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A CANONICAL SUBSPACE OF H*(BO)
AND ITS APPLICATION TO BORDISM

errol pomerance

ABSTRACT. A particularly nice canonical subspace of H*(BO) is defined.

The bordism class of a map f:X—*Y, where X and Y are compact, closed

manifolds, can be determined by the characteristic numbers corresponding to

elements of this subspace, and these numbers can be easily calculated. As

an application, we study the "fixed-point manifold" of a parameter family

of self-maps F: M x X —► X, thus refining to bordism the usual homological

analysis of the diagonal which is the basis of the standard Lefschetz fixed point

theorem.

1. Introduction. By the work of Thom [16], the unoriented bordism class

of a manifold is specified by its characteristic numbers. Brown and Peterson [2]

later introduced a right action of the Steenrod algebra 21 on the Z2 cohomology

H*(BO;Z2). (In this paper all cohomology will be with coefficients in Z2.) In

these terms, Thorn's results may be formulated as follows:

THEOREM 1.1 (Thom, Brown-Peterson). H* (BO) is a free right ^.-module.

Let {x^ be a basis. Two compact closed manifolds My and M2 are cobordant if

and only if (f*(xi),[Mi]) = (g*(xy),[M2]) for all i, where f: My —► BO (resp.
g: M2 —> BO) is the classifying map for the tangent bundle T*(My) over My (resp.

T,(Af2) over M2).

More generally, Atiyah [1] later introduced the unoriented bordism group 9t„(A).

This consists of equivalence classes of maps F: Mn —► X. In this context the

corresponding theorem is

THEOREM 1.2. (See Conner and Floyd [6].) Maps Fy: My —► X, F2 : M2 -* A

are cobordant if and only if

(/•(*<) • Fy*(y), [My]) = (g*(xi) ■ F^(y), [Afa]>

for all i and all y E H*(X), where {x^, f and g are as above.

In this paper a particularly nice canonical subspace S of H*(BO) is defined,

with the following properties:

1. S is a sub-Hopf algebra of H*(BO);

2. The elements of S span H*(BO) under the right action of 21, and so any basis

{xi} of S as a vector space over Z2 may be used as the basis in Theorems 1.1 and

1.2;

3. S is closed under the standard (left) action of 21 on H*(BO);
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4. If £ is any characteristic class in S, and E is an n-dimensional bundle whose

structure group reduces to the braid group, then t(E) = 0;

5. More generally, for E as in (4) and F any bundle, t(E © F) = t(F);

6. S contains the polynomial algebra generated by the squares (wi)2;

7. S itself is a polynomial algebra.

By the work of F. Cohen [5] there is a natural isomorphism e: 9^r(A) —>

if,(A; Z2) of braid bordism of A (bordism of maps M —» A with braid structure

on the stable normal bundle u(M)). The natural isomorphism e sends [/: Af —► A]

to /*([Af]). £ induces a natural isomorphism 9t^r(A) (gi^l^pt) —► 91* (A) sending

[/: Af - A] <g> [W] to /.([Af]) x \W).
In terms of the basis {x^} of S we derive in §5 an explicit and especially simple

calculation of the class in 91^r(A) <gi 91, (pt) associated with any map F: M —► A

in 91*(A).

S is defined in terms of braid bundles. The map B(Broo) —► BO is studied in

§2 and the results of F. Cohen [5] about H*(B{Broc)) are recalled. In §3 we define

the sub-Hopf algebra S C H*(BO) and study its relation to H*(BO) in §4.

In §5 the promised explicit formula for a class in 91* (A) (resp. 01* (A)) as an

element of Jf,(X) ® 91,(pt) (resp. H*(X)®W(pt)) is derived.

In §6 as an application we analyze the fixed point manifold of a parameter family

of maps F: M x A —> A. This is based on the explicit formula we will derive for the

diagonal bordism class [A: Af —> Af x Af ], where Af is a compact smooth manifold

of dimension n. Thus we will refine to bordism the homological analysis of the

diagonal A in Hn(M x Af) which is the basis of the standard Lefschetz fixed point

theorem.

In §7 the low dimensional generators for S are given.

This paper elaborates on material in my thesis, A generalization in cobordism of

the Lefschetz fixed point theorem, Polytechnic Institute of New York, 1984.

