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STOCHASTIC PERTURBATIONS TO CONSERVATIVE
DYNAMICAL SYSTEMS ON THE PLANE.

II: RECURRENCY CONDITIONS

G. WOLANSKY

Abstract. We consider a conservative system on the plane, subjected to

a perturbation. The above perturbation is composed of a deterministic part

and a random (white noise) part. We discuss the conditions under which there

exists a unique, finite invariant measure to the perturbed system, and the weak

compactness of the above measures for small enough perturbation's parameter.

1. Introduction and main results. In Part I of this paper [5] we considered

the problem of convergence, as e —► 0, of the invariant measures due to the diffusion

process generated by

(1.1) L£ = -VHV + QV + A

on R2. Here H is a smooth, real function with a finite number of critical points,

V = (—d/dy, d/dx) for z = (x, y), Q is a smooth vector-valued function on R2 and

A stands for the Laplacian. In [5] we assumed that the diffusion process generated

by (1.1) admits a unique invariant measure, p£, on R2, for all e > 0 small enough.

Moreover, the set of measures {p£} was assumed to be weakly compact (tight).

Under the above assumption we proved the strong convergence of p£, as e —> oo

to a finite measure p°. p° was represented by a density function p° which is given

explicitly as a function of the local action, J, due to the Hamiltonian H. By our

condition on H, J is a smooth, single-valued function on {z; \z] > R} for some

R > 0. J is defined by

(1.2) J(z)=<f     ydx,
Jti')

where 7(2) is the level curve of H intersecting z. On each such level curve we

defined the averaging operator

Consider

(i-4) ^J)={iviwf> J=J{z)-
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By the above notation p° was defined outside the R disc on R2 as

(1.5) p°(J) = Cexp( /   iP(s)ds)

where C is a normalization constant and p°(z) is defined by (1.5) upon the substi-

tution J = J(z) [5].

In the present paper we study the conditions under which the assumptions of

existence and weak compactness of {p£} are satisfied. From (1.5) it seems evident

that a necessary condition for the above assumptions is the integrability of p°(z).

In particular, the integrability of p° follows from the assumption

(1.6) hm ip(s) < 0.
s—»oo

The sufficiency of (1.6) is a delicate problem (see below). As for now, we assume a

much stronger assumption:

Assumption Ai.

1. hm <^   sup     -—— + ——2    } < 0

where 7(s) is the level curve of J = s and nj is the outward normal to 7(J).

2. lim  (   inf   [|VJ|21 =oo.
s^oo Ue-Y(s) J

It is easy to see that Assumption Ai is stronger than (1.6) provided AJ is

uniformly bounded. In fact, by (1.3),

(1.7) <|VJ|2)(S) = /     |VJ|,

(1-8) (Q-VJ)(s)=f     %^=/     Qnj.
J-,(s)     \VJ\ J 1(3)

Thus, Assumption Ai requires the strict inequality at any point on the contour 7(s)

for s large enough, while (1.6) requires only the inequality of the contour averages.

Notice that both (1.6) and Assumption Ai ignore the functional dependence of H

on J (i.e. the frequency of oscillations on level curves of H due to the unperturbed

system z = VH(z)). It is only the behavior of Q ■ Vnj and VJ that counts.

THEOREM 1.1. Assume Ai holds. Then, for any £ > 0 the process generated

by (1.1) is positively recurrent. In particular there exists a finite invariant measure

p£, associated with the diffusion process generated by L£. Moreover, the set {p£}e:>o

is compact in the weak topology of measures.

Consider now the weaker assumption (1.6). As it stands, it is not likely that

(1.6) may replace Ai in Theorem 1.1. This is due to the fact that (1.6) contains no

information about the frequency of oscillations on a given level curve of H, and we

cannot expect that |VJ| and Q ■ nj can be replaced by its contour averages if the

frequency uj(J) (= dH(J)\dJ) is zero for some values of J. Moreover, even if w(J)

admits a positive lower bound, we may expect that the conclusions of Theorem 1.1
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would fail ii Q VJ deviates wildly from its contour average. If H is a harmonic

oscillator

(1.9) H(x,y) = \x2 + \u2y2,    uj = const ^ 0

then we can prove an analog of Theorem 1.1:

THEOREM 1.2.  Assume H is given by (1.9) and, in addition, 3C > 0

(i.io) |vzg|<c,   V2GR2.

