convergent in the C°°(RS) topology.

PROOF. First we identify Cs with R2s in the usual way

(Zy,...,Zs) ~ (ly +ixs+y,...,Xs+ix2s).

Every / E E(n, L) extends to an entire function which we denote by /. Then

(2.13) d~f =    i   df    = df =  df =1
' dzj dxj+s      dxj      dxj' >•••>•

By (2.12) we know that {D^ fj(0)}JL1 is a Cauchy sequence for every 0 < |a| <

2n. From (2.13) we conclude that {£>(a)/(0)}, 0 < ]a] < 2n, is also a Cauchy

sequence (namely when the derivatives may be taken with respect to all variables

(xy,... ,22s))- Thus by application of Lemma 2.1 to fj — fm (with s replaced by

2s and k = 2n), we find that for every compact M C Cs and e > 0 there exists jo

such that for every j, m > jo and xEM

\fj(x)-fm(x)] <s.

Hence {fj}^y is a Cauchy sequence in H(CS) and therefore {fj}°Zzl is a Cauchy se-

quence in C°°(IR'5). Now the corollary follows from the completeness of C°°(RS).    □

PROOF OF  THEOREM  1.2 Let m = (2n+s8_1) be the number of all a E 1%

with \a] < 2n. Let x be a map from E(n, L) to Cm defined as follows:

X(/) = {£>(-)/(Q)}o<|a|<2n.

From Lemma 2.1 we conclude that x is 1-1 on each H}; hence x(Hj) is a subspace

of Cm of dimension > d. So we can choose for each j a set {fj,y, ■ ■ ■, fj,d} C Hj

such that {x(/>,fc)}fc=i is an orthonormal set in Cm. Since the unit sphere of Cm is

compact we can find a subsequence {jr}?Ly such that {x{fjr,k)}^=i is convergent

for fc = 1,... ,d. By Corollary 2.1 there exist fy,...,fd in C°°(RS) such that

f jT,k      *   fk, k = 1,.. ., a,
r—+oo

in C°°(RS). Denote H = (fy,. ■ ■, fd)- Let us show that dimH = d by proving that

fy,..., fd are linearly independent. Assume a E Cd, J2k=i akfk = 0 on Rs. Then

d

lim ^2akfJr,k =0
r—>oo *—'

fc=l

in C°°(RS) topology. Since x is continuous on C°°(RS) we conclude that

d

lim y"ajfcx(/;r,fc) =0
r—>oo *—'

fc = l

in Cm. But for each r {x(fjr,k)}k=i ls orthonormal and therefore

d d

X^M2=  ^2akx(fJr,k)    r^oo°-
fc=l fc=l 2

Consequently a = 0 and the proof of Theorem 1.2 is completed.    D
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3. Proof of Theorem 1.3. Before proving Theorem 1.3 we state and prove

an apparently weaker result.

LEMMA 3.1. (a) Every finite dimensional D-invariant subspace H of a PE

space is also a PE space.

(b) Every finite dimensional shift-invariant subspace S of a PE sequence space

is also a PE space.

PROOF, (a) Let f E H. Since / belongs to a PE space it has the form

n

(3.1) f(x) = Y^P}(x)egj (x),        Pj E rr, 9j E Cs, j = 1,..., n.

3=1

Without loss of generality we can assume that {0-?}™=1 are pairwise distinct. Thus,

for j = 2,..., n there exist x? E Rs and Xj E C such that

£  ■ 9}   - Xj   / 0, Xj  ■ 9J   - Xj   = 0.

Denote

D* = D^ - Xj;

then for every p Err

iy[ee}(-)p(-)]=es}(-)q(-),        dego(-) = degp(-),

but

Djleej(-)p(-)} = eeJ(-)[Dsip(-)].

Defining Ly = n"=2(^)degPj + 1, we see that Lyf(-) = ee(-)q(-) where degg(-) =

degpi(-). Since H is D-invariant, we know that Lyf E H. Denote by Hy the

subspace of H consisting of elements of the form egi (-)p(-), p E n. Since Hy is of

finite dimension, the preceding arguments show that Ly is an injective map of Hy

onto itself. Thus, since q(-)eei(-) E Hy and Ly(eei(-)py(-)) = eei(-)q(-) we must

have ee\ (-)pi(-) E Hy C H. This argument can be applied to any index other than

1; consequently {ee, (-)p} (-)}?=1 C H and (a) is established.

The proof of (b) is analogous: if u E S, then since S is included in a PE space,

we have

n

(3.2) u(a) = ^2 eyP (^)Pj (Q)'        PjEtt, 9J E Cs, j = l,...,n.

3 = 1

Since we take a E 2s we can assume 9J - 9k & 2iriZs for j ^ fc. Given 2 < j < n

we can therefore find gf E Is and A^ E C such that

and denote
n

Ai = n(^-eAj)despj+i-

j=2

The rest of the proof is identical to that of part (a) with Ai replacing Ly.    □

Next, we reduce the first part of Theorem 1.3 from 2'(RS) to C°°(RS):
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THEOREM 3.2. Let H be a subspace of 2f'(Us) which is closed under con-

volution with compactly supported C°° functions. Assume H fl C°°(RS) is finite

dimensional.  Then H C C°°(RS).

PROOF. Denote N = dim(H n C°°(RS)). Let fy,...,fN+i C H. Let {<ph}h>o
be an infinitely differentiable approximate identity of compact support (see [Ru,

p. 157]). Then {fj * p/,}^1 cHn C°°(RS), so there exist ch := {chj^Jy1 such

that
(N + l \ N + l

J2 Ch<3fj ]*<Ph=J2 ChMi * ̂ h) = 0.
3=1 J 3=1

We can assume Y*j=i ch,j = 1 f°r &u ^ an<^ *ne compactness of the unit ball in

CN+1 implies the existence of a sequence hk    —►   0 such that ch     —►    c° ^ 0.
fc—»oo fc—>oo

Therefore
JV+l I N + l \

Yl c°ifi = fc!™,    £ cw/i    * fhk = 0.
3=1 ^°°   \3 = 1 J       .

Consequently, dimH < N which implies H = H n C°°(RS).    D

We now turn to the proof of Theorem 1.3(a). Denote the space under consider-

ation by H. Let {eJ}^=1 be the standard basis of Rs. We know that D^ is a linear

transformation which maps H into itself. Denote by Dej]n the restriction of Dej to

H and by (AJ:i,..., Xj<n) the spectrum of De, \jj counting (algebraic) multiplicities.

