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POSITIVE QUADRATIC DIFFERENTIAL FORMS
AND FOLIATIONS WITH SINGULARITIES ON SURFACES

VICTOR GUINEZ

ABSTRACT. To every positive C-quadratic differential form defined on an

oriented two manifold is associated a pair of transversal one-dimensional C-

foliations with common singularities. An open set of positive C-quadratic

differential forms with structural stable associated foliations is characterized

and it is proved that this set is dense in the space of positive C°°-quadratic

differential forms with C2-topology. Also a realization theorem is established.

1. Introduction. A positive Cr-quadratic differential form on an oriented

two-dimensional manifold (see §2 for definitions) has associated two transverse Cr

one-dimensional foliations with common singularities called the configuration of the

quadratic differential form. The basic problems to be considered here are the local

and global descriptions of these configurations, their (structural) stability under

small perturbations of the positive quadratic differential form, and the genericity

of the stability property.

Another question that we will consider is the realization by a positive Cr-

quadratic differential form of an arbitrary configuration of two transverse Cr-one-

dimensional foliations with common singularities.

In 1952 Hartman and Wintner [3] studied the existence of spiral solutions in the

neighborhood of a singularity for continuous positive quadratic differential forms

and applied their results to lines of principal curvature and to asymptotic lines

around umbilical points.

Later in 1982, Sotomayor and Gutierrez [2, 12] considered immersions in R3 of

a compact oriented two manifold. They described a class of immersions with stable

configuration of lines of principal curvature and they proved that this class is dense

in the space of immersions with the C2-topology. We recall that the configuration of

lines of principal curvature is obtained as the configuration of a positive quadratic

differential form.

In our work we consider the space of positive C""-quadratic differential forms on

an oriented compact two manifold. We describe a class of such forms each of whose

elements has stable configuration and we prove that this class is dense in the space

of positive C°°-quadratic differential forms with the C2-topology.
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We also prove in this paper (Realization Theorem) that every configuration of

two transverse Cr-one-dimensional foliations with common singularities is realized

as the configuration of a positive Cr-quadratic differential form.

This paper is organized as follows. §2 contains the principal definitions and the

precise statement of the results, namely Theorem A and Theorem B. In §3 we de-

fine the set Sr(M) (Theorem B) whose elements are proved to be structural stable

positive Cr-quadratic differential forms. The proof of Theorem A (Realization The-

orem) is presented in §4. The next sections are devoted to the proof of Theorem B.

In §5 we prove the openness of Gr(M), the set of positive Cr-quadratic differential

forms with simple singular points. In §6 we prove the openness of the set Sr(M)

and the structural stability of its elements. In §7 we prove the density of the set

Sr(M) in Gr(M) with the CMopology for any s < r. Finally in the last sections

we complete the proof of Theorem B proving the density of the set G^ (M) in the

set of positive C°°-quadratic differential forms with with C2-topology.

This work corresponds to my doctoral thesis at IMPA. I wish to thank my adviser

C. Gutierrez who suggested this problem. Thanks are also due to J. Palis and

C. Gutierrez for their help and interest in this work.

2. Definitions and statement of results. This section contains our principal

definitions and the precise statement of our results. By M we will denote a Co-

compact, connected, oriented two-dimensional manifold.

2.1. DEFINITION. A Cr-quadratic differential form on M is an element of

the form w = Y17=i •AiV'ii where <pi and tpi are CT 1-forms on M. In other words,

for each point p in M, w(p) = J2"=y <Pi(p)iPi(p) '■ TPM —> R is the map defined by

w(p)(v) = J2?=y 4>i(p)(v) ■ ipi(p)(v) for all vectors v in TPM.

If /: M —> N is a Cr+1-diffeomorphism and w is a C""-quadratic differential

form on M, we denote by f*(w) the Cr-quadratic differential form on N, defined

by f*{w)(q)(v) = w(f~1(q))(df-1(v)) for q in N and v in TqN.