Then the conclusions of Theorem 1.1 hold provided (1.6) replaces Assumption Ai

and £ > 0 is small enough.

Condition (1.9) can be relaxed as follows: If H is harmonic, then the associated

action is given by J = H/uj. Here w is a positive constant so J is a definite quadratic

form. Consider a general Hamiltonian H = H(z), for which the associated action

satisfies the following generalization of the "harmonic" action:

(1.11) 0(J) = 0(|VJ|2) = 0(|z|)2    as z -00,

(1.12) |V2V2J|<C.

In addition, let the canonical angle 9 ({J,9} form a canonical pair) satisfy the

obvious generalization to the harmonic oscillator case

(1.13) \z]\Vz9\ + \Az9\<C.

THEOREM 1.2'. Let H be a Hamiltonian function on R2 and assume the asso-

ciated action-angle variables satisfy (1.11)—(1.13) for z at a certain neighborhood of

infinity. Assume, in addition,

C2 > dH/dJ = uj(J) >Cy>0

and VH is uniformly Lipschitz (as a function of z). Then the conclusion of Theorem

1.1 holds if (1.0) replaces Assumption Ay.

Notice the restriction "g small enough" in Theorem 1.2(2') compared to "any

e > 0" in Theorem 1.1. Theorem 1.2(2') may be applied to the case of degenerate

diffusion as well. In this case, we replace the Laplacian in (1.1) by, say, d2/dx2.

The formal expression of p° (1.5) is the same, where (\8J/dx\2), (d2J/dx2) replace

(|VJ|2) and (AJ), respectively, in (1.4). Here the analog of Assumption Ai fails

since (d2 J/dx2)/\(dJ/dx)\2 blows up at some point on any level curve of J, while

(1.6) may be satisfied since (|5J/d:r|2) is always positive.

2. Technical background. In order to show the existence of a finite invariant

measure p£, one has to prove the positive recurrency of the process involved [3].

Given a simply connected bounded domain Qy, let rf be the hitting time of 71 =

dfii. If Q2 DD fli and 72 = dQ2, then it is enough to show:

(2.1) sup Ex(t{) < 00
x€-/2

(see [1]). In the case of Theorem 1.1 we apply some adaptation of the barrier

method [1] and use the special structure of L£. Defining 71, 72 as level contours of

J, we explicitly define a function U° = U°(J) satisfying

(2.2) L£U°(J) < 0,      lim U°(J) = 00.
J—* OO
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The existence of U° as above guarantees the recurrency of the process. To prove

the positive recurrency, we construct a second barrier F = F(J) > 0

(2.3) L£(F) < -1   Vz, {J(z) > Jy},

where J(z) = Ji on 7,-, i = 1,2. Then

Ez(r£y)<F(J2)    V2S72

and the positive recurrency follows from (2.1). Since F is independent of e, the

l.h.s. of (2.1) turns out to be independent of e as well. This observation, however,

is not sufficient for the weak compactness of the invariant distributions {p6}.

In order to prove the weak compactness, we use a representation of an invariant

distriubtion p to a positively recurrent diffusion process, due to Khas'minskii [4].

Consider the stopping time t£:

(2.4) t£ = {ini t >0; z£(t)E Qy,3(0 <s<t) z£(s)E~ Qy}.

Then, if A is a Borel set

(2.5) p£(A) = f  Ey[f   XA(z£(s))ds) du£(y) / /  Ey(r£)dy
J11 \J0 I       J-ty

where u£ is a probability measure on 71 induced by the diffusion process (xA_the

characteristic function of A). In [5] we used (2.5) to obtain the strong convergence

p£ —> p° on fii. Here we use the same representation to estimate p£ on the external

domain ~ fi2. Let {z; \z\ > R} := fi^ c~ fi2 for R > 0 large enough. By (2.5),

p£(Q^) is estimated by

(2.6) p£(fi£) < sup Ez I fT  X%(z£(s))ds) / inf Ez(t£),
«€-7i \Jo j I     *€-»

where Xr is the characteristic function of fi^5. Since Xr is supported in ~ fi2, we

obtain for z E 71

(2.7) Ez UT X%(z£(s))ds\ = Ez (£ Xf(z£(s))ds\

where r2 is the hitting time of 72. By the strong Markov property

EzU]  X%(zE(s))ds)  =Ez(Ez<{Ti)ll\%(z£(s))ds)j

< sup Ext H X%(z£(s))ds),
z€-72 \Jo J

where rf is, as before, the hitting time of 71. From (2.5) and (2.8)