Then by the Cayley-Hamilton theorem
n s

°3 ~ n(ds?\" - a*>*)=0'  h c nkerDj =: Hi-
fc=i j=i

Clearly, Hy H C°°(RS) is a finite dimensional PE space. In fact a basis to Hy (1

C°°(RS) is given in terms of the functions e\[x)x—, where for every 1 < j < s, Xj

lies in the spectrum of Dej\H and Uj — 1 does not exceed the multiplicity of Xj.

But Hy is also closed under convolution with test functions. Indeed for f E Hy

and gE&(Rs) one has

Di(f*g) = (Dif)*g = 0,        j = l,...,s.

Therefore, application of Lemma 3.2 yields that Hy is a PE space and hence by

Lemma 3.1 so is H. This completes the proof of Theorem 1.3(a).

To prove (b), note that the same arguments used in the proof of part (a) show

the existence of A1,..., As E C" such that

Sc fl (^f[(EeJ-Xi)\=:Sy.
j=y V       fc=l /

Since Sy is clearly a PE sequence space, Lemma 3.1(b) yields the desired result.    □

In the analysis of ^(T) and ^(r) we frequently investigate the restriction of

a PE space to the lattice points. When doing so a certain precaution is needed: in

case 91 - 02. E 2rri2s one has

e$}(-)\z> =egi(-)\z>,

and therefore a function cannot be identified with its restriction.   The following

proposition shows that besides this case restriction to Zs is "safe":
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PROPOSITION 3.1.   Let {ff}]=1 C Cs, ff - 9k <£ 2mls for j / fc. Let

fj(-) = «9>(-)Pj(0        Pi e tt, j = l,...,n.

Then {/>(•)}?= j are linearly independent on Is.

PROOF. Assume £"=1 /_,■(«) = 0, Va C Zs. Since 0fc - ff <£ 2nils for fc ̂  j,

one can construct as in the proof of Lemma 3.1(b) a difference operator Ai such

that

A1/,(-)=0,        j = 2,...,n,        Ayf1(-)=ee_1(-)q(-),

where degg = degpi. Since ]C?=i fj vanishes on Is we conclude that q(-) vanishes

on Zs. Thus q(-) = 0 and hence pi(-) = 0. Application of induction to n completes

the proof.    □

Note that every eej (-)|z> can be viewed as a complex homomorphism of Zs. Thus

the case pj = const,, j = 1,... ,n, could also be obtained by Artin's theorem about

the linear independence of homomorphisms (see, e.g., [L, p. 209]).

Finally, we mention the following fact which is easily verified by the methods

used in Lemma 3.1.

COROLLARY 3.1. Let F be a D-invariant subspace of a PE distribution space

or a shift invariant subspace of a PE sequence space. Then F contains an expo-

nential.

4. The structure of Jf(T) and £%(T). We first show that S%(T) and %*(T)

are of finite dimension, which allows us to deduce from Theorem 1.3 that they are

PE spaces. This fact greatly simplifies the analysis of their structure.

Fix h > 0 and J E J(T) and denote

(4.1) G( = {Xjg\gErh}.

Since Xj C Zs we know that G^ is a subgroup of lsh of index | detXj\. On the

other hand, it is easily see that the sets {Rh(J) — Qt\ gE G^} form a partition of

Rs. This means that for every y E An(T), each coset of 67^ is uniquely represented

in b^y). In particular

(4-2) ^(y)| = |detAj|,        Vj/eAfc(r).

(4.2) is actually a special case of [DM2, Theorem 3.1] which will be used in its full

generality in the next section.

THEOREM 4.1. Let y E Ah(T). Then the operation of restricting elements of

<9%(T) from Tsh to b^(y) is injective. In particular dimS^(T) < \b^(y)\.

PROOF. We prove the theorem by induction on |r| > s. Assume |r| = s (and

(r) = Rs). Let u(-) E ^(r) and assume that u^r^) = 0. Since |r| = s we have

(r\7) ^ Rs for all 7 G T and therefore

(4-3) u(-)E f] kerVI
ier

Using (4.3) it is easily seen that if u(g°) = 0 for some g° E Tsh then u(-) vanishes

on the coset g° + G£. Since b]^(y) intersects every coset of G£ in lsh we conclude

u = 0.



694 ASHER BEN-ARTZI AND AMOS RON

Assume |r| > s, u E S"(T), u\br,y) = 0. Let 7 € T. If (r\7) / Rs then V^u = 0.

If (r\7) = Rs then we claim that

(4-4) ^^SO.

To see this assume a E &h (|/); then it follows from (1.4) and (1.12) that a,

a-hx^E bl(y). Therefore V^u(a) = 0-0 = 0.

By the induction hypothesis (4.4) implies Vjju = 0. This implies that V^u = 0

for all 7 E T. Let J E J(r). Then u]bj,y\ = 0 because bJh(y) c b\(y). Hence by the

first part of the proof we conclude that u = 0.    D

REMARK 4.1. It is clear that min{|6^(y)| | y E An(T)} is independent of h.

Therefore we see that the bound obtained in Theorem 4.1 to dimS^h(T) is also

independent of h.

REMARK 4.2. Comparison of Theorem 4.1 here with Theorem 3.3 of [DM3]

shows that Theorem 3.2 in [DM3] is actually redundant.

We apply now Theorem 1.3 to show that S^(T) and ^(T) are PE spaces. Note

that Theorem 1.3(b) was proved only with respect to sequences defined on 2s rather

than 2sh. Yet, the extension to arbitrary h is trivial.

COROLLARY 4.1.  ^"(T) andS^^T) are finite dimensional PE spaces.

PROOF. In view of Theorem 1.3 and the obvious fact that JJ?(T) is .D-invariant

and ^h(r) is shift invariant, it is enough to prove that these spaces are of finite

dimension. For ^(r) this was proved in Theorem 4.1.