The author would like to acknowledge with gratitude the advice and encourage-

ment of Edward Y. Miller, of the Polytechnic Institute of New York.

2. Braid groups and the map H*(BO) -> H*(B(Broo)). The braid group

Br„ is the fundamental group of the space of embeddings of the unordered set

{1,2, ...,n} <—► D2, the unit disk in R2. An element can be represented as

a homotopy class of "strands" beginning and ending at a fixed set of n points

Pi,P2,-..,Pn E D2. (For a complete discussion of the braid group, see K. Rei-

demeister, [14].) The "twisting" of the strands defines an element of £„, the

permutation group on n objects. If we represent the elements of Sn as permutation

matrices, En is a subgroup of 0(n), the orthogonal group. The composition is a

homomorphism, «'("): Brn —> 0(n).

By adding strands (mapping Brn —► Br„+fc) one defines Br^ = limBrn; simi-

larly, by enlarging the defining matrices, we can define O = limO(n), and obtain

natural homomorphisms:
Brra   -► Broo

0(n) -—>    O

Both Br„ and On have algebra structures defined as follows: Brn x Brm —»

Br„+m is defined by concatenation; the map 0(n) x 0(m) —► 0(n + rn) is defined
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as follows:

04,5) ~[0 B\,
and the following diagram commutes:

,-(n) y,'("») ,     , ,

Brn x Brm -—-—► 0(n) x 0(m)

Brn+m       -►       0(n + m)
yn + m)

Consequently, passing to the limit, the maps i^ define maps of the classifying

spaces B(Brn) —» BO(n) (see Milnor and StashefT, [12]). Since the above diagram

commutes, we have Hopf algebra structures on if*(.B(Broo)) and H*(BO) with

induced Hopf algebra map i* : H*(BO) -> H*(B(Bt<x>)).

Given a bundle n: E —> A, Brown and Peterson [2] have defined a right action

of the Steenrod algebra 21 via x ■ a = tp~l(x(a) ■ <p(x)) for x E H*(X), where tp is

the Thom isomorphism tp: H*(X) -> H*(T(E)) and T(E) is the Thom space of E.

Passing to the limit, one obtains right actions of 21 on H*(BO) and f7*(B(Br00)).

The map i* commutes with this right action.

F. Cohen [5] has proved this fundamental result:

THEOREM 2.1. The homomorphism 9: 21 -> r7*(B(Broo)), defined by 9(a) =
1 ■ a, is an isomorphism.

Note 1. A similar theorem was proven by S. Bullett [4, Theorem 3.1]. An

exhaustive description of H*(B(Broc)) is given by D. Fuks [7].

Note 2. In this regard, the work of Mahowald is illuminating [8, 9] (see also

Priddy, [13]). Mahowald shows that for the canonical map /: fi2^3 —► BO, the

Thom spectrum T(f) is the K(Z2,0) spectrum, so the cohomology of T(f) is iso-

morphic to the Steenrod algebra as a module over the Steenrod algebra. Cohen [5,

Lemma 2.1] has shown that H*(Q2S3) ~ if*(B(Broo)).

PROPOSITION 2.2. 0 is a map of coalgebras, i.e. if A (a) = ^a'® a", then

6*(l-a)=£(l-a')®(la").

Proof. Let
e
i

BO(k)
rv\

be the universal O(k) bundle.  Then the Whitney sum map BO(n) x BO(m) —*

BO(n + m) induces the map

/ £" ® i e i ® £m \ .
T(DAT(£m)=T i ]^T(C+m),

\BO(n) xBO(m)J

where T(£) is the Thom space of £.

Now in cohomology, this induces

©* : H*(T(C+m)) -* H*(T(t:n)) A H*(T(£m)),
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with ffi (u^n+m)   =  u^r. A u^m.    The element 1 • a is defined by the relation

7T*(1 • a) U u^n+m = x(a) ' u^n+m. By the naturality of the Steenrod operations,

©    (1 • a) U U^n + m   = ffi    (X(C()  ■ U^n+m)  = X(a)  ' ©    (u^n + m )

= x(a) ■ (ue A u^m) = J2lx(a') ■ u^] A ]x(a") ■ u€m],

where A (a) = J2 a' ® a"- So this last equals

J^ 7r* (1 • a') U u€» A tt* (1 ■ a") U u^m

= 5^[7r*(l • a') A tt'(1 ■ a")] U [u€» A u€m],

i.e. ffi*(l-a) = £(l-a')A(l-a").      D

COROLLARY 2.3.   ^4// primitives of H*(B(Broc)) are in dimension 2X — 1.

