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ON THE NONLINEAR EIGENVALUE PROBLEM Au + Xeu = 0

TAKASHI SUZUKI AND KEN'ICHI NAGASAKI

ABSTRACT. The structure of the set W of solutions of the nonlinear eigenvalue

problem Au+Ae" = 0 under Dirichlet condition in a simply connected bounded

domain fl is studied. Through the idea of parametrizing the solutions (u, X) in

terms of s = A J eu dx, some profile of W is illustrated when fl is star-shaped.

Finally, the connectivity of the branch of Weston-Moseley's large solutions to

that of minimal ones is discussed.

1.   Introduction.  Our purpose is to study the nonlinear eigenvalue problem

(P):

(1.1) -Au = Ae"    (infi)

under the Dirichlet boundary condition

(i.2) u = o  (on an),

where 11 C R2 is a simply connected and bounded domain with smooth boundary

dfl and when A > 0. We are seeking the solution h = T(u, X) of (P) which is taken

in the classical sense so that u E C2(Q) fl C°(Q). If we fix A and regard (P) just

as a nonlinear elliptic equation, then its solution u is called a section at A of the

original eigenvalue problem.

Our problem arises in differential geometry and also in mathematical physics and

has been studied by several authors [6, 12, 5, 13, 9, 19, 11, 1, 2, 4]. From these

works we know the following, where "branch" means a portion of a one-dimensional

manifold in R x C°(Cl):

(i) There is a branch W0 of solutions (X,u) = (Xt,ut) (0 < t < 1) for (P), which

originates from (A, u) = (0,0) at t = 0 and goes toward A > 0 as t > 0.

(ii) That branch Wo, without any bifurcation, continues up to A = A for some

A = A(n) in 0 < A < oo and then turns to A < A, that is, the bending occurs. In

other words, in the parametrization Wo = {(At,ut)|0 < t < 1}, there exists a i in

(0,1) such that At T A as (t j t) and At j for i < t < 1. Furthermore, the component

of the solutions for (P) containing Wq is unbounded.

We set W_ = {(At,ut)|0 < t < t} C W0.

(iii) The branch W_ is minimal in the sense that for any section u = u(x) at

A = At (0 < t < t), the relation ut(x) < u(x) (x E n) follows. Furthermore, here

the equality holds at some x E n if and only if u = ut ■

(iv) When A > A, there is no section u of (P). On the other hand, for 0 < A < A

there is a section u such that (u, X) £ W_. Therefore, at least two sections exist at

each A in 0 < A < A.
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Recently, under certain assumptions for n, V. H. Weston and J. L. Moseley have

constructed a branch W* differing from W_ by the method of singular perturbations

[22, 16]. In the parametrization W* = {(At,wt)|2 < t < 3}, we have

At|0    and   ut(x)^Alog\l-o~g-1(z)]/\g-1(z)-8\

as t T 3, where z = xy + ix2 E C for x = (xy,x2) E R2. Here, g: D = {\c\ <

1} —► n is a Riemann mapping, that is, one-to-one and conformal mapping having

a diffeomorphic extension g: D —> n. Furthermore, 6 E D solves the equation

(1.3) 6=12(l-]S]2)g"(S)/g'(S).

Henceforth, W* is called the branch of Weston-Moseley's large solutions.

The main object of the present paper is to show that if n is close to a disc, then

W_ and W* are connected to each other and form one branch of solutions, which

may be denoted by W = {(At,ut)|0 < t < 3}.
We note that the branch of large solutions actually connects with that of minimal

solutions, in the case 0 = D = {\c\ < 1}. In fact, f(u) = Ae" > 0 and hence u > 0

in n. Therefore, by a theorem due to Gidas, Ni, and Nirenberg [7], every section

u = u(x) of (P) is radially symmetric: u = u(|x|). Consequently, from the results

of Gel'fand [6] we have X(D) = 2 and that (P) for n = D has exactly two sections

at A in 0 < A < 2. Actually, these are given as

2. Preliminaries. 1. We first look at Weston-Moseley's theory briefly and

afterwards give some remarks.

They make use of the Liouville integral [14] for the equation (1.1) to construct

asymptotic solutions u = un (n = 1,2,...) for (P) as A J. 0 under a certain

assumption, which we shall describe later. Namely, u = un satisfies (1.1) with

(1.2') un = 0(Xn)    (on an) as A | 0,

and is given explicitly in terms of the Riemann mapping g: D —► n. In fact, it

behaves like

un(x) ~ 4log]l - Sg-^z)]/^1^) - 6\

as A | 0, where 6 E D solves the equation (1.3).