(2.9) p£(fi£) < C-1 sup Ex I fl X%(z£(s)) ds) ,
x€l2 \Jo j

provided C is an e independent function satisfying

(2.10) inf Ez(t£) >  inf Ex(rf) > C > 0.
z&li x€l2
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Thus we prove the weak compactness of {p£} by showing

(2.11) hm   J sup Ex I ^ x%(z£(s)) ds)\=0
ft^oo   [x€-72 \Jo J J

holds uniformly w.r. to e > 0. In the beginning of §3 we fill in the details of the

proof of Theorem 1.1.

The proof of Theorem 1.2(2') is more complicated. Here we cannot introduce an

explicit barrier as in (2.3). However, there exists a function U*(J) > 0 satisfying

(2.12) L£U* =-l + i

where (£)(./) = 0 for J > Ji (see (1.3) for the definition of (■)). In order to prove

(2.1) in this case, one has to show

(2.13) Ex If l tt(z£(s))ds) <6Ex(t£) + C <oo

for x E 72, C > 0, 0 < 6 < 1, where C, S are independent of the particular choice

of z E 72- To prove (2.13), we take advantage of the definition of £:

(2.14) / * t:(z°(s))ds = 0
Jo

where z°(s) satisfies the unperturbed (deterministic) system

z° = VH(z°),    z°(0) = z

and T° = 2tt/uj(z). (2.14) is just the condition (£) = 0. Splitting f = | + (1 - f)

where 1 - £ is compactly supported in ~ fii and (£) = 0, (2.13) is reduced to (see

§3):

(2.13') Ex (I ' e(^(s))ds) < 6Ex(Tf) < oo,

for <5 < 1 and x € 72, fixed.

Let x E 72, 9(x) = 9q. We define the ray /#   C~ fii as

(2.15) ll = {z E~ fii; J(z) >Jy+ n,9(z) = 9Q),

where n > 0. Define ff' as the stopping time according to the following rule: The

process z£(s) starting at oj E l1^ is stopped whenever z£(t) hits lg after completing

at least one revolution in 9. Let t£' = ff' Arf. Using the strong Markov property,

we show (§3) that (2.13') is reduced to the following

(a)    Vu>G#o1    Ew(TeyA)<°c j

(2'16) (b)   VweQ0,    EWUT    i(ze(s)d8)\<6Ew(Te1'1)r

(2.16a) is proved in §3 by constructing an appropriate barrier function. The proof of

(2.16b) includes most of the technical details of this paper, and is given in Appendix

B. The object of this proof is to estimate the deviation of the l.h.s. of (2.16b) from

that of (2.14), for £ small.  In order to prove those estimates, we need a uniform



646 G. WOLANSKY

lower bound on E^rf'1) Vw E lg . This is the reason for the choice J(uj) > Jy +n

in the definition of l^o (2.15). In Appendix A we prove certain bounds on £ which

are required for the proof of (2.16b). The proof of weak compactness follows along

similar lines, using (2.11).

3. Estimates on the external domain.

PROOF OF  THEOREM   1.1.   Let the assumptions of Theorem 1.1 hold.   For

J > 0 large enough, define

(3.1) lJ = {zER2,J(z) = J}cR2.

Let J2 > Jy, and consider 7< = 7^, i = 1,2. By Assumption Ai we may define Ji

large enough for which

/««. AJ + QVJ(3.2) sup -—^-- < -a < 0
J€~u \WJ\

where J > Jy and a are a positive constant. Given R > R' > J2 we define the

domain

(3.3) Q%, = {z;R'< J(z)<R}.

Let Tf R be the escape time from fi^. From the definition of L£ and by VHVJ = 0

we obtain

(3.4) L£(e«J) = \VJ\2eaJ \a2 + aA^%V" .