PROOF. The corresponding fact about 21 is proved in Milnor [10].

Note. A more direct way of seeing the above result is to note that //.(^(Broo))

is a primitively generated Hopf algebra with algebra generators concentrated in

dimension 2X — 1. Thus, the primitives in /f*(JB(Br00)) are given by one copy of Z2

in every dimension of the form 2% — 1.

3. Definition and properties of S. Let I denote the ideal in H*(BO)

generated by i*(H*(BiBr00))) (elements of dimension > 0). Then the projec-

tion rr: Ht(BO) —* H*(BO)/I is a map of Hopf algebras. We define: S =

{H*(BO)/I}m, the dual of H*(BO)/I.

PROPOSITION 3.1.   1. S is a Hopf algebra;

2. 7r induces a monomorphism ir*: S «-♦ H*(BO) of Hopf algebras;

3. The composite homomorphism S ■—► H*(BO) —> H*(B(Br00)) is the zero

homomorphism.

PROOF. 1. This is a standard result about Hopf algebras (see e.g. [11]).

2. The functor Hom( —, fc) is right exact for any field fc.

3. This follows from the definition of S.    □

Note. S can in fact be realized by the cohomology of a loop space: let n: S3 —►

B30 represent a generator of tts(B30) m Z2, and let F be the homotopy theo-

retic fiber F -» S3 -^ B30. There is an induced fibration fi2S3 ^? BO — QF.

Since (n2^)* is monic on homology, the Serre spectral sequence collapses. Thus

1 —► H*(Q2S3) —► H,(BO) —► Ht(QF) —► 1 is a short exact sequence in the cate-

gory of Hopf algebras. Dually, H*(QF) is the Hopf kernel of (Q2r>)*: H*(BO) -»

H*(Q2S3). Now, by [5], there is a homotopy commutative diagram

B(Br00) -► BO

rr

e ,' n2n
r*

Q2S3

where 9 is a homology isomorphism.   Under the isomorphism 9*: H*(Q2S3) —►

H*(B(Broo)) this same Hopf kernel is identified with S, the Hopf kernel of

(Q2n o 9)*: H*(BO) -> H'(B(Br00)).
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The author would like to thank F. Cohen for pointing this out.

From now on we will identify S with its isomorphic image in H*(BO). The

elements of the sub-Hopf algebra S C H* (BO) may be characterized in terms of

the map

p: B(Broo) x BO -* BO x BO ^ BO

as follows:

PROPOSITION 3.2.   IftEH*(BO), then t ES iff p*(t) = l®t in

H* (B (Br cc))®^ (BO).

PROOF. By definition, t E S C H*(BO) iff (t,p*(r ® s)) = 0 for all r E

H,(B(Br00)) and s E H*(BO). That is, iff (p*(t), r ® s) = 0 for all such r, s. Since

generally, ®*(t) = t ® 1 + £ t' ® t" + 1 ® t with dim(t'), dim(t") > 0, this can only

be so if p*(t) = 1 ®t.    □

An immediate consequence of Proposition 3.2 is that t(E ffi F) = t(F) for any

characteristic class t E S and E a braid bundle. (Property 5 stated in the intro-

duction.) Another immediate consequence is property 4 (S is closed under the left

action of 21) since p*(a ■ t) = a ■ (1 ® t) = £)(a' • 1) ® (a" ■ t) = 1 ® (a ■ t), where

A(a) = J2 a' ®a" in 21.
Using Proposition 3.2, we may exhibit some elements of S:

PROPOSITION 3.3. Every primitive element x E H*(BO) with dim(x) ^ 2i - 1

is in S.

PROOF. If x is primitive, 0*(:r) = x®l + l®x. We have to show that i*(x)

vanishes in H*(B(Brao)). But i*(x) is primitive in H*(B(Broo)). By Corollary 2.3,

it vanishes.    □

Similarly, we prove

PROPOSITION 3.4.   S contains the polynomial algebra generated by the squares

(m)2-

PROOF. A(wy) = wy®l + l®wy so (wy)2 is a primitive in H*(BO) of dimension

^ 2* - 1. Therefore, by Proposition 3.2, (wy)2 E S.