To prove that ^(T) is of finite dimension, let N E N and assume that {fj(-)}jLy

are linearly independent functions in ^"(T) nC°°(Rs). Choose h > 0 small enough

such that

«i(-):=/i(0lzji        j = l,.-.,N,

are linearly independent on 2sh. From (1.11) one easily deduces Uj E S%,(T), j =

1,...,N.  Thus since dimS^n(T) is bounded uniformly in h, we see that ^(T) fl

C°°(RS) is of finite dimension. Application of Lemma 3.2 completes the proof.    □

REMARK 4.3. Theorem 4.1 admits a continuous analog which shows in par-

ticular that dim^(r) < |J(r)| (see [DR]). That result can be used to give an

alternative proof for Corollary 4.1, hence to derive Theorem 1.1 regardless of the

restriction Ap C 2s.

Now, we use Corollary 4.1 to reveal the structure of £?(T). For this purpose let

Tt and O(r) be as in (2.2), (2.3) and denote for every 9 E Q(T)

(4.5) Xe_={(x,0)\xEXrt},

i.e., Xg_ is the defining set obtained from Tg when replacing Arfl by 0.

THEOREM 4.2.   The space J%*(T) admits the following direct sum decomposition

(4.6) &(T)=   ©   *(Tg)=   0   ee_(W(Xe),
eee(r) £ee(r)

where each ^(Xg) is a nontrivial polynomial space. In particular

(4.7) ee(-) 6 &(T)    if and only if 9e Q(T).
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PROOF. By Corollary 4.1 it is enough to identify in £?(T) the functions of the

form eg_(-)p(-),p E n, 9 E Cs. We start by proving that eg_(-)p(-) E J*?(Y) only if

9 E 6(r). Given such a function we see that for 7 € Tg

Di(el(-)p(-)) = el(-)Dxip(-),

while for 7 E T\Te_

D"1 (eg_(-)p(-)) = eg_(-)q(-),    where degq = degp.

Thus for K C T

(4.8) DK(e9_(-)p(-)) =0^> DKnTt(ee_(-)p(-)) = 0 o DXr°-nKp(-) = 0.

If £ g e(T) then (Tg) ^ Rs and hence r\r£ E Jf(T). On the other hand, (4.8)

shows that £>r\ri(ee(-)p(-)) ^ 0 because (r\Te)nrs = 0. Consequently et(-)p(-) £

<%*(T). Combining this result with Proposition 2.1 verifies (4.7), and since &(Xg) =

{0} for every 9 E ®(T), we also conclude that %?(Xg) contains only polynomials.

Finally, (4.6) easily follows from (4.8) and the observation that

3r(Te) = {KnTs] KeJT(T)}.    D

We now turn to the analysis of <9h(T). Here for 0 E Cs we define

(4.9) f£,h = {7er|e'l^-£V»)=l},

and introduce the set of "discrete nodes"

(4.10) 0fc(r) = {0E Cs\(fe_,h) = R8, Img E [0,2rrh-1)s}.

To analyze S%(T) we first prove the following result.

LEMMA 4.1.   Let K C T, p E n.  Then

V*Kp = 0 => DXKp = 0.

PROOF. Given a compactly supported <j> E 2f'(Rs) and q E ir it can be shown

that

(j) * q = (f>(0)q(x) + a polynomial of lower degree than q(x).

In particular <f> * q = 0 and <^(0) ̂  0 imply q = 0. Now assuming V*Kp = 0 we get

from (1.11) that Bh(XK)*DXlip = 0, and since Bh(XK]0) ^ 0 then DXkp = 0.    D

Now, we combine Corollary 4.1 together with Lemma 4.1 and Proposition 2.1 to

conclude

Theorem 4.3.

(4.11) <?h(T)=    0    ee_(-W(Xe_,h),
£ee„(r)

where

X§_,h = {(^,0)| 7efflih}.

REMARK 4.4. By the convention stated in the introduction only restrictions

to 2sh are considered in (4.11).

PROOF. The sum ©0€Qh(r) eg(-)^(Xgth) is indeed direct. This follows from

(4.10), Proposition 3.1 and the fact that each ^(Xg^) contains only polynomials.
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Now, for 0 E Cs, 7 E Tgth and p E ir

V2M-M-)) = e,(-)V^p(-),

while for 7 ^ Tg^

V2(ee(.)p(.)) = ee(.)9(.)    where degp = degg.

Utilizing Lemma 4.1 we see that our claim is obtained by the same arguments used

in the proof of Theorem 4.2.    □

Usually the set of discrete nodes 6^(r) is richer than that of nodes 6(r). On

the other hand, if 0 E O^(r) fl ©(r) we may have Tg_ ̂ Tg<n. Yet, this last case is

not "stable" and can be avoided by a refinement of the mesh.

PROPOSITION 4.1. For every T there exists a positive number ho, which de-

pends only on Ar and ||Ar||oo, such that for every h < ho

(a) 6(r) C Sh(T), and

(b)Tg_ = fg_,h,V0Ee(T).
Moreover, if Xr C R then (a), (b) hold for every h > 0.

PROOF. It is easy to see that there exists ci > 0 which depends only on Ar

such that

(4.12) ||£||oo<ci||Arlloo,        V0e6(T).

So, in view of (4.10), the choice h < 27r(ci||Ar||00)~1 gives (a). Given 0 E Cs we

see from (4.9) that

"7 E fg,h o h(X1 -x^-ffE 2iri2s.

But (4.12) implies the existence of C2 > cy (dependent only on Ar) such that

[X^-x^-e] < C2||Ar||00 for all 7 E T, 0 E Q(T). Thus given 9 E G(T) and 7 € T\Tg_

we have for h < ho = 27r(c2||Ar||00)_1

0 < \h(X1 - x^ ■ 0_)\ < hc2\\X1\\00 < 2tt,

which shows that 7 ^ Te,h- Thus Tg_ D Tgth whereas the opposite inclusion is

trivial.

Finally, note that if Ar C R then clearly O(r) C Rs so that for every h > 0,

1 E fg,/, o h(X1 -x^-ffjE 2iri2s <* A7 - x^ • 0 = 0 o 7 E Tg

which proves (b), while (a) in this case is trivial.    □

Note that Proposition 4.1 says that for small enough h, ^(T) is embedded in

Jfh(T). Note also that the proof of this proposition shows that 0/j(r) — O(r) tends

to infinity as h tends to zero.

Comparing (4.9) and (1.2) we see that for 0 E Q(T)

(4.13) thh = Te_oBh(T\-i6)±G.

Therefore Proposition 4.1 implies the following corollary.
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COROLLARY 4.2. For every T there exists a positive ho, which depends only

on Ar and HArlloo such that for every h < ho

(4.14) Bh(r\ - ig) ? o,     wee(r).