It holds that the solution 6 E D of (1.3) is characterized as 8 = <?_1(d), where

d E n is a point of maximal conformal radius for n [16, p. 721]. Therefore, such a

6 E D exists for each simply connected domain (IcR2. Further, d is unique when

n is convex. (See [16, 8] and also [20, 10].) Now, construct another Riemann

mapping g^: D —> Q just by composing tp(c) = (c — S)/(l — 8t) to g from the

right-hand side. Then, 6 E D can be reduced to 0 E D, and (1.3) is equivalent to

(2.1) ff'Jv(0)=0.

In this notation, a simple sufficient condition for the existence of the asymptotic

solutions described above has been given by Moseley [16]. That is,

(2.2) a = a(d,n) = |^(0)/^(0)|^2.

Moseley [16] further showed a < 2 in the case that n is convex.
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Genuine solutions for (P) are constructed by a Newton-like iteration. Namely,

first we pull back the problem (P) in n to that in D by gx '■ D —► U:

(2.3) -AU = X]g'N\2eu    (in D)

with

(2.4) U = 0   (on dD).

Through the Green's function

*(*'y) = 2iHr^;'
where z = xy +ix2 and w = yy +iy2 for x = (xi,X2) and y = (yy,y2), respectively,

the above problem is transformed into the integral equation

(2.5) U = K(U) = X f K(x, y)(\g'N]2eu)(y) dy.
Jd

Here, the modified-Newton iteration

(2.6) Uk+y=S(Uk)        (k = 0,1,2,...)

is applied where S(U) = (1 - K'Uq)-1(K(U) - K'Uo(U)). In the case that the

iteration (2.6) converges in C°(D), a genuine solution U* of (2.3) with (2.4) is

obtained. It can be shown that if the starting point Uo satisfies

\]u0 - K(u0)\]CO{D) < iog((i + r)/r) - (i + rr1,

then (2.6) converges, where T is a positive constant such that

IKi-^J-^JI^r.
Furthermore, we have

(2-7) ||L7*-[/0|bo(fi)<iog((i + r)/r).

See Weston [22, p. 1040].

When the nth asymptotic solution Un = un o gN is taken as a starting point Uo

in the scheme (2.6), we have

\\U0-K(Uo)\\co,D)<C\n    as A 10

with a constant C > 0 from (1.1) with (1.2'). On the other hand, by the method

of Weston [22], we get

||(1 - KJ-'Wco^c^D) < CX-1    as A I 0

except for a "pathological case" of n. Therefore, for n > 3 the iteration (2.6)

converges to a genuine solution U* such that

(2.8) \]U* -Uo\]co(D)<CX^-1)l2    as A 10,

provided that A > 0 is small. In fact, we can take T = CiA~1_/ (/ > 0) by

||(1 - K'UorlK'Uo\\ < 1 + 11(1 - K'Uorl\\ < C2X-'       (A I 0).

Then,

\\u0 - K(Uo)\\CO{D) < iog((i + r)/r) - (i + r)-1
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holds if n = 21 + 3 and A | 0. Further, then

W* - Uo]]Co{D) < log((l + r)/T) < C73A1+! = CgA^1)/2.

Here, Cy, C2 and C3 are positive constants.

By the method of Wente [21], it can be shown that the "pathological case" does

not arise when a = |a^(0)/rr^(0)| < 2. The function u* = u*x = U* o g^1 becomes

a nonminimal section for (P), and the branch W* = {(A, u*y)} of large solutions has

been constructed.

From the inequality (2.8) and the concrete expression of Uo (= un ° Sw), we can

derive an important relation,

(2.9) S = X f e<dx = 8ir + CX + o(X)    as A | 0,
Jn

with a constant C = C(d, fl) defined by

(2.10) - = -M2 + £-^M2'
ir ■'—' n — I

n=3

where <7w(c) = X^°=oa™f™ (02 = 0). By virtue of Bieberbach's area theorem [18,

p. 210], we can show the following fact, where k = k(c) denotes the curvature of

dn at the point ffjvfc) E dQ for c E dD.

PROPOSITION 1.   If K.]g'N\ < 2 holds everywhere on dD, then C < 0 follows.    D

In the case that n is a disc: n = {]z] < R}, we have n\g'N] = 1. Further, we

note that C = C(d,fl) < 0 implies that a = a(d,U) (= 6|a3/ai|) < 2.

The proof of (2.9) with (2.10) and Proposition 1 will be given in Appendices 1

and 2, respectively.

2. We next look over Bandle's theory [3] about a priori estimates for solutions

and eigenvalues.

Namely, let h = T(u,X) solve (1.1) with p = Ae" (> 0). We consider a sur-

face ^# = (n,d<r) with the metric da2 = pds2 (= p(dx\ + dx2)). Then, the

surface element and the Gaussian curvature are dr = pdx (= pdxydx2) and

K = —(Alogp)/2p = 1/2, respectively. Bol's inequality is expressed as

(2.11) l(ui)2 > i(8?r - m(u))m(oj)

for uj C Cl, where /(w) = fg da and m(u>) = /^ dr. In the manner of (2.11), we

can give the following estimate [17].