Hence, by (3.2),

(3.5) L£(eaJ) < 0

for J > Jy.
Using the Ito formula and applying expectations on the process starting at 72:

(3.6) Ey f 1R L£(eaJ) ds = ^[expoJ^ H)] - eaj2 < 0
Jo

for y E 72- The definition of t£ r and (3.6) yield

Py{z£(riR)ElR}<ea^^

for arbitrary R > J2. Hence the process is regular and recurrent [1]; r^, the hitting

time of 71, is finite a.e. and

(3.7) lim Ty a = Ty    in prob.
R—»oo      '

In particular, for R T 00 t£ r is monotone and (3.7) holds a.s. Let

6(J) = inf |VJ|2

and

(3.8) F(J)=f   eas\f    ~e-audu]ds.
Jj,        Us    o(u)
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F is well defined by Assumption Ai(2). Applying L£ on F, using (3.2), we obtain

in a similar way to (3.5)

(3.9) L£(F) < -1    for J > Jy.

Given y E 72, the Ito formula yields

(3.10) EyrlR < -Ey flR L£F(z£(s)) ds = -{EyF(r[<R)) - F(J2)} < F(J2).
Jo

Using (3.7) and the remark thereafter, we obtain a bound on EyT£ by (3.10) and

the monotone convergence. Hence the process is positively recurrent for any e > 0

[1]. In particular, the process (1.3) admits a finite invariant measure, p£.

Let fij£ be defined by (3.3). The set {p£}, £ > 0, is weakly compact provided

(3.11) lim p£(QR) =0,    uniformly in e > 0.
ii—>oo

Let now

(3.12) FR(J)= f   eas \ f°° ^-e~au du   ds

where Xr IS the characteristic function on [R, 00) and a is as in (3.2). A calculation

similar to that of (3.9) yields

(3.13) L£FR < -xf-

Hence, for y E 72

(314) Ey (r x*{z£{s)) ds) - ~Ey (c l£fr^^ a

= FR(J2)-Ey(FR(z£(T£y))) = FR(J2),

by the Ito formula. The last equality above follows from the definition of FR and

t£. From (3.14) we obtain the e-independent estimate:

(3.15) sup Ex I f    XR (Z£(s))ds j < FR(J2).
xe~t2       yJo J

By (3.12) and limj^oo 6(J) = 00 (due to Assumption Ai): limR-.oo FR(J2) = 0,

and (3.11) follows.  To complete the proof, we need to provide a lower bound on

Ex(t£). In order to evaluate such a bound, consider t£r, the escape time from QR

for fixed F > J2. Choosing /? > 0 large enough, we may estimate

(3.16) L£(e0J) >C>0

for Jy < J < R (compare (3.4) and (3.5)). C is e independent and, for y E 72,

Q-ie0J2 js a iower bound on Ey(rf R), independently of y and e (compare (3.10)

where the opposite inequality, (3.16), replaces (3.9)). A lower estimate on Ex(t£),

x E 71, is obtained, independently of x and e, by the strong Markov property. This

completes the proof of Theorem 1.1.    □

PROOF of Theorem 1.2. By the conditions of the theorem, the process admits

a strong solution for any e > 0. In fact, the drift satisfies

]VH(z)+eQ(z)]<K(l + ]z\),        zeR2,
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which, together with the Lipschitz conditions on VH and Q, satisfies the conditions

of Theorem 2.1, §5 of [3]. In particular, we obtain for every T > 0,

(3.17) hm Py(r£R > T) = 1
R—>oo

where tr is the escape time from a domain QR C R2, Qr ] R2. Let

(3-18) ^Cwwt*"
and define

rJ , /-oo

(319)       u'iJ}=LwmrML e*Wrf"'

Notice that U* is well defined by (1.6).

Considering U* as a function on the phase space via U(J(z)), a direct substitu-

tion yields

(3.20)

L£U* = \VJ\2^U* + (AJ + Q- VJ)4-U*
dJ1 dJ

]vj\2     f  (Aj + g.yj)    Aj + g-yj-j     (J) [°°eX{s)ds
(]vj\2) + \      (\vj\2)    +    (|vj|2)   je      J j       ds-

In deriving (3.20) we used the identity

(3.21) (VJV) = ^j(divV),

for any smooth vector-valued V. The above identity follows from the divergence

theorem (see also [5]). Hence

(3.22) (L£U*) = -1.

LEMMA  3.1.   Under the assumptions of Theorem 1.2, there exists a constant

C, independent of £, where

\L£U*\ + \z\|VZL£U*| <C,    Vz€fi£.

We defer the proof of Lemma 3.1 to Appendix A.

Let Ty = t. (We suppress the e dependence from now on.) In fij?, consider the

segment lgo given by

t$0 = {Ji+V< J<™, Q = Qo}

where n > 0 is a constant, and Jy + n < J2. Let

fn = {mit,z(t)ElgxQ,30 = to <ty<t2<--<tn = t,

z(ti) E lg0 and \argz(ti) - argz(t,-y)\ > 2rr},        1 < i < n.