In case Ar C R, (4.14) holds for every h.

5. Proof of Theorem 1.1. Here we complete the proof of Theorem 1.1 and

establish several additional properties of £f(T) and S%,(T).

First we derive the following quantitative result about the set O^ (r) of discrete

nodes:

LEMMA 5.1.   ForanyJEi(T)

]Qh(J)] = ]detXj].

PROOF.   Fix 0° E @h(J) and let 0 E C3 be arbitrary.   Then by (4.9), (4.10),

0 E Oh (J) if and only if eh(-~-]-i =1, V7 E J. This condition is equivalent to

ee_go(-) being a complex homomorphism of 2sh which is constant on the cosets of

G£ in 2sh. Each such homomorphism can be factored as follows

n   7 n/GJh

c

where q is the quotient map and x is a character of the finite abelian group 2sh/G3h.

Thus we established a one-to-one correspondence between the characters of this

last group and the elements of Qn( J) and our claim follows from the fact that

\2n/GJh\ = \detXj\.    n

In the proof of Theorem 1.1 we will also use the following combinatorial result

which is due to Dahmen and Micchelli.

PROPOSITION 5.1 [DM2, Theorem 3.1]. For every h > 0 and every y E

Ah(T)

\brh(y)\=   J2   I det JO I.
J€J(T)

PROOF OF THEOREM 1.1. Part (a) was established in Corollary 4.1. Applica-

tion of Theorem 2.1 to each of the components in (4.11) yields

(5.1) dimmer) >    J2    lJfe)l.
9ee„(r)

with equality if and only if

(5.2) dirrnTfofc) = |J(f£,ft)|,        W E Sh(T).

By Lemma 5.1 we know that each J E J(T) lies exactly in |detAj| sets from

{fth\0eeh(T)},so

J2 |j(f£,fc)i= J2 \detxj\-
eeeh(r) jeJ(r)
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Hence (5.1) implies

dimJ^(T)>    Yl   I det A'j I,
JeJ(r)

whereas Theorem 4.1 says that

dim^h(T)<\bTh(y)\,        VyEAh(T).

Therefore, application of Proposition 5.1 completes the proof of (c), which in view

of Theorem 4.1 also gives (d).

To prove (b) note that we have just shown that equality holds in (5.1); hence

(5.2) is valid for every h > 0. Thus by appealing to Proposition 4.1 we obtain

(5.3) dimJT(Tg) = \J(Tg_)\,        V0 E 6(r),

and since every J E J(T) is contained exactly in one set from {T^l 9 E O(r)}, (b)

follows from Theorem 4.2.    □

Combining Theorem 1.1(b) and Proposition 2.1 one obtains the following result

which could also be verified directly:

COROLLARY 5.1.   Assume T is simple.  Then

*AT)=  0 <*(•)•
£ee(r)

As a by-product we also derive

THEOREM 5.1. Let T be a defining set and fix h > 0. Then the following
conditions are equivalent:

(a) To every u E 5%.(T) there corresponds a unique f E %?{T) which interpolates

«(•) (onZfc)-

(b)

(5.4) |detAj| = l,        VJeJ(r),

(5.5) 9k - ff <£ h~l2-Ki2s\{0},        V0k,ff E S(T).

PROOF. Comparing parts (b) and (c) of Theorem 1.1 the necessity of (5.4) is

clear. Assuming (5.4) we know from Theorem 1.1 that dimSh(T) = dim^(T)

whereas by (1.11) 3f(T)\z<> C S%(T). So to establish (a) it is necessary and suffi-

cient that restriction to 2sh will be one to one on 3?(T), which by Theorem 4.2 and

Proposition 3.1 is equivalent to (5.5).    □

Part (d) of Theorem 1.1 can be restated as follows:

COROLLARY 5.2. For every a E Rs denote by Sa the linear functional of evalu-

ation at g. Then for every x E Ah(T) the set {ba}aebr(x) forms a basis to the dual

of J/h(r). Namely every linear functional p onS*h(T) has a unique representation

of the form

(5.6) p(u)=   J2   ca"(")'       Vue^h(r).
SL€brh(x)

Now, when (5.5) holds we know from Proposition 3.1 that ^(T) is embedded in

3%.(T) and thus Corollary 5.2 yields the following.
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COROLLARY 5.3. Let x E An(T) and assume (5.5) holds. Then every linear

functional p onftfiT) has a representation as in (5.6). This representation is unique

if and only if (5.4) holds.

Finally we are interested in the case of "/i-discrete simplicity", namely the case

where £%(T) is spanned by pure exponentials. In general such requirement is

stronger than the usual simplicity. Yet we have

THEOREM 5.2. To every simple defining set T there corresponds a positive

number ho, which depends only on Ar and HApHoo, such that for h < ho

(5.7) 3>h\T)=    0    eg_(-).
0ee„(r)

Moreover, if Xr C R then (5.7) holds for every h > 0.

PROOF. If r does not satisfy (5.7) then there exists 0 E &h(T) such that

]Ifg,h\ > s + 1 and hence contains at least two bases Jy, J2 from J(r). Let ff,

j = 1,2, be the only node of Q(Jj), j = 1,2. By the proof of Lemma 5.1 we know

that

0 = 92+ iE1 =l2+ ikL2

where v}, v2 E Ra and

eh™-■=-,=!,        V-fEJj, j = l,2.

In particular we have /im^1 — v2) E 2n2s where rn is the common multiple of

{|detAO||J€J(r)}.
Now, if Ar C R then also 9(r) C Rs, so the equality 91 + iv} = 92 + iv2 implies

01 = 02 which is impossible since T is simple. Consequently (5.7) holds in this case

for every h > 0.

For general Ar we use the fact that there exists c > 0 independent of Ar sucrj that

||#||oo < c||Ap||oo for all 9 E &(T). Choosing t0 > ||Arll°o we take ho = l/2cmt0.

Then for h < ho

\]hmi(u2 -^2)||oo = hm]\§2 -£2||oo < »-2mci0 = 1,
2cm<o

forcing v} = v2 and therefore 01 = @2 which again contradicts the simplicity of T.

Hence every Tg^n, 0 E Qh(T), contains exactly s elements and (5.7) follows.    □

6.  Exponential box splines and their related spaces. In this section we

apply some of the results of the previous sections to exponential box splines.