PROPOSITION 2. Let h = T(u,A) solve (P) and put S = A/ne"dx. Then, we

have

(2.12) ||u||Co(n)<-21og(l-5/87r),

provided that S < 8ir.    □

Note that as for A we have |n|-1e_ll"llc°(")5 < A < A. Estimate (2.12) is

also seen in Bandle [3, p. 85, Problem]. (Namely, we have only to take p = Ae",

Kq = 1/2 and M = S, there.) We shall give the third proof in Appendix 3.

We obtain the operator Ap = — A — p under the Dirichlet condition for p = Ae"

by linearizing problem (P) with respect to u at the solution h =  T(u,X).   Let
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cr(Ap) = {pj(p)}'jf=y (-00 < pi(p) < p2(p) <•••—► +oo) denote its eigenvalues.

Then, the relation pi(p) > 0 holds when h = T(u, X) is minimal, while conversely,

Pi(p) > 0 implies the minimality of h [4].

The following proposition is obtained through Schwarz' symmetrization associ-

ated with the surface Jf [3, p. 108]. See also [17].

PROPOSITION 3. For the solution h = T(u,X) of (P), the inequality S =

X fQ e" dx < 4ir implies py (p) > 0.    D

An immediate consequence is the following.

COROLLARY 1.   Similarly, S <8ir implies p2(p) > 0.

PROOF. The eigenfunction tp2 of Ap corresponding to p2(p) has two nodal

domains ni and n2- From the assumption, either Si = A/n e"dx < 47r or S2 =

A/n e"dx < 4ir holds. On the other hand, P2(p) may be regarded as the first

eigenvalue of the operator — A — p under the Dirichlet condition on fly or n2-

Hence p2(p) > 0 follows.    □

3. Now, we shall describe our key idea, that is, parametrizing the solution

h = T(u,X) of (P) in terms of S = A JQeudx rather than A. See Nagasaki and

Suzuki [17] for the background of this idea.

For a in 0 < a < 1, we set A = C$+a(Cl) = {v E C2+a(f])\v = 0 on dn}, Y =
XX Y

Ca(Cl), X = X, X+ =  X , and Y = X, and define a mapping $ = $(/z, S): X+ x
R. Ix +. H,

R-^Y as
.,.   „.      /   Au + Ae"   \

for h = T(u,X). Zeros of $ characterize the solutions h = T(u, X) of (P) such that

S = Xfneudx. The Frechet derivative dn$: X —► Y of $ with respect to h at

(h, S) is given by the matrix

, _      / A + Ae"     e" \

^=Une".dx    &]•

For the moment, let (h, S) E X+ x R (h = T(u, A)) be a zero point of $ and set

p = Ae".

LEMMA 1.   The operator dh$: X —> Y is invertible if py(p) > 0.    D

PROOF. The operator

L2(n)

has a selfadjoint extension T in    X    with the domain
R

D(f) = H1(n)nH2(fi).

R

Therefore, T is invertible if and only if KerT = {0}, but the same is true for

T = d/,$: A —* Y by virtue of the elliptic regularity property of Ap.
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Hence, suppose that / = T(v, p) E X with (v,p) ^ (0,0) is in the kernel of

T = dn$. This means that

(2.13) Av + Xeuv + peu =0    (inn),        v = 0    (on dU)

and

(2.14) j euvdx+^r=0.
Jn A2

Multiply (2.13) by v and integrate

T(v)= [ |Vc-|2dx-A f euv2dx = p f euvdx = -^-.
Jn Jn Jn A

If p ^ 0, then T(v) < 0 which implies that pi(p) < 0. If p = 0, then v =

constant xtpy (^ 0), where py > 0 is the first eigenfunction of Ap. But this is

impossible in equation (2.14).    □

In the case that 0 ^ o~(Ap), the spectrum of Ap, the relation (2.13) with (2.14)

reduces to

^j p{l + Ap1(p)}dx = 0   withv = ^A-1(p)

because S = fQpdx. Therefore, T = dh$ is invertible if and only if

i = - f P{i + A;1(p)}dx^o.
Jn

Further,

LEMMA 2.   We have dS/dX = -I/X if0<£ o(Ap).    D

PROOF. In that case, the section u of (P) is smooth with respect to A. Actually,

we get

by differentiating (P) in A. Therefore,

ff = / {eu + Xeuv}dx = jJp{l+A;1(p)}dx.    D

Under these preparations, we conclude that

PROPOSITION 4. In the case of fl = D, every solution h = T(u,X) of (P)

is parametrized by S = A/ne"dx E (0,87r). Let it be ho(S) = T(u0(S),Xo(S)).