Observe that if (x, y): U C M —> R2 is a chart and w is a C-quadratic differen-

tial form then (x,y)*(w) is of the form: a(x,y)dy2 + b(x,y)dxdy + c(x,y)dx2, where

a,b,c are real-valued functions of class Cr defined in (x,y)(U) and dx and dy are

the projections dx(x,y) = x and dy(x,y) = y. Moreover, if g = (gy,g2): R2 —> R2

is a Cr+1 diffeomorphism and (u,v) = a-1 o (x,y) then (u,v)*(w) = a(u,v)dv2 +

b(u, v)dudv + c(u, v)du2, where

^°°*(th«A%t)+*At)''

2.2. DEFINITION. A positive C-quadratic differential form on M is a Cr-

quadratic differential form w such that for every point p in M the subset w(p)_1(0)
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jf TPM is either

(i) the union of two transversal lines (in which case p is called a regular point of

w), or

(ii) all TPM (in which case p is called a singular point of w).

The set of all positive Cr-quadratic differential forms on M will be denoted by

^r(M) and when endowed with the Cs-Whitney topology we will denote it by

¥rs(M).

2.3. REMARK. Let w be a Cr-quadratic differential form on M. Then the

following properties are equivalent:

(a) w is in !?r(M).

(b) For each point p in M, there exists a local chart in p, (x,y): U —> R2 such

that if (x,y)*(w) = a(x,y)dy2 + b(x,y)dxdy + c(x,y)dx2 then b2 — 4ac > 0 on

(x,y)(U) and (62-4ac)"1(0) = a~l(0) nfc-1(0) flc-'fO).

(c) For each point p in M, the statement (b) holds for every local chart in p.

2.4. DEFINITION. A Cr-configuration on M is a triple {fy,f2,S} where S is a

closed subset of M and fy, f2 are two transverse Cr-one-dimensional foliations on

M-S.
Observe that each w in 5^(M) defines a configuration (called the configuration

of w) C(w) = {fy(w),f2(w),Sing(w)}, where Sing(w) is the set of singular points

of w and fy(w), f2(w) are the transverse foliations on M - Sing(w) whose tangent

lines at each regular point p are given by the transverse lines of w(p)_1(0).

2.5. REMARK. Let w be in &r(M) and let (x,y): U —> R2 be a chart. If

(x,y)*(w) = a(x,y)dy2 + b(x,y)dxdy + c(x,y)dx2 then the foliation fy((x,y)*(w))

(respectively f2((x,y)*(w))) is tangent to the vector field

x = 2a(x,y),    y = -b(x,y) + (-1)3\/(b2 -4ac)(x,y)

for j = 0 (resp. j = 1) or j = 1 (resp. j = 0) except possibly when a = 0.

2.6. DEFINITION. Two forms Wy and w2 in ^(M) are said to be equivalent

if there exists a homeomorphism h: M —> M such that h(C(wy)) = C(w2). That

is, /i(Sing(u>i)) = Sing(w2) and h/M - Sing(wi) maps the foliations of wy onto the

foliations of w2.

Observe that if wy and w2 are in ^r(M) and if h: M —► M is an equivalence

between wy and w2, then C(w2) = {h(fy(wy)),h(f2(2y)),h(Sing(wy))}.

2.7. DEFINITION. A positive C""-quadratic differential form wo on M is said to

be structurally stable if there exists a neighborhood JF(wq) of wo hi f^1(M) such

that every w in jV(wq) is equivalent to w0.