Let T and h > 0 be given. For a sequence u(-) defined on 2sh we denote

(6.1) Bh(T) *hu:=Y, u(g)Bh(T\ ■ -g).
aez»

The range of the map Bh(T)*n is denoted by Sn(T) while H/,(r) stands for the

subspace of all entire functions in S/l(r). Our first claim is the following.
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PROPOSITION 6.1.   For any defining set T

(6.2) Hfc(r)c-r(r).

PROOF. Assume that / e H/,(r). Then / E Bh(T) *h u for some sequence u(-)

defined on 2%. Let K E J?(T). Then by (1.15)

DKf = DK(Bh(T) *h u) = (DKBh(T)) *hu = M^[Bh(T\K) *h «].

Now, K E3?{T) means (T\K) ^ Rs. Thus (1.4) shows that suppBh(T\K) lies on

a hyperplane of R". We conclude that DK f is an entire function whose support

is contained in a countable union of hyperplanes. Consequently DK f = 0, which

implies e

fE     f|     ker DK=^(T).    □
KeX(T)

In certain cases H^(r) is a proper subspace of 3?(T) (cf. [R2, Ex. 4.1]). Condi-

tions for equality in (6.2) will be derived later.

The significance of S*h (T) in the present analysis is due to the following theorem:

THEOREM 6.1.   The map Bh(T)*h carries <?n(T) ontoHh(T).

PROOF. We first show that Bh(T)*h maps £%(T) into Hh(T). Let u(-) E <9i(T)

and denote /„ = B^(T) *n u. For each K E Jf(T) we have by (1.15)

(6.3) DKfu = [DKBh(T)] *hu= [V^Bh(T\K)] *h u = Bh(T\K) *h V^u = 0.

Hence /„ 6 ^(T). By Theorem 4.2 %*(T) contains only entire functions. Thus by

definition /„ E H/j(r).
We now prove that this map is onto. Let / = Bh(T) *n uy E Hfc(r) be arbitrary,

where uy(-):2sh. Choose any y E Ah{T). By Theorem 1.1(d) there exists an element

U2 ES*h(T) satisfying

(6.4) «"!»£(») =«ll»E(»V

Denote / = Bn(T) *n (u2 — uy). From the first part of the proof Bh(T) *h u2 is

entire and therefore / is entire. Let A be the T — h cell containing y. Then for

every xE A,

f(x) =  Y, (Ul -u2)(a)S/i(r|x-a) =    Y   (Ul ~u2)(a)£fc(r|x-a),

2€Z°h a€6£(y)

because Bh(T]x - a) = 0 whenever x E A and g & b£(|/). Taking into account (6.4)

we obtain f\A =0. Since / is entire the last equality readily implies / = 0 on Rs.

Thus Bh(T) *h u2 = f.    □
PROOF OF THEOREM 1.4. The theorem follows from Proposition 6.1 and

Theorem 6.1 above.    D

In the next two results we shall make use of the following lemma:

LEMMA 6.1.   Given 9_E 0(T), consider the following two conditions:

(a) There exists 0° ^ 0 in S(T) such that h(0° - 0) E 2rri2a.

(b)Bh(T\-iff) = 0.
Then (a) always implies (b). If in addition we assume

(6.5) |detAO| = l,       VJeJ(r),

then (b) implies (a) as well.
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PROOF. Assume (a). Since 0° -0 ^ 0 and (Teo) = Rs, there exists 7 € Tgo such

that x7- (0 - £°) ^ 0. But x^ 6 2s. Therefore"'h(\~, - x7 • 0) = hxn ■ (0° - 9) E

2rri2\{0}. This implies that f£ e^'-i-^ dt = 0, which in view of (1.2) gives

Bh(T\-i0) = O.
For the converse assume Bn(T\ —iff) = 0. Then by (1.2) there exists 70 € T such

that

(6.6) h(Xlo-xlo-0)E2ni2\{O}.

Complete 70 to a basis do E J(T) by elements of Tg_ and let 0° be the node in 9(r)

which satisfies x^ - 0° - A7 = 0 for every 7 E Jo- Given 7 6 Jo\To we know that

7 E Tg_ fl Tgo and therefore

h(xn ■ (0° - ff)) = h(X^ - A7) = 0.

From (6.6) and the last equation we conclude that h(0° — 0)/2iri coincides with

an integer multiple of one of the columns of (Aj0)_1, which, since |detAj0| = 1,

contains only integer entries. This proves (a).    □

Given / E %*(T) we know from (1.11) that /|z» E S*h(T). Hence Theorem 6.1

yields

(6.7) Bh(T) *h (/|z.) E Uh(T),       V/ E *(T).

The next result gives a necessary and sufficient condition for Bh(T)*h being

injective on ^{T)]za ■

THEOREM 6.2.  Define a map Bh(T)*'h:C(Rs) by

Bh(T)*'h:f^Bh(T)*h (/|z.).

Let Ty C r and assume (Ty) = Rs.  Then

(a) 3?(Ty) is an invariant subspace of Bh(T)*'h.

(b) Bh(T)*'h is an automorphism of %?{Ty) if and only if

(6.8) Bh(T\ - iff) ̂  0,        WES(Ty).

PROOF. Let / E ^(Ty) and let K E 5?(Ty). Then DKf = 0 and therefore by
(1.11) Vf / = 0. Hence (as in the proof of the first part of Theorem 6.1)

DK(Bh(T) *'h f) = Bh(T\K) *'h V*/ ee 0.

This proves (a).

Now denote

Ker^) = {/ E ^(Ty)\ Bh(T) *'h f = 0},

and assume (6.8) holds. By Lemma 6.1 we know that

Ki1 -02) g 27r«za\{o},     w1,^2 € e(r-i).

Hence we can combine Theorem 4.2, Proposition 3.1, Corollary 3.1 and the obvious

fact that Ker/i(ri)|z» is shift-invariant to conclude that if Kerh(Fi) is not trivial
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then it must contain an exponential eeo, 02 E 9(Fi). Now we appeal to [Ri,

Corollary 5.1] which states that

(6.9) Bh(T)*'heg_ = h-sBh(T\-i0)ee_,        V0€9(r),

to conclude that Bn(T] -iff1) = 0, which contradicts (6.8). Consequently Bh(T)*'h

is injective on ^(Ty) and therefore by the first part of the proof induces an auto-

morphism on ^"(Ty).

For the converse assume (6.8) is false. Then Bh(T] -iff) = 0 for some 0 E 9(Fi).