Then, dh$(h0(S),S): X -+Y is invertible at each S E (0,87r).    □

PROOF. According to the explicit formula (1.4), every solution h = T(u,X) is

reparametrized by S E (0,Sir): h = h0(S) = T(u0(S),X0(S)) (0 < S < 8ir).

The inverse mapping of S E (0,8ir) i-» A0(S) E (0,2) is two-valued: S = Srf(X),

where Srf(X) -* 4?r as A — 2 and S0+(A) -» 8ir, Sq(X) -+ 0 as A -► 0. Therefore,

»i(Po(S)) > 0 for 0 < S < 4ir, Pi(po(S)) = 0 for S = 4tt and pi(p0(S')) < 0 for
4ir < S < 8ir from the local theory of Crandall and Rabinowitz [4], where po(S) =

X0(S)eUo(-s\ Hence dh&(h0(S),S) is invertible for 0 < S < Air by Lemma 1. On

the other hand, in the case 4ir < S < 8ir ■we have 0 ^ o-(Ap) by Corollary 1. Then,

dSrf(X)/dX ^ 0 (0 < A < 2) is verified directly by (1.4), so that dh$(h0(S),S)
(4ir < S < 8ir) is invertible by Lemma 2.
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3. Theorems and proofs. In what follows, we seek the solutions (h, S) E

X+ x R of $(/i, 5) = 0. There is a branch S?_ of zeros of $ originating from

(h, S) = (0,0), and corresponding to the branch of minimal solutions W_ for (P)

described in §1.

THEOREM 1. Every zero point (h0, So) o/$ generates a branchS^0 of$(h,S) =

0 in the S-h plane, whenever So < 8ir. Each end of S^o approaches eventually either

the hyperplane S = 8ir or else (0,0). In the latter case, that is, when So is connected

with 5f_, the branch formed in this way bends at most once in the X-u plane.    O

7

i j\ U ?

^^p,=oj ^^^j
- -!-1-v -■—-!-y.

47T 87T S ^ A

PROOF. Set p0 = A0e"°, where h0 = T(u0,A0). Then, p2(Po) > 0 holds by

Corollary 1.

In the case of pi(po) ^ 0, the implicit function theorem applies to problem (P)

with respect to the parameter A, and (ho, So) generates a branch S^y of zeros of 3>.

In the case pi(po) = 0, on the other hand, Lemma 1 is available and we get the

same conclusion.

Henceforth, we set p = Ae" for h = T(u, A) where 3>(/i, 5) = 0 holds with some

S. We shall show the global behavior of S^o-

Along one direction of that branch S%, suppose that the relation S < Sy always

holds with an Si < 87r. Then, we have P2(p) > 0 along those zeros of $. We shall

show that there eventually appears a point (hy,Sy) in So such that pi(pi) > 0,

where pi = Xyeu>. Then, such an (hy,Sy) lies on the minimal branch 5^_, which

originates from (0,0).

To this end, we first show that along that direction with S < Si (< 87r), it is

impossible for pi(p) < 0 < P2(p) to keep holding. Suppose the contrary. Then,

there is a branch Wo of the solutions of (P) in the A-u plane corresponding to S%.



598 TAKASHI SUZUKI AND KEN'ICHI NAGASAKI

The implicit function theorem holds along the corresponding direction of Wo with

respect to A from the above assumption. On the other hand, we have an a priori

estimate in Proposition 2, so that Wo continues up to either A —* +00 or A —► 0.

However, the estimate A < A(n) holds and A —► +00 is impossible. Thus, Wo

continues to (0,0), because u = 0 is the unique section at A = 0 of (P). However,

Pi(p) > 0 holds near (0,0) on Wo, and hence this case does not occur.

Next we show that when pi(p„) = 0 occurs at some point (/i*,S») 6 S^o, then

Pi(p) changes sign near p» on So, where p* = A*e"* for h* = T(u„, A*). This fact,

together with the above one, will imply the connectivity of &o and &_ for all cases.

To verify this fact, we recall the local theory of Crandall and Rabinowitz.

Namely, in the case pi(p*) = 0, near h* = r(u»,A») Wq is parametrized as

{(X(t),u(t))\ \t\ <e0} with

u(t) = u* +ttpy +o(t)    and    X(t) = A* + ct2 + o(t2),

where <py, > 0 denotes the first eigenfunction of Ap, [23, Theorem 3.2]. Further,

the computation of Theorem 4.8 of [23] shows that A(0) < 0. Here we have

-Au(t) = A(t)e"(f)    (in n),        u(t) = 0    (on dfl).

Hence for ii(t) = du(t)/dt and p(t) = X(t)eu^ we obtain

-Au(t)=p(t)ii(t) + X(t)euW    (in fl),        ii(t) = 0    (on dfl)

so that

T(t) = f |Vu(«)|2dx- / p(t)u(t)2dx= f X(t)eu{t)u(t)dx.
Jn Jn Jn

Because of A(0) < 0, we have X(t) ^ 0 (0 < \t\ < £0) for £0 > 0 sufficiently small.