Define rn = fn A r. The stopping rule of f" is as follows: The process is stopped

whenever z(s) hits lg at the nth time, and each two successive hittings are separated

by at least one revolution of ±27r.

By regularity of the process (see (3.17)):

(3.23) lim rn = t    a.s.
n—»oo
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Notice that, at this point, r may admit an infinite value. In fact, r = oo if the

sample path never hits 7!. Let

(3.24) £ = L£U* + 1.

Using the Ito formula with t" as a stopping time, we obtain Vx E^2:

(3.25) Exrn = U*(J2)-ExU*(z(rn)) + Ex f    t(z(s))ds.
Jo

Since U* > 0 on fif, (3.25) yields

(3.26) Ex(rn) < U*(J2) + Ex f    tl(z(s))ds ,    Vx E l2.
Jo

LEMMA 3.2.   Under the assumptions of Theorem 1.2,

Eyrn < oo    Vn, yElVgo.

Moreover, there exist positive Sy(n), 62(e,n)

lim5i(n) = 0,     lim S2(e,n) = 0   Vn > 0,
n—>0 e—>0

n

Exf    i(z(s))ds  <6y(r1) + 62(£,r1)Ex(Tn),
Jo

where x is the intersection of 72 with Vg . In addition, 6y and S2 are independent

of 9q. (See the definition of fg .)

From Lemma 3.2 we obtain a global bound on EyTn, independent of n and

V E 72, provided e is small enough. In fact, by (3.26) and Lemma 3.2

(3.27) Exrn < [*1(r?) + C/*(J2)](l-<52(£,»?))-1,

provided e is small enough. This leads to the boundedness of Ex(Tn), x = fg 072,

independent of n, and hence to a bound on Ex(t) via (3.23). Since the conclusions of

Lemma 3.2 are independent of #o> we obtain a bound on Ey(r), uniform on y E 72,

and the positive recurrency follows via [1]. The weak compactness of the associated

invariant measures follows along a similar line. We define UR, equivalently to (3.19),

as

/J 1 /-OOPpy-e-^8'!    l[u>R]e*Mdu.

We then obtain, equivalently to (3.22),

(3-22') (LeU*R) = -l[*,oo).

Let

(3-24') tlR = L£UR + i[R,oo).

Then £R satisfies the same estimate as £ in Lemma 3.1. Following the argument of

(3.23) -► (3.27), we obtain

(3.28) supExrR < (sy(n) + UR(J2) + 62(£,ri) sup Eyr) (l-62(e,v))-1,
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where rR is the occupation time of QR:

TR=   f X%(z£(s)ds.
Jo

The right-hand side of (3.28) is arbitrarily small by choosing rj, e sufficiently small

and R sufficiently large, using the already known bound on supy6l2 Ex(t) and

lim U*R(J2)=0.
R—»oo

Thus, the weak compactness of the invariant measures follows by the same argument

as in Theorem 1.1. (See (3.10) and the remark thereafter.)

PROOF OF LEMMA 3.2. Let 0 < ^(J) < 1 be a C°° function on fi^ satisfying

a"(J) = l,        J>Jy+bn,

0 < av(J) < 6/4M   on Ji < J < Ji + 4n,

a"(Ji) = 0,

where M = supnoo |£|, M < oo, by Lemma 3.1. Let
Ji

(3.29) £ = <*"£•

Then, for y E 72

(3.30) Exf    Z(z(s))ds = Exf    \(z(s))ds + Exf    (1 - aP)Z(z(s))da.
Jo Jo Jo

The second term on the right of (3.30) is estimated by

MEX f   [1-a" (*(*))] ds.
Jo

Define
rj /-oo „Du

uv{j)=-ML'-Di, WJVM11-^"

where

|AJ + g-VJD>   sup    --2--
zew? I       \VJ\j 1

and D < 00 by (1.10)-(1.12). Uv is well defined by definition of an. Moreover,

LelP = Af (1 - a") + (Q ■ VJ + AJ - £»|VJ|2)^-[/" > Af (1 - a"),
dJ

by definition of D and the negativity of dUn/dJ'. Hence

MEy /    (1 - aT'(z(s)))ds < Ey I     L'lP = EyUr>(z(rn)) - U^(J2) < -£/"(J2).
Jo Jo

Define now
Sy(V) = -Ur>(J2)/M.