Suppose inductively that (w^2 E S for t < n. In other words, i*((w{)2) = 0 for

i < n. Then,

A(i*((wn)2)) = t- (J2(v>i)2 ® K-,)2)

= i*((wn)2)®l + l®i*((wn)2),

so i*((wn)2) is primitive in H*(B(Br00)). Hence i*((wn)2) = 0, by Corollary 2.3.

But then, since i*((wi)2) = 0 for i < n,

p*((wn)2) = (i* ® 1)(AK)2) = (i* ® 1) (£w2 ® K-,)2) = 1 ® (wn)2.

By Proposition 3.2, this shows that (wn)2 ES.    D

Note 1. Since S is a subalgebra of H*(BO), S has no elements of finite height.

Hence, by the Borel structure theorem [11], S is a polynomial algebra. (Property

7 of the introduction.)
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Note 2. It is shown in §7 that there is one generator in each dimension ^ 2l — 1,

and the generators through dimension 10 are given there.

In general, if /: X —► BO is the classifying map of the orthogonal bundle t\ over

A, and t E S C H*(BO), we will write f*(t) as £(£)• In particular, if /: Af -► SO

is the classifying map of the tangent bundle of Af, where Af is a smooth manifold,

we will write f*(t) as t(Tt(M)).

PROPOSITION 3.5. Let g: N —> A where N is a closed braid manifold and X

is a compact closed manifold. IftES and x E H*(X) with dim(z) < dim(A) = n,

then (g*(x) ■ t(n(N)),[N]) = 0.

PROOF, dim(z) + dim(t) = n, so dim(i) > 0. Then, by Proposition 3.1,

<(T*(A/)) = 0.    □
The following result shows that certain characteristic numbers of some special

maps can be easily calculated. In §4 we will show that these characteristic numbers

completely determine the cobordism class of any map, and in §5 we will use the

knowledge of the cobordism classes of these special maps to derive a formula for

the cobordism class of any map.

THEOREM 3.6. With g: N —» A as above and t E S, if W is any compact

closed smooth manifold, consider the composition

gopr2:W xN -+N ^X,

where pr2 ia the projection on the second factor.  Then, for x E H*(X),

((g opr2)*(x) ■ t(T.(W X N)),[W x N])

= (t(T.(W)),[W)).(g'(x),[N)),

z/dim(x) = n, 0 otherwise.

PROOF. Since S is a Hopf algebra, A(t) =t®l + J2ti®tj with ti, tj E S and
dim(^) > 0. Then,

(gop2y(x)-t(T.(WxN))

= t(T.(W)) ® g*(x) + Y, U(T.(W)) ® g*(x) ■ ̂(T.(A)).

Thus,

((gop2)*(x)-t(T.(WxN)),[WxN])

= (t(T.(W)),[W))-(g*(x),[N])

+ £>(T*(W)), [W]) ■ (g'(x) ■ t3(T.(N)), [A/]).

But by Proposition 3.5, the right-hand terms are all zero if dim(a;) < n, and in

that case so is the middle term. If dim(x) = n, since dim(tj) > 0, the only nonzero

term is the middle term, and that proves the proposition.    □

Similarly, we prove

THEOREM 3.7. Let h: N -<• A be a map with N closed and u(N) -> X a braid

bundle. (This is the stable normal bundle of N in X.) Then in the composition

h o pr2 : W x N — N — A,

((h o pr2)*(i) • t(u(W x N -» A)), ]W x N])

= (t(HW)),[W])-(h*(x),[N}),

if dim(x) = dim(N), 0 otherwise.
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PROOF. As in the proof of Proposition 3.5, (h*(x) ■ t(u(N -» A)), \N\) = 0 if

dim(x) < dim(A). Now u(W x N -» A) = v(N -r X) ffi v(W).

The above proof can now be repeated.    □

4. The relation between S and H*(BO). In this section we will show that a

basis for S as a vector space over Z2 is also a basis for H* (BO) as a right 2l-module.

Recall that if tt: £ —► BO(n) is the universal 0(n) bundle, and u^ the Thom class

of f", then, for x E H*(BO) and a E 21, x ■ a is defined by the relation

(x ■ a) U u^n = x(a) • (^"(a;) U u^).