This means that py(p(t)) ^ 0 (0 < \t] < £0), because py(p(t)) = 0 for t = to implies

that A(io) = 0 by the local theory. Further, we have

T'(0) = / A(0)e"-u(0) dx = A(0) / e"*<pi- dx < 0
Jn Jn

with T(0) = 0 and hence py(p(t)) < 0 for 0 < t < e0.

Now, we shall show that py(p(t)) > 0 for —£0 < t < 0.

In fact, we have shown that it is impossible for pi(p) < 0 to keep holding along

the direction of W0 in consideration. Therefore, in case pi (p(t)) < 0 for -£0 < t <0,

we have to meet the next point /i** = T(u»*, A,*) on Wq such that pi(p*») = 0 for

p»* = A*,e"**. But this is impossible, because we must also have A" < 0 at ht*

from the calculation of [23] mentioned above. Thus, we see that along the direction

W0 in consideration, the parameter t E (—£o>£o) decreases from £0 to -£o and that

Pi(p(<)) > 0 holds for -£0 < t < 0.

In this way, we have shown that in the case that the relation S < Sy (< 8ir) is

preserved along one direction of S^o, (ho, So) connects with (0,0), and furthermore

the corresponding branch Wq in the A-u plane bends at most once.    □

Next, we suppose that n is star-shaped with respect to the origin and put B =

Ian ds/(n-x), where n denotes the outer unit normal vector on dfl. Then, we have

B > 2ir, where the equality holds when n is a disc.

If h = T(u, X) solves (P), the estimate

(S - 2B)2/.B < 4B - 4A|n|
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holds by Rellich's identity, where S = A /n e" dx (Bandle [3, p. 202]). In particular,

B < 4ir and S >8ir imply that

(8tt - 2B)2/B <(S- 2B)2/B < 4B - 4X]fl\,

and hence A < 8ir(B - 27r)/|n|5. In other words, S < 87r holds when A > X(fl) =

8ir(B - 27r)/|n|B and B < 4ir. More precisely,

LEMMA 3. In the case of B < 4ir, for each e > 0 there exists a 6 > 0 such that

A > A + £ implies S <8ir — S.    □

Now, the next theorem follows from the previous one.

THEOREM 2. Iffl is star-shaped with respect to the origin, B = Jan ds/(n-x) <

4ir and X(fl) < X(fl), then for each X in X < X < X, the problem (P) has exactly two

sections, that is, the minimal section and the nonminimal one. In the X-u plane,

these are connected to each other.    D

branches like this with  S<8 it still possible

• vTj      ,
i\here     S < 8 it   |

-^^"|-j-„
X(n) ^(D.) A

PROOF. At each Ao E (A, A), there exists at least one nonminimal section uo-

Then, pi(po) < 0 < P2(po) holds for p0 = A0e"° by Lemma 3 and Corollary

1 to Proposition 3. Hence the implicit function theory applies for (P) at ho =

T(uoiAo). There is a branch Wq of solutions in the A-u plane generated by ho-

From Lemma 3, the relation S < Sy keeps holding in the direction of A increasing,

where Si < 87r. Therefore, from the proof of Theorem 1 ho is connected with

(0,0) without any bifurcation. The branch W constructed in this way bends just

once. Further, any nonminimal solution h = T(u, X) with A 6 (A, A) generates a

branch W, which is connected with W. Since W has no bifurcation, we conclude

that h E W.    □

Finally, we shall show our main result, that is, the branch of Weston-Moseley's

large solutions connects with that of minimal solutions when n is close to a disc.

To this end, let uj c R2 be a simply connected domain with smooth boundary

dw, and let gy: D —► u be a Riemann mapping such that g"(0) = 0. Actually, such
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a gy exists as we have shown in §2.1. For sufficiently small |e|, let gNt£ = gN,e($) =

c + £gy(c): D —> fl£, where n£ = g^t£(D). Then, <jjv,£ becomes a Riemann mapping

satisfying g'/j £(0) = 0. In fact, univalentness follows from Darboux's theorem.

If |e| is small, a£ = \g'ffe(0)/g'Ne(0)\ < 2 holds, so that the branch of Weston-

Moseley's large solutions for (P) can be constructed in ne, which is denoted by

W* = {(A, u\ e)}. On the other hand, there exists the branch of minimal solutions

in fl£ denoted by W^. Then,

THEOREM 3. // |e| is sufficiently small, W* connects with W^. Further, the

branch W£ constructed in this way bends just once in the X-u plane. Namely, we

can parametrize W£ = {(At,ut)|0 < t < 3} as (uo,Ao) = (0,0) and Xt increases in

t E (0, t) and decreases in t E (i, 3) with some i E (0,3). Furthermore, here we have

Xt = X(fl£).