By definition of a*1

lim Sy(n) = 0
n—>oo
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and from (3.31) we obtain the estimate

Ey T (l-ar>)az(s))ds  <Sy(n).
Jo

In order to complete the proof we have to show the existence of 62(e, n) for which

k

(3.32) Ex   f    l(z(s))ds <62(e,n)Ex(Tk),    Vk,x = % n72,
Jo

and the boundedness of the right-hand side of (3.32). We proceed by induction on

k as follows:

Assume Ex(rn) < oo and (3.32) holds for 62(e,n) = 6, k = n. Then

(3.33)

Ex I       i(z(s))ds <EX I    £(z(s))d8 +ExyEz(Tn) I    l(z(s))ds J

by the strong Markov property. Similarly

(3.34) Ex(rn+1) = Ex(rn) + E^E^r1).

By the induction hypothesis for fc = n, we obtain (3.32) for fc = n +1, using (3.33),

(3.34), provided

r1 -
(3-35) Ey   /     Z(z(s))  ^SE^t1)

Jo

holds for each y E Range^r1)), where the r.h.s. of (3.35) is bounded. By definition

of r", z(rn) C 71 U lgQ. Since x = 72 D lg0, the proof of (3.35) yields also the first

step of the induction. Thus, we conclude Lemma 3.2 by proving (3.35) and the

boundedness of E^t1), Ty E 71 U lg . By definition of r1, both sides of (3.35) are

equal to zero if y E 71. Therefore, (3.35) is nontrivial only if y E tg

In order to obtain a bound on Ey(rx), we consider the diffusion process in the

covering domain

fij° = {Ji < J < 00, 00 < 9 < 00}.

The diffusion on fi^ can be extended to fij? in a natural way. Define fij? c fi j?

as

5" = A" - J   U ll + 2,k
(fc#0 J

where fc runs over the nonzero integers.

Let fy be the escape time to fi^, due to the diffusion process in the covering

space. By definition of r1 we obtain r1 = f1 for any sample path of the diffusion

starting at l^o in both fi jP and fi^, respectively.

We proceed by defining a barrier function, V, on fi^. If

(3.36) L£V > 1,
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and V is twice differentiable on fi f, then by the Ito formula, for y E lg ,

(3.37) E^r1) = Ey(fx) < Ey(V(z(r2))) - V(y) < 2 sup V(w).

In (3.37) we identified the diffusions on the original and covering domains. On fi f,

V is not necessarily a single-valued function. We turn now to the definition of V.

Define 6( J) > 0 by

Q(J) = 0,        Jy<J<Ji+n,
6(J) = 1,        Jy+2n < J <oo,
0 smooth and positive on r] + Jy < J < oo.

Let u = u(J):

L£u > 1    on Jy < J < Jy + 2n.

For given C > 0 and e > 0, define

V = eC&(J)9 + (1 - 6(J))u(J)

where 9 is given by

9 = 9    on - 2tt < 9 < 2ir,

9 = 9 mod 2tt    on (9 > 2ir) U (9 < -2ir).

Evidently, V is smooth on fi^P, and globally bounded.

Consider L£V. Since VH ■ V = uj(J)(d/d9) by definition, a simple computation

yields

(3.38) L£V = C§uj + eC(A + Q ■ V)Q9 + L£{(1 - @)u}.

By the lower bound on w and the definition of 0, the first term above is bounded

from below on J > Jy + n + 6, for any 8 > 0. The last term of (3.38) exceeds 1

on an interval (Jy,Jy+n + 6) for 6 > 0 small enough, by the definition of u. The

middle term is uniformly bounded on Qf by (1.10), (1.11) and (1.13). Thus we

may choose 6 > 0 small enough, then e > 0 small enough to obtain (3.36).

In addition to the above bound, we need a lower bound

(3.39) inf  E^t1) > D£
w=l1

for some D > 0, independent of £.

Consider the deterministic system obtained by removing the white noise compo-

nent from the diffusion process

(3.40) S° = £-1VH(z°) + Q(z°),    z°(0) = wel\.

Since Q increases at most linearly in |^| by (1-10) we obtain by (1.13) the uniform

bound on Q ■ Vz9. From (3.40), in terms of (J, 9)

±9(z°(t))=1-uj(z0(t)) + Q-Vz9.