Stong [15, p. 94], following Milnor-Moore [11], proves the following result: If

yl is a connected Hopf algebra and Af a connected coalgebra which is also a left

module over A such that the diagonal map is an A-module map, and if v: A —► M

is a monomorphism, where v is defined by a >-» a • 1 with 1 € Af the counit of

Af, then Af is isomorphic, as a coalgebra, to A ® N, where N = M/AM, A being

the elements of positive degree in A. Further, if /: N —► Af is any vector space

splitting, the isomorphism is given by a ® n t-* a ■ f(n). From this result follows

PROPOSITION 4.1.   H,(BO)=H,(B(Br00))®S*;

2. H*(BO) = (H*(BO)/S ■ H*(BO)) ® S, where S ia the set of elements of
positive degree in S.

PROOF. For 1, take the monomorphism v to be

i,: H^B&Too)) -+ H.(BO);

for 2, take v to be

S^H*(BO).    D

Thus, in each dimension,

rank(/j"*(B(Broo)) = rank(ff,(B(Br0O)))

= rank(H* (BO)/S-H* (BO)).

Now, the epimorphism i*: H*(BO) —► ^'(^(Broo)) can be factored:

H'(BO) -^ H*(BO)/S ■ H*(BO) £ 7T(£(Broo)),

where tt is the projection, since i*\z.H.(BO\  = 0-    Therefore, ff*(B(Br00)) ~

H*(BO)/S ■ H'(BO).   But 21 ~ f7*(B(Broo)) and the isomorphism a ^ la

can be used as the above vector space splitting /. Thus we have:

PROPOSITION 4.2.   H*(BO) ~S®21 under the map s®a^ sl)(l-a).

The following theorem yields, as a corollary, property 2 of the introduction:

PROPOSITION 4.3. The elements ofS span H*(BO) under the right action of

21.

PROOF. Every element of H*(BO) is of the form £sj U (1 ■ tti) with Si E S,

a, € 21. We want to show that every element s U (1 • a) may be written as £) Sj ■ aj.

We argue by induction on dim(a).   If dim(a) — 0, then a = 1, which is of the
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required form.   Thus we can assume that we can write sU(l-ft) as^Sj' aj

whenever dim(a) < n. If dim(a) = n,

7r*(s • a) U uj = x(°) • (7r*(s) U ut)

= 52(x(<x')-ir*(s))U(x(a")-ut),

where A(a) = Y,a' ® a"'■ Now x(Qr') E S by Proposition 3.4, so:

tt*(s • a) U u$ = ^ 7r*(s') U (x(a") U u€).

But x(a") Uu€ = (1 ■ a") U u€, so

n*(s-a)Uui =7r*(s)U(l • a) U u€ + ^7r*(s')u(l -a") Uu4

= tt*(s) U (1 • a) Uuc + ^V(s" • a"') Uu€,

i.e. sU(l -a) = s • a + £>" ■ a'".    D

COROLLARY 4.4. A vector space basis for S (over Z2) is also a basis for

H*(BO) as a rights-module.

PROOF. A basis {xa} for S gives a surjection S ® 21 —> H*(BO) via xa®a<->

xa-a. This is an isomorphism since, in each dimension, rank(S®2l) = rank(H*(BO))

by Proposition 4.2.    □

5. An explicit formula for the bordism class of a map. Let A be a

C.W. complex and {a,} a basis for if*(A). Choose braid manifolds Ni and maps

fi-. Nt -»■ A so that (fi)*(]Ni]) = a<. The bordism class [Ai] ® [/,: Ni -» A] is the
class of the map

A, x At P-^2 N, A A,

which was analyzed in Theorem 3.6.

In terms of the representation of 91* (A) as 91* (pt) ® H* (A) described in the

introduction, if g: Y —► A is any map of a manifold Y of dimension n, the bordism

class of g can be represented as

[g:Y^X] = Y^[A]®[fl-Nl^X],

with dim(aj) < n, for some unique classes [Aj] G 9ln_dim(Qi).   The proposition

below gives an explicit formula for {[Aj]}:

THEOREM 5.1. If {fa} is the basis for H*(X) algebraically dual to {ai}, and

t E S, then (t(T.(Y)) ■ g*(p3), [Y]> = («(T*(A;)), [A,]).

Proof.

(t(T.(Y))-g*(fy),[Y})

= $>(T*(Aj x Nt)) ■ (fiopr2)*(/3j), [A, x N,]).