\ .<—Weston-Moseley's branch

^____■— "       minimal branch
-~—--"-y-

X

PROOF. According to the formulation in §2.3, we can transform problem (P) in

n£ to finding zeros of the mapping $ = $£ defined below. Namely, A£ = Co+a(ne),
X X Y

Ye = Ca(fl£), X£ = X, X£,+ =  X,Y£=X, and $£ = $e(h,S): X£>+ xR^Y£,
R R+ R

where

*.(fc,S) = (/nAe4A-f )     fOT h= T^X)-

Corresponding to the minimal branch W^., there is a branch S^e of zeros of $£

in the h-S plane, originating from (h,S) = (0,0). By virtue of Theorem 1, S^

approaches eventually the hyperplane S = 87r. Let S?£ be the branch generated by

3*£ in this way.

On the other hand, along the branch W* of large solutions, the quantity S =

A/ne"^e dx tends to 87r from below as A | 0 by Proposition 1.   Therefore, A is
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parametrized by S and hence W* can be reparametrized as W* = {(A(S),u*(S))|S0

< S < 87r} with an So E (0,87r). Further, So can be taken to be independent of

£ in |£| < £1, where £1 > 0 is a small constant, by virtue of (2.9) and (2.10).

Actually, (2.9) holds uniformly in £. Henceforth, we put h*(S) = T(u*(S),S)

(S0<S <8ir): $£(h*(S),S) = 0 (\e\ < £0, S0 < S < 8ir).
From the Riemann mapping gN,e'- fio ~* ^e, the problem (P) on ne is pulled

back to that on D = fl0:

(3.1) -AU = X\g'NJ2eu    (inD)

with

(3.2) U = 0    (on dD).

Then, $£ is transformed into the operator Fe: A0,+ x R —> Y0 as

F(HS)-(   *U + WN,e\2eU    \

where H= T(U,X).

For the large solution u* = u*x e, we set U^£ = u*Xe o gN, and H* = T(U^£,X).

Then, H* is parametrized by S E (So,87r) like h*£, and the relation

(3.3) F£(H*£(S),S)=0

follows for |e| < £0 and So < S < 87r. Furthermore,

(3.4) ll^,ellco(6)<-21og(l-S/87r)

holds by Proposition 2, so that {H*(Sy)\ \£\ < £o/2} is compact in Ao for each

fixed Si E (So,87r) by virtue of the elliptic estimate.

Taking a suitable sequence {£.,} with £j —* 0, H*.(Sy) converges in Ao- Then,

the limit #6* (Si) solves $o{Ho(Sy),Sy) = F0(H0'(Sy),Sy) = 0. However, as we

have shown in Proposition 4, the zero of $o('i si) is unique, that is, ho(Sy). Hence

(3.5) H*(Sy)^h0(Sy)    as£^0inA0.

On the other hand, the branch S^£ generated by the minimal one has at least

one section at S = Si, which is denoted by /^(Si) E XE. Similarly, ^(Sy)

is transformed into an H^-(Si) E Xo through <?N\e: no —> n£ with the relation

FeiH^iSy), Sy) =0. In the same way, we have

(3.6) K£(Sy) — h0(Sy)    as£-»0inA0.

Now, Proposition 4 indicates that the operator To = dnFo(ho(Sy), Sy); Xo —► Yo

is invertible. Therefore, the same is true for the operator T£ = dHFE(H*(Sy),Sy):

Xo —* ̂rji provided that |£| is small. In particular, the equation

(3.7) F£(H,Sy) = 0

has the local uniqueness property around the solution H = H*(Sy) uniformly in

£. Namely, there exist some £i > 0 and k > 0 such that |e| < ey, F£(H,Sy) = 0

and 11if - if£*(Si)||x0 < K 'lTm?ty H = H*(Sy). Therefore, by virtue of (3.5) and

(3.6), we get H*(Sy) = H^(Sy) to conclude that S?* and 5^, and hence W* and

W\ connect to each other when |e| is sufficiently small.

The latter part of the theorem follows from Theorem 1.    □
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Appendix I.

PROOF OF (2.9).  Let u0 be the fifth-order asymptotic solution.  We first will

show that (2.9) is reduced to

(1.1) S0 = A f e"° dx = 8ir + CX + o(X)    as A I 0.

In fact, then we get

\S - So| < A f e"° dx{el|u_Uo|lc°<c> - 1}
Jn

= Sole11"""01^0^) - 1} < CA2

by (2.8).
To show (Ll), we put U = Uq ° ffjv- Then U satisfies

-Au = X\g'N\2eu    (in D),

so that

(1.2) S0 = A f e"°dx = X [ eu\g'N\2dx = - f AU dx = - [    ^ ds,
Jn Jd Jd JdD dr

where r = |x|.