Taking (6.9) into account we see that eg_ E Ker/,(r). By Theorem 4.2 eg_ E 3?(Ty)

and hence Bn(T)*'h is not injective on %f{Ty).    D

COROLLARY 6.1.   Assume that

(6.10) Bh(T\-iff)±0,        V0e9(T).

Then

(6.ii) Hft(r) = X(r).

Application of Theorem 1.1(b) gives

COROLLARY 6.2.   Assume (6.10) holds.  T/ien dimHft(r) = |J(r)|.

For polynomial box splines (namely in the case when Ar — 2) ©(H = {Q} and

Bh(T]0) = /ilrl / 0. Therefore in this case (6.11) always holds. This result is due

to de Boor and Hollig, [BH], and proved by a different method in [DMi]. The

fact that (6.11) is valid for polynomial box splines was used in [R2] to establish

a similar result to that of Corollary 6.1. We also mention that (6.10) is not a

necessary condition for (6.11) (cf. [R2, Ex. 4.2]).

Although Corollary 6.1 is valid for every choice of T, a relatively simpler proof

exists for the choice Ar C R. By Corollary 4.2 we know that (6.10) is always valid

in this case. Hence

COROLLARY 6.1*.   Assume Ar c R.  Then Uh(T) = £?(T).

PROOF. By Theorem 6.2(a) we know that for each 0 E Q(T), Bh(T)*'h maps

<%*(Tg) into itself. Since Ar c R ^ follows that Bh(T) is positive and therefore

(as mentioned in [BD]) Bh(T)*'h is injective on polynomials. But by Theorem 4.2

%f[Tg) = eg%?(Xg) where 3?(Xg) is a finite dimensional polynomial space. Now

the desired result readily follows.    D

Finally we derive necessary and sufficient conditions tor Jf?h(T) being isomorphic

to nh(T)

THEOREM 6.3.   The following conditions are equivalent:

(a) Bn(T)*h induces isomorphism between S^n(T) andHh(T).

(b) Hh(T)=Jr(T) and I det A71 = 1 for all J E JfT).

(c) Bh(T]-iff) ^0 for all0EO(T) and | det Xj] = 1 for all J E 3(T).
(d) h(ff -02) <£ 2Tri2s\{0} for all 0\02 E B(T) and |detA7| = 1 for all

J E 3(T).

PROOF. We prove the theorem by showing (d) <* (c) => (b) => (a) => (c). The

equivalence (c) o (d) follows from the Lemma 6.1.  Corollary 6.1 shows that (c)
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implies (b). Assuming (b) we conclude from Theorem 1.1(b), (c) that dim^h(T) =

dim3?(T) = dimHh(r), and (a) follows in this case from Theorem 6.1. Finally

assume that (a) holds. Then, dimS%,(T) = dimH/,(r) which in view of Theorem

1.1(b), (c) and Proposition 6.1 implies dimS%(T) = dim JT(r). Referring again to

Theorem 1.1(b), (c) we conclude | det Xj] = 1 for all J E J(T).

To show that (c) holds, let 0 E @(T). By (1.11) and Proposition 2.1, eg]z°h E

SPh(T). Since we assume (a) Bh(T)*h (eg\z>h) ̂ 0, therefore (6.9) gives Bh(T\-iff] ^

0. Consequently (c) is valid and the proof of the theorem is completed.    □

7. Analysis of H(r). To simplify the notations we assume throughout this

section that h = 1 and omit this subscript. Yet, all the results here are valid for

arbitrary h with the obvious modifications.

Our main aim is to derive necessary and sufficient conditions for the equality

(7.1) U(T) = ^(T).

Utilizing these conditions we also obtain a formula for dimH(r).

In order to analyze H(r), it suffices, by Theorem 6.1, to examine the range of

S"(T) under B(T)*. To study the action of B(T)* on S*(T) we make use of the

direct sum decomposition of Theorem 4.3 and investigate the action of B(T)* on

each summand. For this purpose denote for each ^ 6 8(F)

(7.2) S\ := vHA^Iz, = {ei(g)p(g)\ p E JT(Xg)},

(7.3) Hi={fl(r)*u|uG«^|},

(7.4) [9] = {9Ee(T)\9-9E2Tri2s}.

Using these notations, Theorem 4.3 can be written as

(7.5) SP(T)=   0   5\,
£ee(r)

while Theorem 6.1 implies

(7.6) H(T) = /   [J    Hg\.
\eee(r)      '

Our first result gives significant information on Hg in terms of [0].

PROPOSITION 7.1.   For every 0 E Q(T)

(7.7) HjC0 ^(TgJ.
mi]

PROOF. Let u(g) = e-e(g)p(g) E 5^. By Proposition 6.1 H(r) C %*(T) and

therefore Theorem 4.2 implies

(7.8) B(T)*u=    ^   eejU)P3(x),       PjEtt.

e^ee(r)
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Now, if ff° & [9] then, as in the proof of Lemma 3.1(b), one can find a difference

operator A (on 2s) which on the one hand annihilates u(-) and on the other hand

is injective on ^(Tgj0). Application of A to both sides of (7.8) gives

Y    Megj (x)Pj(x)) = B(T) * Au = 0.

^ee(T)

Since A is injective on 3?(Tgj0) one concludes pJO =0.    D

REMARK 7.1. Note that the only information used in the proof of Proposition

7.1 was that u(-) is an exponential polynomial, while B(T) * u is a linear combina-

tion of exponential polynomials. Thus, replacing B(T) by an arbitrary compactly

supported 4> E f3?'(Rs) and assuming that B(T) * u is a linear combination of PE

functions one can easily establish a generalization of Proposition 7.1 with respect

to <f>.
An immediate consequence of Proposition 7.1 is the following

COROLLARY 7.1.   Assume ~9 E Q(T) and [0] = 0.  Then H~g = 0.

REMARK 7.2. Corollary 7.1 covers Theorem 4.2 of [DM3] and Theorem 7.1 of

[Ri] as special cases.

REMARK 7.3. In case (6.10) holds we know from (4.13) and Theorem 4.3 that

(7.9) S^(T)=^(T)@E(T),

where E(T) = @g€e(y)\g\=($'5eg- Thus, by Theorem 6.2 and Corollary 7.1 we see

that (7.9) expresses ^(T) as a direct sum of two subspaces for which B(T)* is

injective on the first and annihilates the other.