But by Theorem 3.6, this equals

J2(t(UA)), [A,]) •</;(&), [Nt]).
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Now (f*(Pj), [Ni]) = (/3j, (fi)*([Ni\) = (Pj,ai) = Sij. So there is only one nonzero

term in the sum, and

(t(T.(Y)) ■ g*(P3), [Y]) = (t(T.(Aj)), [A,]).    D

Since a Z2 basis for S is a right 2l-module basis for H* (BO), the above formula

uniquely determines the [Aj] E 91*(pt).

Similarly, using Theorem 3.7, we can get the cobordism representation of g. If A

is a manifold, we can take

/t:At-*A

to be maps of compact closed manifolds such that:

(a) ai = (fi)»([Ni]), and

(b) i>(fi: Ni -* X) is a braid bundle (this is stably (-T*(7Vj) ffi T,(X))).
The cobordism representation,

[g: Y - A] = £[fl<] ® [fi: Nt - A]

is similarly determined:

THEOREM 5.2.   With the {Pi} and t as in the above proposition,

(t(v(Y - A))) • (g*(Pi), [Y]) = (t(v(Bt)), [£,]).

6. Lefschetz-type invariants. Suppose that A is a compact, closed, smooth

manifold of dimension n. Let {a^ be a basis for if*(A). Choose closed manifolds

Ni and maps /j: Aj —► A such that:

(a) (fi)*([Ni\) = ai, and

(b) v(fi: Ni -> A) is stably braid.

A number of bases for the homology and cohomology groups of A and Af will

be used in this section. They are related as follows: {aj} is a basis for if,(A), {dj}

the corresponding Poincare dual basis for if*(A), i.e. aj = dj n [A] and {Pi} the

basis, again for H*(X), algebraically dual to {a^, i.e. (P,,aj) = 6^. Finally, {Pi}

is the algebraically dual basis to {dj}. It is not hard to see that {Pi} and {dj}

are Poincare duals also, but we will not use this fact. Similarly, {ctj} is a basis for

if*(Af), {dj} the corresponding Poincare dual basis for H*(M), and {fj} the basis

for H*(M) algebraically dual to {ctj}.

We can get the unique braid cobordism representation of the diagonal A: X •—►

A x A as

Y^Ba\ ®&i® &i    or    X^l ® If* -Nt^X]® [fj: Nj -+ A],

where [B^] E 9ln_dim(Q.)_dim(Q>)(pt) as follows:

The cobordism class represented by

[Bi3]®[ft:Ni^X]®[fJ:NJ^X]

is the class of the composite map

Bij xN,x Nj P^3 N, x Nj f'^f' A x A.
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Thus, by Theorem 3.7,

J2 ([(/« x fj) ° Pr23]*(ft' ® ft'MKftj x At x Af,-)), [Sj, xiV.x AT,-])

= 5;<t(i/(fltf)), [ft,-i> • <(/«r(Ao. [Md • ((Ar^-'). &]>■
i',j'

However, ((fi)*(fa>), [NA) = 8^ and ((fj)*(Pj>), [Nj]) = 6jji, so this sum reduces

to the single term (t(v(Bij)), [ftj]).

But by Theorem 1.2, this must equal

(A*(Pi®~Pj)-t(v(X^XxX)),[X\).

Since u(X <-» X x X) = T*(A) and A*(fa ®pj)=faU pj, we have the formula:

(t(u(Bij)), [Bij]) = (t(T,(X)) ■ fa • Pj, [A]).

As a cobordism class, A:AfxA—»AfxAxA defined by (m,x) h-> (m,x,x)

is then 1 ® 53[ft>] ® ai ' aj-
IfF: Af x A —► A is a parameter family of self maps /m: A —> A, we may define

F: Af xAxA —> MxXxX by F(m,x,y) = (m,F(m,x),y). If F is transverse to A,

F*(l®Y^[Bij]®oti®dtj) represents the cobordism class of {(m,x,y)]F(m,x) = y}.

Thus, A* o F*(l ® YlWij] ®&i® aj) represents the cobordism class of {(ra, x)\

F(m,x) = x}. Call this "fixed-point manifold" Fix(F).