To give the next definition, notice that every Cr-quadratic differential form w on

M can be considered as a C-map, which we denote by the same letter w, from M

to the C°°-manifold of dimension five Q(M) = {(p, a)\p E M and a = Y%=i fa'&i
with <pi and Vi in the cotangent space (TPM)*}, in such a way that iryw = Im,

where 7Ti is the projection 7Ti(p, a) = p. Observe that if {Ui, (pi) is an atlas over M,

then {Q(Ui)4>i} is an atlas over Q(M), where Q(Ui) = {(p,a) E Q(M)\p E Ui}

and <fo: Q(Ui) -* R5 is defined by <pt(p,a) - (x(p),y(p),a(p),b(p),c(p)), where
tpi = (x, y) and a = a(p)dy2 + b(p)dxdy + c(p)dx2. Here dx, dy: TPM —> R are the

projections associated to the basis of TPM induced by the chart (x,y). With this

notation, the usual derivate of w at each p in M, Dwp, is a quadratic differential

form onTpM.
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2.8. DEFINITION. A singular point p of w in &~r(M) is said to be a simple

singular point of w if Dwp is a positive quadratic differential form on TpAf.

2.9. REMARK. We will see later that in an appropriate local chart (x, y): (U,p)

—> (R2,0) every simple singularity p of w in !fFr(M) can be expressed in the form:

(x,y)*(w) = (y + My(x,y))dy2 + (byx + b2y + M2(x,y))dxdy

+ (-y + M3(x,y))dx2     with Mi(x,y) = 0(x2 + y2),

i = 1,2,3 and by ̂  0.

The set of w in ^r(M) such that all its singular points are simple will be denoted

by Gr(M).

Our principal results are the following two theorems:

2.10. THEOREM A. (a) Given a Cr-configuration {fy,f2,S} on M, there

exists w in ^r(M) for which C(w) = {fy,f2,S}.

(b) If wy and w2 in £Fr(M) are such that C(wy) = C(w2), then wy = Xw2 where

A is a Cr-function X: M — Sing(wi) —> R — {0}.

2.11. COROLLARY. Given a Cr-one-dimensional foliation f on M — S, where

S is a closed subset of M, there exists w E ^(M) such that S = Sing(w) and

f = fi(w).

2.12. REMARK. The configuration of lines of principal curvature of an immer-

sion of M in R3 [2, 12]; the configuration of a pseudo-Anosov diffeomorphism [10];

the measured foliations [4, 10]; the arational foliations [9], the line fields [1, 5],

and the flow of vector fields are all realized as configurations of positive quadratic

differential forms.

2.13. THEOREM B. For each 1 < r < oo, there exists a nonempty open subset

Sr(M) C Gr(M) of9rTl(M) such that:

(i) All elements in Sr(M) are structurally stable.

(ii) Sr(M) is dense in Gr(M) with the Cs-topology for s <r.

(iii) Goo(M) is dense in fP^(M) and therefore Soc(M) is dense in &£(M).

2.14. REMARKS, (i) From Theorem B it follows that the structurally stable

smooth positive quadratic differential forms are C2-generic.

(ii) In the proof of Theorem B we used the Weierstrass C°°-Preparation Theorem

and the Mather C°°-Division Theorem: therefore our proof cannot be extended for

the Cr-case.

3. The set Sr(M). In this section we introduce the set Sr(M) that appears

in the statement of Theorem B above. The elements of Sr(M) will be defined in

terms of the singular points, the compact leaves, and the asymptotic behavior of

noncompact leaves, especially singular separatrices. The precise definition of these

concepts is given below.

3.1. DEFINITION. Let p be a simple singular point of w in &~r(M). We say

that p is a hyperbolic singular point of w if the homogeneous polynomial of degree

3, (Dwp)(x,y)(x,y), has only simple roots.

To obtain the local configuration of w in a neighborhood of a hyperbolic singular

point p, consider a local chart (x,y): (U,p) —» (R2,0) such that

(x,y)*(w) = (y + My(x,y))dy2 + (byx + b2y + M2(x,y))dxdy

+ (-y + M3(x,y))dx2
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with Mi(x,y) = 0(x2 + y2), i = 1,2,3 and by ± 0 (Remark 2.9).
Then D(x,y)*p(Dwp) = (u,v)*(Dwp) = vdv2 + (byu + b2v)dudv - vdu2 and

(u,v)*(Dwp)(vy,V2)(vy,V2) = V2[v% + b2VyV2 + (by - l)vj].