Since each 0 E Q(T) lies exactly in a unique equivalence class [9], 9_ E Q(T),

Proposition 7.1 leads to the conclusion

Corollary 7.2. H(r) = ©gee(r)Hr

The results obtained so far express certain limitations on H^. The next propo-

sition takes the opposite direction.

PROPOSITION 7.2. Let I E S(T) and let 0E [0]. Then the operator DTlVt

maps Hg onto 3?(Tg).

PROOF. In the proof of Proposition 7.2 we make use of the following lemma:

LEMMA 7.1.   For each Ky C K2 C T, the operator VXk*  maps %f(XKl) onto

^(XfC^Ki)-

The proof of Lemma 7.1 is based on

LEMMA 7.2.   Foreach^ET, D~< maps ^(T) onto %*(TYi).

PROOF OF LEMMA 7.2. It is easy to see that D1 maps %f(T) into 3?(T\i).

To prove that this map is onto fix / 6 ^(r^) and let ft > 0 be such that (6.10)

holds. (The existence of such ft is obvious; It is also guaranteed by Corollary 4.2.)

Let A be any T - ft cell and let y E A. By Corollary 6.1 Hfc(rVr) = &(T\i) so

there exists {ca}  _,.rv,, N such that

(7.10) /U=     Y     ca5h(r\7|--a)|A.
9L&r^(y)
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Making use of (1.15) we see that for every gE2sh

oo

Bh(TY,\ --cx)=Y e^VZBhp^] • -a - jhxj
3=0
oo

= Ye]hX-DiBh(T]--g-jhx1).

3=0

The last equation when combined with (7.10) shows that

f\Ae({DWh(T\--a)\A\aeZah}),

while from [Ri, Corollary 4.3] (or alternately from the proof of Proposition 6.1) we

know that Bh(T\ ■ -g)]A E %*(T), Va E 2sh. Hence f\A E {D"ig\g E <T(T)}. Since
^(T) consists of entire functions this last result readily extends to Rs and Lemma

7.2 is established.

PROOF OF LEMMA 7.1. By Theorem 4.2 X(A/f2) contains only polynomials,

whereas Lemma 4.1 and (1.11) show that

V*Kip = 0<» DXK^p = 0,        Vp6?r.

Therefore ker(VXKi \t(xk )) — ker(DXKi ]t{xk )) and the claim now follows by

repeated use of Lemma 7.2.

To prove Proposition 7.2 denote r0 = r^r^ and let u(-) = e-6(-)p(-) E 5P\. By

(1.15)

(7.11) Dr° (B(T) * u) = B(T\T0) * Vr°u.

Since r0 C f^ and 0 - 0 E 2iri2s then

(7.12) Vr°u(g) = e~e(g)VXr°p(g) = el(g)'VXr°p(g).

Also, from the definition of r0 we see that J5(r\ro| — iff) ^ 0 and therefore we can

appeal to Theorem 6.2 to conclude that S(r\r0)*' is an automorphism of ^(Tg).

Thus (7.11), (7.12) and Lemma 7.1 can be combined to yield

Range(Dr°|Hs) = {Dr°(B(T) * u)] u E S\}

= {B(T\To)*VTou\ueS\}

= {B(T\To)*u]uEelJ^(Xg)}

= {B(T\To) *'f\fE <r(Tg)} = JT(TeJ.

This completes the proof of Proposition 7.2.    □

Another proof of Lemma 7.1, which does not make use of box splines, is given

in [DR].

We now combine together Propositions 7.1 and 7.2 to obtain the following suffi-

cient condition for (7.1).

THEOREM 7.1.   Assume that for every distinct 01,02 E @(T)

(7.13) 01 - 92 <£ 2rri2s.

ThenH(T)=jr(T).
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PROOF. By Proposition 6.1 H(r) C %?{T). To prove the opposite inclusion it is

sufficient, in view of Theorem 4.2, to show that for each 0 E Q(T), %*(Tg) c HIT).

Fix 0 E 9(r) and let 0_ E @(T) be such that 0 E [9]. By (7.13) 9 is the unique node

in [9] and therefore Proposition 7.1 shows that Hg C ^"(Tg). But Proposition 7.2

ensures the existence of a linear map from Hg onto <%*(Tg). Hence <%*(Tg) =Hj C

H(r) and the desired inclusion now follows.    □

PROOF OF THEOREM 1.5. The theorem follows from Lemma 6.1 and Theorem

7.1.    □

REMARK 7.4. Note that in view of Lemma 6.1, Theorem 7.1 is stronger than

Corollary 6.1.

For later reference we also record the following result which has been obtained

in the proof of Theorem 7.1.

COROLLARY 7.3. Assume ~0_ 6 9(r) and [9] consists of one element 9 E @(T).

ThenH-i = JT(Tg).

To advance the analysis of H(r) we attach to each 9 E Q(T) the following

subspace of J?|

(7.14) 5\ = {u E ̂ f | Vf^u = 0V9E [9]}.

By convention if [#] = 0 we set ,S| = J?|.

The importance of 3^ becomes clear as as soon as we know

Lemma 7.3. ForuE<9$

(7.15) B(T)*u = 0&ue£?\.

PROOF. In case [9] = 0, (7.15) follows from Corollary 7.1 and the definition of

oS|. Assume [0] ^ 0. From Proposition 7.1 we know that

B(T)*u=   ^2 eej(x)pj(x).

£'€[0]

Fix ff E [0] and denote Tj = fg\r^. Then by (1.15)

(7.16) Dv>(B(T)*u) = B(T\Tj)*VT'u.

Now, if u E -2f then by definition Vr>u = 0. Thus (7.16) implies DT>(B(T)*u) =

0. Since 1^- f~l Tei = 0 we know (as in the proof of Theorem 4.2) that DT' is

injective on ^(f6J), and consequently p3 = 0. Since j was arbitrary we conclude

B(T)*u = 0.

For the converse implication, assume B(T) * u = 0. Then by (7.16) B(T\Tj) *

Vriu = 0. But Vr'u E ^f{Tgj)]z" while B{T\Tj]-iff) / 0. Hence by appealing to

Theorem 6.2 we obtain Vr>u = 0 and since j was arbitrary we conclude u E -2|.    D

Our next result is a necessary and sufficient condition for (7.1).
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THEOREM 7.2. H(r) is a proper subspace of J%*(T) if and only if there exists

0E 9(r) which satisfies

(7.17) dim^>|J(fg)|-^|J(r£)|.

eefe]

Moreover, for such 0 one must have |[0]| > 1.