To calculate the cobordism class of Fix(F) c Af x A, note that the following

diagram commutes:

AfxA^AfxAxA^AfxAxA

I \
(Af x A) x (Af x A) -> Af x (Af x X) x X

l<g>flip23 ®lx

Let {ai} be a basis for if,(Af), {dj} the corresponding Poincare dual basis for

H*(M) and {fj} the algebraically dual basis, also for H*(M). Represent {oj} by

Oj•: Mj —► Af so that we have aj = (gj)*([Mj]) and v(M3 —> Af) stably braid. In

terms of the basis {dj} for if* (A) and {d,} we have in cohomology:

F*(ai) = J2Ki"°J® Sk-
it

Using the above diagram, we can calculate

Fix(F) = A*oF*    1 <g> Y[Bij] ®a,® a,

=  J2 Kik\Bij] ® °V ® ("fc Ufi,').

Now, let {Pq} be the basis for if*(A) algebraically dual to {d,}.

dfc U a,- = ^(dfc U aj, pq) ■ aQ.

Q
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Then we have

Fix(F) =    J2   Kf ' ("fc u ">> ai) ' lB^ ® <^> ® "«■
i,j,k,p,q

We now define the Lefschetz-type invariant

£(F,f,7,/3) = Wr.(Frx(F)-/*(7®^))),[Fix(F)]),

where 7 G H*(Af), /? € if*(A), t E S and /: Fix(F) <-+ M x X is the inclusion.

Thus we have

Z(F,t,fr,ps)

= £Kf ■ i&i ■ ak, aq) ■ (t(v(Bij)), [Bij]) ■ (&)•(?,), [Afp]) • ((/«,)*(&), [Nq]),

where the sum is over indices i,j,k,p,q.

But ((gp)*(fr), [Mp]) = 6r<p; ((fq)*(P3), [Nq]) = <S,,S, so the above sum is simply

Z(F,t,Tr,~ps) = YdKlk(*1,*k,Ps) ■ (tMft,-)),[ft*l>,
i,3,k

or

Z(F, t, rr, fa) = J2 Kik(<*i ■ «*, Ps) ■ (t(T.(X)) ■ fa ■ Pj, [A]).
i,j,k

7. The generators of S. To illustrate how generators of S may be constructed,

we exhibit them up through dimension 10.

By Proposition 3.4, S contains the squares (wj)2, and by Proposition 3.3, S

also contains any primitive elements of H*(BO). According to Milnor and Stasheff

[12], 8'k) is primitive in H*(BO) for any fc. In particular, S(5), S(9) are in S. Now,

A(s{5i5)) = 8(5,5) ® 1 + «(5) ® »(5) + 1 ® «(5,5). Therefore, (i* ® i*)(A(s(5,5))) =

i*(«(515))®1 + »*(S(5))®!,(«(5)) + l®«,(«(5,5)).   NOW, since 8(5) GS, t'*(S(5)) =0.

Thus, «*(s(5,5)) is primitive in if*(B(Broo)) and so, by the corollary to Proposition

1, it vanishes. We now compute

m(«(5,5)) = i*<8>l(A(s(5)5)))

= ?'*(s(5,5)) ® 1 + 1*(S(5)) ® S(5) + 1 ® «(5,5) = 1 ® 8(5,5)-

Thus, by Proposition 3.2, S(5,5) is in S.

Now, S(5) and S(g), being primitive elements in S are generators of S. There are

no polynomial relations between (it»i)2, (102)2, (wz)2 and (W4)2, all of which are

also in S. Finally, using a formula of Brown and Peterson [3] for dsu/dan, we can

show that S(5|5) is indecomposable, and is therefore a generator of S.

We now assert that {(u>i)2, (w2)2,s/5), (w^)2, (w4)2,S(9),S(5:5)} is a complete list

of polynomial generators through dimension 10.

Since H*(BO) is a polynomial algebra with generators Wi, the Poincare poly-

nomial Pt(H*(BO)) = FJ„ 1/(1 ~~ *")• Now since 21* is a polynomial algebra in

dimensions = 2l - 1 (Milnor, [10]),

pt(2t) =  TT   ,   1  x-n   '        -11    (I-tn)
n=2'-l v '
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Since H*(BO) ~ S®21, Pt(H*(BO)) = Pt(S) ■ Pt(2l). Thus,

*W-  n  jrrpy-
ra#2'-l V ;

Consequently, S has exactly one polynomial generator in each dimension ^ 2* — 1,

so the above list is complete.
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