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A STONE TYPE REPRESENTATION THEOREM
FOR ALGEBRAS OF RELATIONS OF HIGHER RANK

H. ANDREKA AND R. J. THOMPSON

ABSTRACT. The Stone representation theorem for Boolean algebras gives us

a finite set of equations axiomatizing the class of Boolean set algebras. Boolean

set algebras can be considered to be algebras of unary relations. As a contrast

here we investigate algebras of n-ary relations (originating with Tarski). The

new algebras have more operations since there are more natural set theoretic

operations on n-ary relations than on unary ones. E.g. the identity relation

appears as a new constant. The Resek-Thompson theorem we prove here gives

a finite set of equations axiomatizing the class of algebras of n-ary relations

(for every ordinal n).

The (Resek-Thompson) theorem we are going to prove here is a "geometric"

representation theorem for cylindric algebras. It provides an apparently satisfactory

positive solution to the representation problem of cylindric algebras (summed up,

e.g., in the introduction of [HMTI] and in, e.g., Henkin-Monk [74]).

The theorem represents every "abstract" algebra satisfying the cylindric axioms

(eight schemes of equations; cf. the remarks on the choice of the axioms at the end

of the paper) by a "concrete" algebra of sets of sequences. The representing algebra

is concrete in the sense that we do not have to know the operations of the algebra, it

is enough to know its elements. I.e. if we know the elements of the algebra, we can

"compute" the operations on them by using their concrete set theoretic structure.

(This is similar to the Boolean case where if x, y are elements of a concrete algebra

93 then their meet must be the set theoretic x fl y independently of the choice of 93.

Already in the Boolean case we have to know the greatest element of 93 in order to

be able to compute the complement — x of x in 93.)

The first version of the theorem was obtained by Diane Resek and is proved as

Theorem 5.27 on p. 285 of Resek [75]. Resek's result is also announced in [HMTII,

p. vi, p. 101 (item 3.2.88)] and Henkin-Resek [75, Theorem 4.3], and is mentioned,

e.g., in Maddux [82] preceding Problem 5.21; but no proof has appeared in print for

this important theorem so far (for reasons indicated below). Using the techniques

of Thompson [79], Richard J. Thompson generalized Resek's theorem to the form

in which it appears below. Thompson's result is (partially) quoted in [HMTII,

3.2.88] without proof, and otherwise is unpublished. Thompson's proof is of a

proof theoretic nature and proves more than the theorem stated below. Further

discussion of that proof is found at the end of this paper.  In the introduction of
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[HMTII, p. vig], Resek's result is said to be one of the "primary advancements"

of the theory after the first publication of [HMTI]. At the same time, the proof in

Resek [75] is so long (more than 100 pages) that they could not include it in the

book [HMTII]. Therefore, in [HMTII, p. 101] the problem of finding a shorter

proof arises. The present note is aimed at solving this problem. The proof in this

note originates with H. Andreka and is a generalization of her proof with I. Nemeti

mentioned on pp. 834 and 794 of [HMTII] (cf. also pp. 245-247 of [HMTII]).
Andreka presented the proof in this paper for the diagonal-free case (a arbitrary)

at the Universal Algebra Colloquium at Szeged in the summer of 1985. The present

proof of Lemma 1 (of this paper) was presented in 1984 at the logic seminar of the

University of Colorado at Boulder by Andreka and Nemeti (it is due to Andreka

but the basic idea comes from [HMTII, 3.2.52]). The first version of the full proof

in this paper is in Andreka [86].

The relation algebraic analog of the Resek-Thompson theorem is Theorem 5.20(2)

in Maddux [82]. We discuss the connections between the two theorems (and proofs)

at the end of this paper.

Of the axioms (Co)-(Cy), MGR used below, (Co)-(C7) are due to Tarski, while

MGR was discovered by Leon Henkin (see [HMTI, pp. 17, 194-195, 408]). Henkin

proved (C0)-(C7) P MGR (refuting a conjecture of Tarski) (cf. [HMTII, 3.2.71,

p. 89]). The ideas in Thompson [79] are not unrelated to the "transformational"

approach of William R. Craig to algebraic logic (cf. Craig [74, 74a] and the notes at

the end of this paper about works of Craig, Pinter and Howard). Resek's theorem

says that (Co)-(C7)+ all MGR's axiomatize CrsQnCAQ. Thompson's improvement

of this theorem is twofold: He replaced the infinitely many MGR-equations with

just two of them, hence proved finite axiomatizability of CrsQ fl CAa; and further

by weakening the axiom (C4) of commutativity of cylindrifications to the weaker

(C4), he made it possible to replace the class CrsQ fl CAa (which has a mixed

nature, namely CrsQ is a "concrete" class while CAa is "abstract") with the purely

"concrete" class Da (the definitions of these notions can be found below). To avoid

misunderstandings, we note that the first author did not contribute to the theorem

in this paper while the second author did not contribute to the proof in this paper.