The asymptotic solution U is given as

(1.3) ,-»^«±|«       (feD),

where G(c) = G(c,X) = 1 + XGy(c) + ■ ■ ■ + A""1G„_1(c) (n = 5) and

A(c) = A(c,A) = cy?G(f,A)2^d?,

which are described more precisely later [16]. Hence

-j^-{*+5&W*»l"}/K>M>r

- {'' +1Wf,»\2} £ |G(s, A)I2/|G({, A)|4,

so that
_ldU =2

2  9r   r=l,A=0

by G(c,0) = 1 and c7|aD = 0(An). Therefore, we get

(Ll') S0 = - f    ^-ds = 8ir + 0(X)    as A I 0.
JdD dr

Next we have

ld_dU    u/2    ldUdU    u/2
2 dA dr 4 dr dA

-s(('!+ii"^»,)s1**/1**}
= 1-11
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with

"{2r + ̂ l:|-4(f'A)|J}li|Gk'A)|2/|G(f'A)|4

and

11= ^A^A)]2 + ^-fx\A(c,X)\2^ §-r\G(c,X)\2

+ (r2 + ^L4(c,A)|2) ~\G(it A)|2} /|G(c,A)|4

-2(r2 + ^|A(c,A)|2)|:|G(c,A)|2^|G(c,A)|2/|G(c,A)|6.

Therefore, we have

I|A=0 = i|:|Ao(c)|2-4rReG1(c)

and

II|A=0 = 2r2|:ReG1(f),

where Ao(c) = A(c,0). Hence

_Id_dU_

(1.4) ~5«*>-*-
= {i|:K(rt|!-4ReGl(()-2|:ReGl(s)}||t|_i.

We recall the relations in [16], that is,

2ReG1(c) = §{|G0|2 + 2Re(-^(0)G0c + G0/0W) + I - 9nW + ^o(c)|2}

and

A)(c) = -<^(0) + c/o(c) + CoC,

where Go € C is a constant and

/o(?)= f\g'N(i)-g'N(0))%.
Jo s

Here, g^ is normalized as g'N(0) > 0 so that

(1.5) 2ReG1(c) = ||A0(c)|2    (on |c| = 1).

Furthermore, Gi = Gy(r) is holomorphic in D and hence

(1.6) -/    — ReGids = - / A(ReG!)dx = 0.
JdD or JD

Therefore, the relation (Ll) holds with

(I7) JeoS^ \SrJ\,=1
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Setting Ao(c) = Y^o &«?"' we have

r °° /-27T oo

/     |A0(c)|2ds=   Y,    /     Mme°("-m)('d0 = 27ry>n|2.
JaD n,m=0J° 7^0

Similarly,

rft °° r27r °°

/     -|A0(c)|2dS=    T   (n + m)bnbm e1^^ d0 = 4ir V n|6„|2,
J9Ddr nfrnto J° £i

n+m>l

so that

(1.8) C=|-|&o|2 + f>-l)|&„|2U.

By virtue of ffjv(c) = Yn°=o a"?" witn a2 — 0> we nave

^o(c) = -ff'N(0) + Goc + c/o(f)
oo .

= -ffjv(O) + C0c + V an+1 -—-fn.
^2 "-1

Hence 60 = -g'N(0) = -ay and 6„ = an+1(n + l)/(n - 1) (n > 2).  Thus, (2.10)

follows.    □

Appendix II.

PROOF OF PROPOSITION 1. Taking some constant f in 0 < £ < 1, we put

ff«(?) = (ffjv(?) - ffw(0))/fcM0) and /c(c) = c?'(c) = Yn=od^n- Since fftl is
univalent in D, so is also g$. Then we have

In particular, do = d2 = 0 and di = 1/f. The relation C < 0 follows from

oo    1 /       1     o° 2 2\

e»> £>«i'  =£E^ )<->■
n=l V       s     n=3 1      /

We consider the function

1       °°

f       n=l

which is holomorphic in 0 < |c| < 1, where cn = —dn+2/n. When w^ is univalent,

the desired inequality (II.1) follows from the area theorem [18, p. 210];

oo oo    1

;>>|C„|2 = £i|dn + 2|2<l.

n=l n=l

The image Tr of cr = {|,z| = r} (0 < r < 1) by w^ is a closed curve. The

univalentness of w^ follows if TT is a Jordan curve and the winding number of the

mapping c E cr t-> w^(c) E Tr is -1 for each r close to 1.

In fact, let C be the Riemann sphere CU {oo} and S?: C —> C be the canonical

injection. The pole c = 0 of w^ is first order, and hence w^ extends conformally as
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yowj:D-tC. From the above assumption, we can take a mapping £T: C —►

C, which is nothing but a rotation of the Riemann sphere, so that the image of

!T o S? o u>z: Dr = {]z\ < r} —► C does not contain oo. Therefore, the mapping

5^-y o£Tojf/'owt is holomorphic in Dr with the image nr surrounded by a Jordan

curve >, where S?-y: C\{oo} —> C denote the canonical projection.