Since w is bounded from below and Q ■ Vz9 is uniformly bounded, we observe that

for £ small enough, the first hitting time of fg due to the deterministic process

(3.40) is bounded from below uniformly on w E tg   provided e is small enough. On
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the other hand, comparing (3.40) to the original diffusion process with given e > 0

we obtain

(3.41) Pw (   sup    \z£(s) - z°(s)\ >u)< C(v,T)£2.
\0<s<eT /

(See [2, Chapter 2].) Since Q and VH are both uniformly Lipschitz, the constant

C(u, t) above is independent of the choice of w E tg . From the above remark, we

may define a constant T > 0 for which

sup    |0(S°(O)|<27r-i/,    Vz°(0)=wEtne.
0<t<eT

Using (3.41) we conclude

Pw(t1>£T)>1-C(u/2,T)£2,    VwEl^

and (3.39) follows. We complete the proof of Lemma 3.2 by proving (3.35) in

Appendix B.

Appendix A. The uniform bound on (3.20) is an immediate consequence from

the assumptions on J and Q (1.10, 11) and (1.6). Taking the 2-derivative of the

first term on the r.h.s. of (3.20) and using (3.21), we obtain

fA 1) V -I™!!. - V*IVJI2 _ _J_|VJ|2(AJ)VJ(A.l) V*(|VJ|2) "  (|VJ|2)       (|VJ|2)2'W| {AJ)VJ-

The r.h.s. of (A.l) is estimated by 0(|2|_1), using (1.11) and (1.12).

Next, consider

(A.2) e"*(J) /     exWd8 = -   -yrX       + 0(J)
Jj [dJ  .

where

(A.3) W = «-x(J)/"«xW^([^x]"1)(.)*.

By definition and our assumptions

(A.4) £ = ® ' V J> = O(l)
V     ' dJ       (\VJ\2) y '

Using Green's equality (3.21), we obtain

d2X      (div-g)      (Q-VJ)(AJ)

dJ2      (]VJ\2) +      (|VJ|2)2

and, by the assumptions of the theorem

(A.5) %£(*) = 0(\z\~2).

Hence

(A.6) |^d7x| = |vj^x|=0(N-).
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Since |dx/dJ| is bounded from below for \z\ large enough (see 1.6), we obtain

a uniform bound on the first term on the r.h.s. of (A.2). By (A.5) and (1-6),

/?(J) = 0(|,z|-2). By (A.6) and the lower bound on |dx/dJ| we also obtain

(A.7) VSx/dJr^O^z]-1).

As for /?(J)

<a-8>     *■"-{»£-£ [£*r}™
Using the 0(|z|-1) estimate on /?, (A.5) and (1.11), we get

(A.9) \Vz(3] = 0(]z]-1).

Hence
/•OO

(A.10) Vz   e~x^        ex^sUs   =0(\z\~1).

Finally, we have to estimate the term in curly brackets of (3.20):

(A.n) |v2{-}| = o^r1).

(A.ll) is easily verified by using (3.21) together with (1.11), (1.12) and (1.10).

Appendix B. We split y E lg0 into two cases.

Case (a), y E l^, J(y) < Jy + 2m Then

Ey ( f    l(z(s))ds\ =Ey[ f    l(z(s))ds;   sup   J(z(t)) < Jy +4n)
\Jo J \J0 0<t<r> J

+ Ey(f    i(z(a)) ds; 30 < t < r1, J(z(t)) = Jy + 4n J .

By definition of ff (see (3.29)), we estimate the first term in (B.l) by 8Ey(T1)/2.

As for the second term, consider

Pj/(30<«<r1, J(z(t)) = Jy+4n)

< sup Pw(30<t<r\ J(z(t)) = Jy+4-n)
{u/\J(w) = J,+3ri}

< sup Pw (   sup    ]z(s)-z°(s)] > J ) < C(n,T)£2
{u;J{w) = J,+3v} \0<s<eT * J

by (3.41), provided sT is chosen so that the orbit of (3.40) completes at least one

revolution at this time. By (B.2) and the Cauchy-Schwarz inequality, we estimate

the second term of (B.l) by

Af[£y(r1)2]1/2[C(r?,T)£2]1/2<CM sup ]Ez(r1)]1'2]Ey(T1)]1l2£
(B.3) 2Gn5°,

<C(n)[Ey(T1)]1/2£.