ACKNOWLEDGMENT. H. Andreka is grateful to J. D. Monk, for bringing Resek's

theorem to her attention, and for suggesting the project of searching out a "rea-

sonably short" proof for this important theorem. Hajnal Andreka is also grateful

to R. D. Maddux, for explaining the basic ideas of the step-by-step method, which

he used in [M78] to prove SA C SR1RRA, and for pointing out that this method

should be applicable for cylindric algebras, too.

We use the notation of [HMTI, HMTII]. Let a be any ordinal. We recall from

[HMTI] that an algebra 21 = (A,+, -, -,0, l,Ci,dij)ijea, where +, • are binary

operations, -, Ci are unary operations and 0,1, dij are constants for every i, j E a, is

a cylindric algebra (a CAa) if it satisfies the following identities for every i,j, k Ea.

(Co)-(Cs) (A,+, -, -,0, l,Cj),eQ is a Boolean algebra with additive closure op-

erators Ci such that the complements of enclosed elements are enclosed (i.e. x =

Oi Jb r      C*l    ~~    Jb    —- JU J t

(C5) dx% = 1,

(C6) d^ = ck(dik ■ dkj) if k £ {i,j},

(C7) d%j ■ Ci(dij •x)<x'iii± j.
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For every i,j E a, i ^ j, let s'jX = Ci(dij ■ x), s\x = x and let MGR denote the

so-called merry-go-round identity:

(MGR) s^sfs^s^CkX = s'ms™sljSJkckx if fc 0 {i,j,m}, m $ {i,j}.

Let (C4) be the following weaker version of (C4):

(C4) CiCjX > CjCiX-djk if fc ̂  {i,j}, and let E = {Co,Ci,C2,C3,C4,C5,C6,C7,

MGR}.
Mod E denotes the class of all algebras that satisfy E (and which are similar to

CAQ's).

We recall from [HMTII] the following definition of Crsa. By a Crsa we shall

understand a Boolean algebra of sets of a-sequences where the non-Boolean opera-

tions (a, dij) are derived from the "a-sequence structure" in a natural way. In more

detail: If / is any a-sequence and i E a then f(i/u), or /£, denotes the sequence

which agrees with / on a ~ {i} and which is u on its ith place. Crsa is defined to

be the class of those algebras 21 = (A, +, •, —, 0, la, Ci, dij)ij€a for which la is a set

of a-sequences such that (A, +, -, —, 0, la) is a Boolean set algebra, further

Cl(x) = {fEl%:(3u)f(i/u)Ex},
d^ = {/ E la: fi = fj} for all i, j Ea and x E A,

Da = {*E Crsa: (Vm E a)(V/ 6 la)/(t'//;) E la},

where la is the greatest element of 21.   IDa denotes the class of all isomorphic

copies of elements of Da.

THEOREM 1  (RESEK-THOMPSON).   IDa = Mod E for any a > 2.

PROOF (ANDREKA). It is easy to check that Da f= E. The essential part of

the proof is to show ModE C IDa.

Let 21 E ModE. We will show 21 E IDa. We may assume that 2t is atomic,

by Jonsson-Tarski [51, 2.15, 2.18] (see also [HMTI, 2.7.5, 2.7.13]); namely: every

Boolean algebra with operators 21 can be embedded into an atomic one such that all

the equations valid in 21, and in which "—" does not occur, continue to hold in the

atomic one. (Notice that, in E, "—" occurs only in (Co)- (C3), where Ci—CiX = —CiX

can be replaced with Ci(x ■ Ciy) = ax ■ ay; cf. [HMTI, p. 177i5].) Thus from now

on we assume that 2t is atomic and 21 f= E.

Let At 21 denote the set of all atoms of 21. We want to "build" an isomorphism

rep: 2l>-» 93, for some 93 E CrsQ, for which (*) below holds:

(*) rep(z) = (^J{rep(a): a E At 21, a < x}    for every x E A.

Let V be a set of a-sequences and for every A C V and i,j E a let dX = {/ E

V: (3u)f(i/u) E A}, TJi; = {/ € V: fi = fj}. Assume that rep: A -f {A: A C
V} is a function for which (*) holds. Then it is easy to check that rep is an

isomorphism onto a 93 € CrsQ with l58 C V if and only if conditions (i)-(v) below

hold for every a, b E At 21 and i, j E a:

(i) rep(a) n rep(6) = 0 if a ^ b,

(ii) rep(o) C D%i if a < dfj and rep(a) n Dtj = 0 if a • da = 0,

(iii) rep(a) C drep(b) if a < cfb,
(iv) rep(a) n Ctrep(b) = 0 if a • cfb = 0,
(v) rep(a) ^ 0.
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We shall construct (a set V of a-sequences and) a function rep with the above

properties, step by step.