PROOF. By Theorem 6.1

H(r) = Range(B(r)*|^(r)),

while Corollaries 7.1, 7.2 imply that

(i) H(D=   0   H,=   0   Range(B(r) * ty.
lee(r) lee(r)

(») HgcQ-TfTi).
£€[£]

In addition we know that %f{T) = 0eee(r) ^(^i) while each 0 E 9(r) is contained

in a unique equivalence class [9]. Therefore we see that (7.1) fails to hold if and

only if for some 0_E@(T)

(7.18) dimU-g < dim I 0 J^(Tg)    ,

\le[i] /

and the definition of Hg gives

(7.19) dimU-e = dimSP\ - dimker(S(r) * ty.

Now, by Theorem 1.1(b) dim .5* = dim^(A^) = |J(fg)| and dim©^ J^(Tg)

= J2ge\e\ \J(^l)\' and by Lemma 7.3 ker(B(T)*\^_) = J2~. Substituting all of these

into (7.10) we see that (7.18) is equivalent to (7.17).

Finally, when ][0\\ = 0,1 we know from Corollaries 7.1, 7.3 respectively that

Hg = ©ggrgi %?{Tg) and therefore such 0 cannot satisfy (7.18) or equivalently

(7.17). Consequently if 0_ E B(T) satisfies (7.17) we must have \[9]\ > 1.    D

The dimension of H(r) can be computed with the aid of the following formulae.

Theorem 7.3.

dimH(T) = dim5*(T) -   Y   dim.2g
£ee(r)

= |j(r)|- Y  (dim^-|j(fg)|+^|j(r«)|   .
lee(r) V lew J
l[£]l>i
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PROOF. Since <5*(T) = 0g€©(p) ^g, the first equation is obtained by summing

(7.19) over all 0_ E Q(T) and applying Corollary 7.2 and Lemma 7.3. To prove the

second equality note that the proof of Theorem 7.2 shows that

dim^(T) - dimH(r) =   Y      ( £ dim^(TeJ J - dimHg

lee(r) [\eeW J

=    Y       \Ydim^(Tl)     -dim^ +dim^|   .
£€e(r) [\eeW J
l[I]l>i

Now the desired result follows directly from Theorem 1.1(b).

EXAMPLE 7.1. We use here Theorem 7.2 to show that the sufficient condition

for (7.1) established in Theorem 7.1 is not a necessary one.

Let a = 2, |r| = 3, (x\Xy) = ((1,0),0), (x2,A2) = ((l,l),2iri), (x3,A3) =

((1, -1),0). In this case T is simple, 9(r) = {(0,0), (0,2-rri), (7ri,7rz)} and therefore

Jt(T) = (l)eair<Xa,e,ri<Xl+Sa>). On the other hand 9(r) = {(0,0), (wi,m)} and

some straightforward computation shows that

^o,o) = (1, xy,x2),        f(*i.*Q = (e"(ll+X2)).

Since |[(7rz,7n')]| = 1, then in view of Theorem 7.2, in order to verify (7.1) we

only have to check Jz^o.o)- Since [(0,0)] = {(0,0), (0,27rz)} then by definition every

element of -S^o.o) is a linear polynomial p which satisfies

p(x) - p(x - (1,1)) = p(x) - p(x - (1, -1)) = 0.

This readily implies that =2(o,o) = (1) and therefore dim-S^o.o) = !■ Now F(0,o) = T

and therefore

|J(f (o,o))l = |J(T)| = 3,

while

Y    |J(rg)| = |J(r(0,o))l + |J(T(o,art))| = 1 + 1 = 2.
£€[(0,0)]

Thus we see that (7.17) is not valid here and Theorem 7.2 implies H(r) = %?{T).

Indeed, it can be shown (e.g., by Poisson's summation formula) that

B(T) *' (xy + x2) = 2,        B(T) *' (xi - x2) = 2e2™\

B(T) *' e'rri(xi+x^ = —£e™(xi+x2)_

To make use of Theorem 7.2 one needs to compute dim.2| at least for cases when

\[0]\ > 1. In the following we show that Theorem 7.2 implies a necessary condition

for (7.1) based only on the structure of 9(r).

THEOREM 7.4.   Assume that there exists 9_ E Q(T) and K CT such that

(i) \G(K)\ > 1,
(ii) e(K) c m.
Then H(f) is a proper subspace of £?(T).
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PROOF.   First assume T = K.  Since 9(r) C [0] it follows that fg = T.  But

since |9(r)| > 1 then for each 9 E 9(T) T\Te + 0 and therefore VriVFi = Vr^

annihilates eg 6 S^. This means that dim«Sg > 1. On the other hand

|j(fg)|-£|j(r£)| = |j(r)|- Y lJ(r*)l=°-
£€[£] £€6(r)

Consequently 0_ satisfies (7.17) and the claim follows in this case from Theorem

7.2. If K % T (and (K) = Rs) then by the proof above H(K) ^ ^(K). Choose

/ G Jf(K)\H(K). By Lemma 7.2 there exists g E %*(T) such that DT\Kg = f.

We claim that g & H(r). Indeed, if g E H(r) then g = B(T) * u where u(-) is some

sequence defined on Z*. In this case (1.15) would imply

/ = DT\Kg = DT\K(B(T) * s) = B(K) * Vr\Ku,

contradicting the fact that / ^ H(K). Consequently g E ^(r)\H(r) and the

proof of Theorem 7.4 is completed.    □

Finally, we note that in the univariate case condition (7.13) is necessary as well:

COROLLARY 7.4. In case s = 1, (7.13) is a necessary and sufficient condition

for (7.1).

PROOF. The sufficiency has been proved in Theorem 7.1. To verify the necessity

note that in the present situation each 7 E T is a basis in J(r) and therefore

determines a unique 0^ E @(T). Now, if (7.13) is not valid then there exists

0 E OfT) and distinct fl1,*?2 E 9iT) such that {fl\fl2} C [9]. Choose {71,72} C T

such that 9l3 = &, j = 1,2. We conclude that 9({7i,72}) = {9\92} C [fli].

Application of Theorem 7.4 with K = {71,72} shows therefore that (7.1) does not

hold.      □
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