The conditions for hyperbolicity are given by:

(62/2)2 + 1 - by ± 0     and     by ± 1.

Since by does not vanish, we have the following three cases:

Di: (b2/2)2 + l<by,

D2: (b2/2)2 + l>by>0     and     by / 1,

D3: 6i <0.

As we will see the corresponding local configurations of w at p are the ones given

in Figure 1.

Case Di Case D2 Case D3

FIGURE 1

3.2. REMARKS. 1. The foliations fy(w) and f2(w) above are unoriented on a

neighborhood of the singular point. The Poincare index in the cases Di and D2 is

1/2 and in the case D3 is -1/2.

2. In Figure 1, the separatrices are drawn in heavy lines. These are leaves which

approach the singular points and which separate regions of different patterns of

approach to these points. Therefore, in case Di,i = 1,2 or 3, we have f-separatrices.

3.3. DEFINITION. Let w be in S^(M) and let c be a compact leaf of w. We say
that c is a hyperbolic compact leaf ofw if the Poincare first return map P associated

to a transversal line to c at a point q Ec verifies P'(q) 7^ 1.

3.4. DEFINITION. Let Sr(M) be the set of w in Gr(M) such that:

(a) w has a finite number of singular points and compact leaves, all of which are

hyperbolic.

(b) The limit set of every leaf of fi(w), i = 1,2, is the union of singular points

and compact leaves.

(c) w has no double separatrices. That is, there is no separatrix of a singular

point of w which is a separatrix of two different singular points or twice a separatrix

of the same singular point.

4. Proof of Theorem A (Realization Theorem).

4.1.   THEOREM A  (PART (a)). Take a smooth riemannian metric on M.

Let C be a connected component of M — 5. Fix p G C and consider two

unit vectors vy and v2 of TPM tangent at p to fy and f2 respectively. Define

w(p) = #i(p) ' #2(p), where 0i(p) E (TPM)*, i = 1,2, satisfies 6%(p)(vj) = 1 - 6i3,

y = 1,2.
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Let q be an arbitrary point of C. In order to define w(q) we consider a regular

curve / C C without self-intersections connecting p and q. Along / we may define

differentiable unit vector fields Vi, i = 1,2, and 1-forms Oj, j = 1,2, uniquely

determined by the conditions that Vi(p) = Vi, Vi is tangent to fi, and Oj(Vi) =

1 — 6ij. Under these circumstances we define w(q) = Oy(q) ■ 02(q). Using the fact

that M is orientable and that fy and f2 are pairwise transversal, we can easily see

that this definition does not depend on the particular curve / connecting p and q.

Therefore, since fy and f2 are of class Cr we have that w is defined in M — S and

is of class CT too.

If S = 0 the theorem is proved. So assume 5^0. Then we may find a

sequence {Ui} of open subsets of M such that UyDU2DU2DU3D---DS and

fl~ i Ui = S. Let AQ = M -U2 and A% = Ui - Ui+3 for i > 1. Then {AJ~0 is a
locally finite open covering of M — S. Let ^°10 <Pi be a smooth partition of unity

strictly subordinate to {A,}^0. Take a sequence {ci}°l0 of positive real numbers

such that for all i E N a ■ \\<pi ■ w\\i < 1/21 on Ai and define

Y^ Ci ■ <Pi \   w     in M - S,
w=\\1Tq J

.0 in S.

Therefore, w E ^(M) and C(w) = {fy,f2,S}. This finishes the proof of Theo-

rem A (a).

The second part of Theorem A will be a consequence of the following lemma.