For every a-sequence / let ker(/) = {(i,j) E 2a: fi = fj} and for every a E At21

let Ker(a) = {(i,j) E 2a: a < da}. Then Ker(a) is an equivalence relation on a

by our axioms (C5)-(C7). For every a E At 21 let fa be an a-sequence such that for

every a, b E At 21 we have

(a) ker(/„) = Ker(a),

(b)Rg(fa)nRg(fb)=Oiia^b.
Such a system (fa: a E At 21) of a-sequences does exist. Define

rep0(a) = {/a},    for every a € At2t.

Then the function rep0 satisfies conditions (i), (ii) and (iv), (v) but it does not

satisfy condition (iii). Below, we shall make condition (iii) become true step by

step, and later we shall check that conditions (i), (ii), (iv), (v) remain true in each

step.

Let R = At 21 x At 21 x a, p be an ordinal and let r: p —► R be an enumeration

of R such that for all n E p and (a, b, i) E R there is m E p, m > n such that

r(m) = (a,b,i). Such p and r clearly exist.

Assume that nE p and rep„: At21 —> {A: A C V'} is already defined where V

is a set of a-sequences.  We define rep„+1: At21 —► {A: A C V"}, where V" is a

set of a-sequences.  Let r(n) = (a,b,i).  If a ^ Cib then repn+1 = rep„.  Assume

a < ctb. Then repn+1(e) = repn(e) for all e 6 At 21, e ^ b. Further,

Case 1. b < dij for some j E a, j ^ i. Then

repn+1(6) = repn(b) U {f(i/fj): f E repn(a)}.

Case 2. 6 ^ dtJ for all j E a, j ^ i. For every / E rep„(a) let uj be such that

(c) uf <£ (J{Rg(9): 9 E U(repn(e): e E At21}},

(d) uf ytugii f / g, f,gE repn(a).
Now

rep„+i(6) = repn(b) U {f{i/uf): f E repn(a)}.

Let n € p be a limit ordinal and assume that repm is defined for all m < n. Then

repn(e) = M{repm(e): m < n}    for all e E At 21.

By this, (repn: n E p) is defined. Now we define

rep(a) = M{rep„(a): n E p}    for every a E At 21,

and

V = {J{rep(a): oeAt2f}.

We are going to check that conditions (i)-(v) hold for the above rep and V.

First we check that condition (iii) holds. Assume that a < Cib, a, b E At 21

and i E a. Let / E rep(a). Then / E rep„(a) for some n E p. Let m > n,

m E p be such that r(m) = (a,b,i). Then by our construction, there is some

u for which f(i/u) E repm+1(6) C rep(6), i.e. / E Ciiep(b). We have seen that

rep(a) C Cirep(6). Thus condition (iii) is satisfied.
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Next we show that conditions (i), (ii), (iv), (v) hold, too. This we will show by

induction.

First we check condition (ii). It is easy to see that condition (ii) is equivalent to

(ii) ker(/) = Ker (a) for all / 6 rep(a).

Now (ii)' holds for rep0 (in place of rep, i.e. in (ii)' we replace "rep" everywhere

with "rep0") by our condition (a). Assume that (ii) holds for rep„. We show that

it holds for repn+1, too. Let r(n) = (a,b,i), and let e E At2l be arbitrary. If

e ^ b or ii a £ c$ then repn+1(e) = repn(e), hence we are done by the inductive

hypothesis. Assume (e = b and) a < Cib. By (Ce), this implies Ker(a) n 2(a ~

{i}) = Ker(fr) fl 2(a ~ {i}), therefore by our construction, and by the inductive

hypothesis, we have (V/ E repn+1(b)) ker(f) = Ker(6). We have seen that (ii)'

holds for repn+1, too. It is easy to see that if n E p is a limit ordinal and (ii)'

holds for all repm, m < n, then it also holds for repn. For this same reason, if (ii)

holds for all repn, n E p, then it also holds for rep. We have seen that condition

(ii) holds.

Next we check that conditions (i), (iv) hold. Instead of conditions (i), (iv) we

shall prove a stronger condition (iv) . To formulate (iv) , we need some definitions.

For all i,j E a, i ^ j, define t-x = d%3 ■ c,x and t\x = x. <*a denotes the term-

function defined by t'} in 21.

Claim 1. tf: At 21 -♦ At 21 is a function.