This time, the winding number of

C E Cr l-tj^-y ofT oS^OW^(c) €>

is +1 and S"-y o?7~ oS^ow^ is univalent in Dr from Darboux's theorem. Therefore,

the same is true for w^ in 0 < |c| < 1, because r can be taken arbitrarily close to 1.

Now, the relation

("•2)      «4(?) = -£/«(*) + (\ -1) -h = -£•«(*) + Q -1) p
is derived from do = d2 = 1 and di = l/£. In fact, we have

(wac)-i/c)' = -r3(A(p)-^)-

Therefore, for c = relB (0 < 0 < 2ir) we have

j^€(re") = •fiofcfr) = -£«#«(*)) = -^t(reie),

where /i^(c) = ff^(c) + (1 - l/£)c. Hence we get the relation

(II.3) S^W = e-2j9Tr,a^),

where

Sr,m = §-gMrete)/\§-ewi(re^ES1

and

rr,«W = ^M^)/|^€(^)|eS1.

The holomorphic function g$ = g^(c;) is univalent for each £ > 0, so that the

winding number of c = reie E cr i-» Tr^(6) E S1 is equal to +1, where

frAO) = ^egdre%e)/\§-egdreie) ■

Therefore, that of c = reie Ecr^> Tr>i(0) E S1 is also +1 whenever £ in 0 < £ < 1

is close to 1. Consequently, the winding number of c = retB E cr i-> Sr^(f?) G S1 is

equal to -1 by (II.3) when w^ is one-to-one on cr. In this way, we have shown that

(II.1) holds if u>£ is one-to-one on cr = {|z| = r} when £ and r in (0,1) are close to

1.
A simple sufficient condition for that is

— (ArgSr<s(0))<O       (O<0<2ir),

namely,
r.

(UA) —(AxgTr<i(9))<2        (0<9<2ir).
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When £ and r in (0,1) are close to 1, (II.4) is implied by

(H.5) ^(ArgT(0))<2        (0 < 0 < 2ir),

where T(0) = TM(0) = g'N(e^)/\g'N(el(l)] E S1.

The unit tangent vector ei of dn at 9w(elfl) is nothing but T(0), and hence

ei[l)      \sint(0))'

where t(9) = ArgT(0) and / = /0 \g'N(elw)\duj represents the length parameter

along dfl. Therefore, the inner unit normal vector on dn becomes

/cos(r(0)+7r/2)\ _ f-sint(0)\
62{l>~ \sin(t(0) + ir/2)J ~ \ cost(0)  j'

Hence

so that t'(0) = n\g'N\.  In other words, the condition K,\g'N\ < 2 (on dD) implies

G<0.    D

Appendix III.

PROOF OF PROPOSITION 2. Let h = T(u, A) solve (P) and S = A /n e" dx. For

t > 0, set flt = {u > t} and Tt = {u = t}. Then, by Green's formula we have

(III.l) D(t)= f  Xeudx = - [  Audx = - f  ^ds= [  \Vu]ds.
Jnt Jnt Jr, on JTt

On the other hand, from the co-area formula [3, p. 53] follows

D(t) = f°° dr [   Ae"-^ ds = X f°° er dr [   T^7,
Jt Jrr       |Vu| Jt 'rJVu|'

and hence

From these identities we obtain

(IIL3) -jD'^D^e-^U   ds)   =\Tt]2.

Next, we have

]flt]= f   ldx=r dr f   ^- = -\T D'(r)e-rdr

^     ' i i r°°
= -D(t)e-* - - j     D(r)e~rdr.

A A Jt

Combining (III.3), (III.4) with the isoperimetric inequality

|n(| < |rt|2/47r,
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/Ve get
/■oo 1

D(t) - /     e^-s^D(s) ds < -—D(t)D'(t) = g(t)       (> 0).
Jt 47r

Let H(t) = /t°°e(t-s)£)(s)ds. Then, -H'(t) = D(t) - H(t) < g(t) so that H(t) <

/t°° g(s) ds. But D(t) - H(t) < g(t) or

/OO 1 i

g(s)ds = --D(t)D'(t) + —D(t)2.

Therefore, 8tt - D(t) < -2D'(t) or

(III.5) 47re-'/2 < -(e^'2D(t))'.

Let to = ||u||c0(n)- Then,

/ ° Aire-*'2 dt = 8ir(l - e~to'2) < -[e-t/2£>(<)]*=0° = S,
Jo

because D(0) = S and D(t(0)) = 0. Hence we obtain

*o = IMIc°(fi) <-21og(l-S/87r).
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