In (B.3) we used the inequality

Ey(]r\2)< supEZ(T)-Ey(r),
zen
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.vhere r is the escape time from an arbitrary domain fi. The r.h.s. of (B.3) is now

estimated by

(B.4) CWlEyir1)]1^ < CMD-^e^Ey^1) < 8Ey(r1)/2

using (3.39), provided e is small enough. This completes the proof of Case (a).

Case (b). y E lg , J(y) > Jy + 2n. Let T£ be the hitting time of lg0+2n due to

the deterministic system (3.40), zo(0) = y. By the assumptions of the theorem, we

obtain a uniform bound

(B.5) sup T£ < ef.

In fact, the frequency ui(J) is bounded from below and QV z9 is uniformly bounded

by (1.10), (1.13). Hence

^-9(z°(t)) > e-1 inf u - sup lg • Vz9\ > e~lC
dt z z

and (B.5) follows upon inserting T = 2ir/C.

On the space of orbits starting at y we define the event

J?£ = \z;    sup    \z(s)-z°(s)\<-—~-\
\    o<3<2sf Kn-4supz]Vt:] + N\

where N > 4 will be determined later on.

By (3.39) with u = 8/N we obtain

Py(Jt") > 1 - C(6/N)e2.

An analysis similar to (B.2)-(B.4) yields

(B.6)      Ey(j*  l(z(a)),~Jfe\ <M\[c(^'\Ey(T1)]1l2£<6-Ey(T1),

provided e is small enough. We estimate now

Ey(f   az(s))ds,^£)  =Ey(jT (l(z(s))-l(zo(s)))ds,jr£\

(B.7) V ° (   r' \
+ Ey[fQ      i(z°(s))ds,J?£\.

The first term on the right of (B.7) is estimated by

(B.8) sup\Vi\Eyll    ]z(s)-z°(0)\ds,jr£)<6-Ey(T1).

In fact, the definitions of J?£ and r1 together with the special choice of y due to

Case (b), yield for e small enough:

(B.9) supr1<2ef,
4"
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so the integral in (B.8) is bounded by 8/(4sup |V||), by definition. The second

term in (B.7) is written as

(B.10)       Ey ̂  (l(z°(s)) - l(z°(a)) ds,J?)j + Ey QP l(z°(a)) da,Jt^j .

where z°(s) is the orbit of the unperturbed system

(B.ll) z° = \VH(z0),    z°(0)=y.

To estimate the first term in (B.10) we have to compare the deviation of z°(s) from

z°(s) on a 2eT time interval. Using the assumptions of the theorem (in particular,

the uniform Lipschitz conditions on Q and VH), we obtain

sup Jz°(s)-z0(s)\<£C\y\,    z°(0) = y,
0<s<2eT

for e and |y| independent of C. Taking into account the estimate on |V£| due to

Lemma 3.1, we obtain

Ey(lTlZ(z»(8))-£(z(8))da,^e\

(B.12) <    sup    |V|f»|    sup    \z0(s)-z°(s)\EyT1
|z|>|y|/2 0<s<2ef

KeC'EyT^^EyT1,    VyEQo.

The second term in (B.10) is written as

(B.13) f" l(z°(s))ds + Ey IT  az°(s))ds,^£) ,

where T° is the period of (B.ll). The first term in (B.13) is identically zero by the

definition of £. The second term in is estimated by

(B.14) sup ||| sup |rx - T°| < sup ||| (sup |rx - T£\ + \T£ - T°\)

where T£ is, as before, the hitting time of t^o due to (3.40). By the definition of

r1 and J?£, sup^-e Ir1 — T^| is estimated by the time in which the orbits of (3.40)

cross a 6/N neighborhood of tg . This time is estimated by eO(8/N) uniformly in

y Elg . Taking N large, we bound this time by

\Nj      4 sup |£|

where D is defined in (3.39). Hence:

(B.15) suplllsuplr1 -T,£| < -Mr1).

To obtain a bound on |T^ - T°|, we use the assumption on H and Q. It is easy

to see that ]T£ -T*| is estimated by 0(£2), uniformly in y E lg . Hence for £ small

enough

(B.16) supllHT; - T°| < 6-D£ < -Ey^1),    Vy E /?„.
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Combining (B.6) with (B.8), (B.12) and (B.16) we complete the desired estimate

on £„(£*£>(*))).
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