PROOF. Claim 1 follows directly from [HMTI, 1.10.4(h)] whose proof does not

involve (C4).    Q.E.D. (Claim 1)

For all i,j E a let t- be a symbol and let Q be the set of all finite sequences of

tljS, i.e. let Q = {ty. i,j E a}*, where for any set H, H* denotes the free monoid

generated by H. Let a = tl> ■ ■ ■ ty. Then we define

and ,

o- [ii/ji]][h/h]\ ■ ■ -\[in/jn],

where [i/j] = {(i, j)} U {(fc, fc): fc E a,k ^ i} is the replacement function on a, and

"|" denotes relation composition, i.e. R\S = {(a,b): (3c)[(a,c) E R, (c,b) E S]}, as

in [HMTI]. (If a is the empty word, then aa(a) = a and a = Ida = {(i,i): i E a}.)

We will often omit the upper index 21 from a . Now we are ready to formulate

condition (iv)'.

(iv) / € rep(a), g E rep(fc) and a\f = f\g imply ca(o) = ra(6) for all a,b E At2l,

a-sequences /, g and a,r E Q.

First we prove that (iv)' =>(iv) and (iv)' =4>(i). We will need the following simple

statements (**),(***).

(**) a < Cib o c,a = c,b    for all o, b E At 21 and i E a,

and

(***) a < Cib o tiy(a) = t-}a(6)    for any a,b E A and i,j E a, i ^ j.
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Indeed, (**) is immediate by [HMTI, 2.7.40(i)], the proof of which does not use

(C4). Further, a < ab => £*(a) = tyb) is immediate by (**), and t%-(a) = tUb) =>■

aa = Cib follows from cfijX = CiX.    Q.E.D. ((**), (***))

PROOF OF (iv)   =>-(iv).  Assume that (iv)   holds.  We want to prove [rep(a) fl

C;rep(6) 7^ 0 => a < ah]. Assume / E rep(a) fl Cirep(ft). Then g = f(i/u) E rep(6)

for some u. Let j E a, j ^ i. (Here we use the assumption a > 2.) Then

[*/J\\f = [i/J]\9, hence t)(a) = t)(b) by (iv)'. Then a < ctb by (***). Q.E.D.

((iv)' =>(W))

PROOF OF (iv)' =>(i). Let / E rep(a) n rep(6). We have to show a = b. Let

* e a. Then from [i/i]]f = [i/i]\f and (iv)' we get a = t\a = t\b = b. Q.E.D.
((iv)' => (i))

The proof of condition (iv)' will be based on the following lemma. So far we

have not used the merry-go-round equation MGR. We shall use it only in the proof

of Lemma 1. The following Lemma 1 can be proved in a few lines from a semigroup

theoretic result of R. J. Thompson (Thompson [79, Theorem 7.2.12, pp. 279-284],

and Thompson [86, Main Result]). However (to keep the paper self-contained),

we shall give a proof (also due to H. Andreka) for Lemma 1 using only [HMTI,

HMTII]. We note that the following proof of Lemma 1 is completely analogous

to that of [HMTII, 3.2.52], the only difference is that we use MGR instead of the

assumption 21 E SNrQCAa+2-

LEMMA 1.   21 |= a(x) = t(x) if a = f and a, t E Q.

PROOF. If a = t*> •••& EQ then let sCT = s£ • • • s*.J. Then sa(x) is a cylindric

term.

Claim 2. 21 (= s<T(x) = sT(x) iff 211= a(x) = t(x) for all a, t E Q.

PROOF. First we show that

(*4) [b< a (a) iff a < sa(b)]     for all a, b e At2l and a € Q.

Indeed, let a, b E At 21 and let a = t%> ■ ■ f". We may assume that ik ^ jk for

all 1 < fc < n. Then using the fact that the s*'s are completely additive, one can

easily verify that both b < a(a) and a < s<?(b) are equivalent to the existence of

atoms ey,...en+y such that ey = b, en+y = a, and (VI < fc < n)[ek < dikjk and
i

ek+i ^ cikek] (see the figure below, where a — b denotes Cia = ab).

dinjn di2j2 "iiii

in in-l 12 i,

a-•-...-■-o

en+1      en e2 ey

Thus (*4) has been proved. Now let a,r E Q. Then 21 |= a(x) = t(x) iff (Va E

At2l)a(o) = r(a) iff (Va,6 E At 21) [b < a (a) o b < r(a)] iff (Vo,6 E At2l)[o <

s<r(b) «• a < sT(b)] iff 211= aa(x) = aT(x).    Q.E.D.  (Claim 2)

To prove Lemma 1, we will use the main theorem of Jonsson [62] which is quoted

in [HMTII] on p. 68. We will also use various results from §1.5 of [HMTI]; the

reader should check that the proofs of these given there do not involve (C4). In

addition, we shall use 1.5.10(iii), whose proof in [HMTI] does involve (C4), as well
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as the following modified versions of 1.5.8(h) and 1.5.15 (the original versions in

[HMTI] are proved using (C4)):

(1.5.8(h)') s)ckx = cks)ckx    if fc ̂  {i,j}.

(1.5.15') ks(i,j)x = ms(i,j)x   when x = ckx = cmx.

Of course we should check that 1.5.10(iii) as well as 1.5.8(h)' and 1.5.15' hold in

21. It is easy to see that the derivation of 1.5.15 in [HMTI] can be used to give a

derivation of 1.5.15' not using (C4).

PROOF OF 1.5.10(iii). We have to show 21 |= symx = smsy if m $. {i,j} and

i 7^ n. We also may assume that i ^ j and m ^ n. By Claim 2 it is enough to

show that t%tjX = t)t™x. Now

in      —    ij ' ^Tnn ' ^i^m^ — ^mn ' ^ij ' ^m^i^ — ^n   j

by i tf. {m,n}, n £ {i,m}, (C4), and m ^ {i,j}-    Q.E.D.(1.5.10(iii))

PROOF OF 1.5.8(h)'. We have to show 21 (= s-ckx = cksykx, if fc £ {i,j}. We

also may assume that i ^ j. Then, using 1.5.10(iii),

s'jCkx = s)skckx = skjSljCkx = ckSjSljCkx = cksykx.

Q.E.D.(1.5.8(ii)')

We recall from [HMTI] that  ks(i,j)x = s^sy^x.

We return to our fixed algebra 21. Let B = {b E A: (3i E a)ab = b} and for all

i,j E a and b E B define

!ks(i,j)b   if ckb = b and fc £ {i,j},

S)b if Cjb = b,

s\b if Cib = b.

First we show that the above is indeed a definition. To this end we have to show

that if more than one of the conditions in the definition of p% b hold, then each will

give the same value.1

Assume that b = ckb = cmb and fc,m ^ {i,j}- Then we have to show ks(i,j)b =

ms(i,j)b. This is 1.5.15'. Assume that b = ckb = Cjb, k $. {i,j}. Then ks(i,j)b =

s^b by [HMTI, 1.5.20], since [b = Cjb iiib = a^b] is easy to see. By symmetry (using

also MGR), the case b = ckb = ah is analogous. Assume finally that b = ab = Cjb.

Then s{b = sjcjb = Cjb = ctb = s)b, by [HMTI, 1.5.8(i)]. We have seen that the

definition of pl-b is sound. Then clearly pl■: B —► B since ckskx = skx easily follows

from (C0)-(C3). Also, s): B -» B for all i,j E a. Let € = (BB,o,IdB) where BB

denotes the set of all mappings from B to B, o denotes usual function composition,

i.e. (/ o g)x = f(g(x)), and Ids = {(b,b): b E B}. Then £ is clearly a monoid and

p),s) E BB for all i,j E a. Next we check that conditions (I)-(VII) of Jonsson

[62] (quoted on p. 68 of [HMTII]) hold, with s: {[i,j],[ifj]: i,j E a} —  BB,

s[i,j] = Pj and s[i/j] = s* for all i,j E a. Let b E B and let i,j,m,n E a be such

that i, j, m and j, n, m are distinct.

aThis follows from [HMTII, 3.2.52] (for the CA-case, i.e. when (C4) is available).
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(I) We have to check p*6 = pjb. Here we will use MGR. By MGR, ks(i,j)ckx =

sks\sykckx = sks\s\s\ckx = sksfskckx = ks(j,i)ckx. Therefore if b = ckb for some

fc £ {i, j} then p}6 = ks(i, j)b = ks(j, i)b = p\b. Iib = Cib then py = s\b = pfb, by

the definition of p1-. The case b = c}b is completely analogous.

(II) We have to check p'jpfb = b. Ii b = ckb for some fc £ {i,j} then pffb =

ks(j, i)b = cirpffb, hence by the definition of p* we have pfjpfb = sksyksksJiskckb = b,

by [HMTI, 1.5.10(v), (i) and 1.5.8(h)']. If 6 = ah then pfpfab = a^sf-Cib = b. If

b = Cjb then p^pfcjb = sfsljCjb = b.

(III) We have to checkPjPlmb = jPmp%jb. Here we will use MGR and (I). lib = ckb,

k f {i,j,m}, then

PjPrnb = piPrnb = SkjSJis\sks\nSk^Ckb = Sk S3is\nSknCkb,

while

PrnPjb = Pyp'ib = a^ayaiataiaUkb = &»?*{&&

hence by MGR we are done. If b = c%b then pljPlmb = pfs^Cib = s™,s^s£ns™Cj& =

s^sfb, and p^plb = ptnS-fb = sf^sfb and we are done. If b = Cjb then pljPlmb =

a)j8(i,m)cjb = s^s^afcjb = s^sfb, while p^pfb = pma)Cjb = 8%maf 3^8)0jb =

smsTb-   Hb = cmb then pfp^b = sfs^b and p^pfb = pJmp{b = a^sf^a^b =

Si Sm^

(IV) We have to check pfs^b = sfp)b.

lib = ckb, k £ {i, j,m}, then we are done by [HMTI, 1.5.19(i)]. If b = cmb then

pljSrilcmb = p)cmb = ms(i,j)b = cmms(i,j)b = sfcmms(i,j)b = sfpjb.

If b = ab then tfjsfab = sfsls^s^Cib = Sys{ctb = afp)b. If b = c3b then

p*s?b = sy™b = sfsfb = sfpy, by [HMTI, 1.5.10(h), (iv)].

(V) p)s{b = s)4b = s)b.
(VI) is [HMTI, 1.5.10(iii)'], and (VII) is [HMTI, 1.5.10(1)].
We have checked that conditions (I)-(VII) of Jonsson [62] hold. Then by

Jonsson's theorem, s extends to a homomorphism s+: (H, o,IdQ) —> <£ for some

H C  Qa (with Do(s) C H of course). Then s+(a) = B ] s* for any a E Q, hence

(*5) 211= sa(b) = sT(b)    if bEB and a = t, a,r E Q.

Claim 3. Let a E Q and assume that a(i) = a(j). Then 211= a(x) = ^cr(x).

PROOF. It is enough to prove that

(*6) a(i) = a(j) =$> a(a) < dij    for all a E Q, i,j E a and a E At 21,

since 6 < d^ implies ty = b. Let a E Q, and a(i) = a(j). We may assume i ^ j.

Assume that a is tm8 for some m,n E a and 6 E Q and that (*6) holds for 8

(for all possible choices of i,j).   We may assume m ^ j (by symmetry of i and

j). Let fc = [m/n](i). Then 6(k) = 8(j) by a(i) = a(j), hence 8(a) < dkj, hence

a(a) = t%8(a) < d^ (by m ^ n => m $. {k,j} and dmn ■ dkj < dij). By induction,

we are done.     Q.E.D.(Claim 3)
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Now let a, t E Q be such that a = f. Then either both a and r are the empty word

in which case we are done, or else there are i,j E a, i ^ j, such that a(i) = a(j),

f(i) = f(j). Then 211= a(x) = t^a(x) and 21 \= t(x) = ty(x) by Claim 3. Further,

21 |= aaa)x = Srsfx by (*5), since (Va E A)s)a E B. Thus 211= t)a(x) = t)r(x) by

Claim 2, hence 21 \= a(x) = t(x) by the above.    Q.E.D.(Lemma 1)
From the above Lemma 1, we shall derive the following (more useful) statement:

(*7)       Let a,r E Q, a E At2(, and let / be any a-sequence such that

ker(/) = Ker(a). Then a\f = f\f implies a*(a) = t%(o).

PROOF OF (*7). Assume that a, r, a, f are as in the hypothesis part of (*7). Let

J be the set of indices occurring in a or r. Then JCais finite, d(fc) = f(k) = k

for every fc € a ~ J, and a(j),f(j) E J for every j E J. Let J C J be a system

of representatives for the equivalence relation ker(J ]  f) (i.e. every "block" of

ker( J 1 /) contains exactly one point from /) and let 3£ = {tm : i E I, m E J, m ^

i, (m,i) E ker(/)}. Let k E 3?* be such that every element of 3£ occurs in k. Then

k(j) is the representative element of the block of j (in ker( J 1 /)) for every j E J,

hence ker(J 1 /) = ker(J ] k). Now a\k = f\k follows from a\f = f\f, ker(J 1 /) =
ker(J ] k), (Vi E a)[a(i) ^ f(i) => a(i),f(i) E J]. Thus ak = fk. Then by Lemma

1 we have ((7/c)a(a) = (r/c)a(a). But by Ker(a) = ker(/) and by the definition of

Jf we have Ka(a) = a (namely, (m,i) E ker(/) => a < dmi => t™a = a), hence

fja(a) = aa«:a(a) = r%n%(a) = r*(a).    Q.E.D.(*7)

We are ready to prove (iv)'. First we check that (iv)' holds for rep0. Assume

/ E rep0(a), g E rep0(b) and a\f = t\g. Then Rg(/) HRg(o) ^ 0 by e.g. Rg(d|/) C
Rg(/), hence / = g by our condition (b) in the definition of rep0, hence a = b, too.

Then a\f = f\f implies a(a) = r(a) by (*7) (and by our condition (a)). Thus (iv)'

holds for rep0. Assume that (iv)' holds for repn, nE p. We will show that it holds

for repn+1, too. Assume / E repn+1(a), o E repn+1(6), and d|/ = f\g. We have to

show a(a) = r(b). If / = g and a = b then we are done by (*7), since we proved

(ii)' for all rep„, nE p. Thus assume / ^ g or a ^ b. First we show that there are

a1 E At 21, /' E rep„(a') and j Ea such that t)(a') = tf(a), [i/j]\f = [i/j]]f and

a]f = a][i/j]\f, where r(n) = (u,v,i) for some u,v. Indeed, if / 6 repn(a) then

choose a', f',j to be a, /, i. Assume / ^ repn(a). If / 6 Dij for some j € a, j ^ i,

then by our construction there are a' E At 21 and /' E repn(a') such that a' < cta

and / = f'(i/f'j). Then t'j(a') = tfj(a) by (* * *), hence a',f',j have the desired

properties. Assume / ^ Dij for all j E a, j ^ i. Then by our construction of

rep, there are a' < Cia and /' E repn(a') such that / = f'(i/u). By our conditions

(c), (d) in the construction of repra+1, and by [/ ^ g or a / b] assumed above,

f(i) = u £ Rg(a). Then i £ Rg(d) by a\f = f\g, therefore a\f = a\[i/j]\f for
any j E a. Let now j E a, j ^ i, be arbitrary. Then a',f',j have the desired

properties. We have seen the existence of a',f',j with the desired properties.

Completely analogously, there are b' E At21, g' E repn(b') and k E a such that

tW) = t\(b), ]i/k]]g' = [i/k]\g and f\g = t\[i/k]\g. Now by a\[i/j]\f = t\[i/k]\g'
and by our inductive hypothesis we obtain a(tlj(a')) = r(tk(b')). By (ii)' we have

ker(/) = Ker(a), hence by a\f = a\[i/j]\f and (*7) we get a(a) = aty = aty'.

Similarly, r(b) = rtlkb = rt\b', hence a(a) — r(b) and we are done.

Let n E p be a limit ordinal. Then clearly, if condition (iv)' holds for all repm,

m < n, then (iv)' holds for repn, too. For this same reason, (iv)' holds for rep, if it
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holds for all rep„, n E p. We have seen that (iv)' holds (for rep), thus conditions

(i), (iv) hold, too, as we checked below the formulation of (iv)'.

Clearly, condition (v) holds.

Thus the function rep: At21 —* {A: A C V} satisfies all the conditions (i)-(v).

Hence the function rep': A —> {A: X QV} defined by

rep'(x) = M{rep(a): a E At 21, a < x}    for all x E A

is an isomorphism between 21 and a Crsa 93. Clearly, 93 E Da since 21 \= Cidij = 1

for all i,j E a.    Q.E.D. (Theorem 1)

Remarks on the choice of the axioms in E. The axiom (C4) is needed in E for the

representation theorem, i.e. there is an algebra 21 |= (E ~ {C4}) with 21 £ ICrsa-

However, if we replace (C7) with its stronger version (C^) below, then (C4) can be

omitted from E in the theorem.

Let dijk = dtJ ■ dik (for any i,j, k E a). Then

(Cj) x < dl]k —> dijk ■ ciCjClCjX < x if fc ̂  {i, j}.

This (Cy") has an obvious equational form (hint: replace x with dijk-x everywhere).

The case i = j yields the original (C7). Now

PROPOSITION 2.   {(C0)-(C3),(C5),(C6),(C+)}HC4).

PROOF. Assume fc ^ {i,j}- Then dijk • CjClcJCiX ■ —acjx < x ■ -ctCjX = 0,

hence d%jk ■ acjCzx ■ —c,CjX = 0, and so, applying ct, djk ■ acjCiX ■ —CiCjX = 0; so

djk ■ CjCiX ■ —c^jX = 0 as desired.    Q.E.D.

We note that while CrsQ f^ (C4), we have Crsa |= (C7 ). (This does not con-

tradict the above proposition, because CrsQ f^ (Ce).) An equivalent form of (C^)

says that applying CjCiCj to two disjoint elements below dijk leaves them disjoint

(whenever k ^ {i,j})-

MGR also has a more intuitive form: Let MGR+ be the scheme

ks(i,j)ks(j,m)ckx=  ks(m,i)ks(i,j)ckx   whenever fc £ {i,j,m}, mg{i,j}.

Note that this MGR+ is just a natural property of transpositions (describing how

two transpositions [i,j], [j,m] commute if they have a common index "i"). Now,

MGR+ is equivalent with MGR (under (C0)- (C3), (C6), (C7)):

PROPOSITIONS. Let E+ = {(C0)-(C3), (C5), (C6), (C|), MGR+}. Then E+

is an adequate axiomatization of IDa, i.e. ModE+ = ModE = IDa.

PROOF. Assume E+. By Proposition 2 we have (C7),(C4). Let i,j,k,m be

such that fc ̂  {i,j,m},m £ {i,j}. Then

siS3s3ms7ckX = s^syls^s^s^CkX = ks(i, j)ks(j\m)ckx

= ks(m,i)ka(i,j)ckx = skns™sikSks)sJkCkX = s^s^sickX

which is exactly MGR. The rest is immediate by Theorem 1.    Q.E.D.

Concluding remarks (and some related work). The study of Crsa in its own right

was initiated by Leon Henkin (cf. e.g. Henkin [68]), and was pursued in Henkin-

Resek [75], Resek [75], [HMTAN, HMTI], Ferenczi [83], Nemeti [85] and many

other works.
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Nemeti proved that ICrsa is a variety, but is not finitely axiomatizable for a > 3

(cf. [HMTII, 5.5.10, 5.5.12] and Nemeti [78]), and that its equational theory is

decidable (Nemeti [86, Theorem 10(i), p. 144]). As a contrast to these results of

Nemeti, by Thompson's part of the main theorem in this paper, IDa is finitely

axiomatizable (for a < uj). This might suggest that Da would be closer to CAa's

than to CrsQ's, but Nemeti [86, Theorem 10(h), p. 144] proved that the equational

theory of IDa is decidable (for a < uj). It is still open whether the equational

theory of Du is decidable or not.

We also note that by using the method of the present proof of Theorem 1, one can

obtain a (syntactic description of a decidable) set of defining equations for JCrsQ.

(That set is necessarily infinite, though.) Also, an application of the present method

to the diagonal-free (df) cylindric algebras yields a (simple) proof for Mod((Co)-

(C3)) ="the class of all df-cylindric-relativized set algebras of dimension a" (for

the definitions of these notions see e.g. [HMTI, §5.1.]).

The first published works using the cylindric algebraic term £* were, probably,

Pinter [73, p. 171] and Craig [74a, (8), p. 13], Craig [74, pp. 121, 102, 2]. (The
letter "£" comes from these works, too.) The idea of using t%- goes back to some

joint work of W. Craig and C. M. Howard starting before 1965 (see the footnote

on p. 14 of Craig [74a]).

We also note that Thompson also has a proof (unpublished) for Theorem 1 (as

was indicated in the introduction). His proof is based on ideas completely different

from those in the present paper. For example, the construction given in the present

paper is such that the unit contains no two permuted versions of a repetition-free

sequence, i.e. if / E V, ker(/) = IdQ, and ct is a permutation oi a, a ^ Ida then

a\f £ V. In contrast, Thompson's proof yields a representation where V Q aU and

there is a group G of permutations of U such that (Va E At 21)(3/ E V)rep(a) =

{f\a:aEG}.

Connections with relation algebras and more on Thompson's proof. The relation

algebraic counterparts of ModE and IDa are the classes WA and SR1RRA defined

by Maddux (see e.g. Maddux [82]). (Further, the counterpart of MGR is xuu =

x.) The relation algebraic counterpart of the Resek-Thompson theorem is then

Theorem 5.20(h) in Maddux [82] saying that WA = SR1RRA. (The related result

SA C SR1RRA, where the variety SA is obtained from RA by weakening the law

of associativity, is already in Maddux [78].)

We note that Thompson's proof (which is practically "disjoint" from Andreka's

one) for Theorem 1 of the present paper proceeds somewhat analogously to Mad-

dux's: Thompson first shows that every complete, atomic algebra in ModE is a

subalgebra of one that satisfies the so-called "Henkin-condition", which is a gener-

alization of "every atom is rectangular" (cf. [HMTII, 3.2.14]), and then Thompson

shows that every atomic algebra in Mod E that satisfies the Henkin-condition is in

/Crsa (this second step is a generalization of [HMTII, 3.2.14], with an analogous

proof). (We note that the notion of "rectangularity" as well as 3.2.14 of [HMTII]

need to be generalized since they strongly rely on (C4) while in Theorem 1 we have

only the weaker (C4).) Thompson's proof is so unrelated to the present one that

by the tools developed in this paper we cannot say anything more significant about

the ideas in it. Therefore a separate paper will deal with the ideas of Thompson's

proof. A corollary of that proof yields a rather transparent procedure for deciding
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validity in CAQ of equations involving only sl,'s (and no other basic operation of

CA's).
We also note that the relation algebraic analog of CrsQ is defined by R. Kramer

who denoted it by REL, and found a finite set A of defining equations for REL (i.e.

he proved that ModA = REL). His theorem can also be proved with the method

of the proof in the present paper. As a further application, we note that almost

the same proof as given in the present paper proves a similar representation theo-

rem for finite dimensional polyadic algebras (or infinite dimensional quasi-polyadic

algebras), with no further assumptions.
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