4.2. LEMMA. Let w,w E SFt(M) and V C M be an open subset contained

in (M — Sing(w)) fl (M — Sing(w)). // w/V and w/V have the same associated

foliations, there exists a CT-function A: V —<■ R — {0} such that w(p) = X(p)w(p)

for all p EV.

PROOF. Let (x, y): U C V -+ ~R2 be a chart. Let the local expression of w and

w in this chart be

(x,y)*(w) = a(x,y)dy2 + b(x,y)dxdy+ (x,y)dx2,

(x,y)*(w) = a(x,y)dy2 + b(x,y)dxdy + c(x,y)dx2.

The fact that (x, y)*(w) and (x, y)*(w) determine the same foliations in (a;, y)(U)

is equivalent to the fact that for any (20,2/0) in (x,y)(U), the real quadratic poly-

nomials in the z-variable

a(x0,yo)z2 + b(xo,yo)z + c(x0,yo)     and     d(xo,y0)z2 + b(x0,yo)z + c(x0, y0)

have the same roots. Therefore there exists a function A: U —> R — {0} such that

(a,b,c)(x,y)(p) = X(p) ■ (a,b,c)(x,y)(p).

Certainly, A is of class CT and does not depend on the particular chart. This

finishes the proof.

5. Simple singular points. This section contains the proof of the openness of

the set Gr(M) (defined in §2) in ^TX(M). The following propositions characterize

the simple singular points.
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5.1. PROPOSITION. Let p be a singular point of w inJP^(M). The following

statements are equivalent:

(1) The point p is a simple singular point of w.

(2) There exists a local chart (x,y): (U,p) —* (R2,0) such that if (x,y)*(w) =

(ayx + a2y + My(x,y))dy2 + (byx + b2y + M2(x,y))dxdy + (cyx + c2y + M3(x,y))dx2

with Mi(x,y) = 0(x2 + y2), i = 1,2,3, then

b\ -4aici > 0

and

(b\ - AayCy)(b\ - 4a2c2) - (byb2 - 2ayc2 - 2a2cy)2 > 0.

(3) The statement (2) holds for every local chart in p.

(4) There exists a local chart (x,y): (U,p) —> (R2,0) such that

(x,y)*(w) = (y + My(x,y))dy2 + (byx + b2y + M2(x,y))dxdy

+ (-y + M3(x,y))dx2

with Mi(x,y) = 0(x2 + y2), i = 1,2,3 and by ̂  0.

PROOF. The equivalence between (1), (2), and (3) is a consequence of the

following facts:

(a) If {Uy,4>i} is an atlas over M, then {Q(Ui), (pi} is an atlas over Q(M), where

Q{Ui) = {(P,a) E Q(M)\p E U,} and cbt: Q(Ui) -+ R5 is defined by &(p,a) =
(x(p),y(p),a(p),b(p),c(p)), where tpi = (x,y) and a = a(p)dy2 + b(p)dxdy+c(p)dx2.

(b) If (x,y): (U,p) —► (R2,0) is a local chart and

(x,y)*(w) = (ayx + a2y + My(x,y))dy2 + (byx + b2y + M2(x,y))dxdy

+ (cyx + c2y + M3(x, y))dx2

with Mi(x,y) = 0(x2+y2), then (u,v)*(Dwp) = (ayu+a2v)dv2 + (byu+b2v)dudv+

(cyu + c2v)du2, where (u, v) = D(x, y)p : TPM —> R2.

Therefore only (2) =^ (4) needs to be proved. For this, let (x, y): (U, p) —* (R2,0)

be a chart such that

(x,y)*(w) = (ayx + a2y + My(x,y))dy2 + (byx + b2y + M2(x,y))dxdy

+ (cyx + c2y + M3(x, y))dx2

with Mi(x, y) = 0(x2 + y2), i = 1,2,3. Suppose b2 - 4ayCy > 0, and

(bf - 4a,ci)(&2 - 4a2c2) - (byb2 - 2axc2 - 2a2cy)2 > 0.

Observe that if A: R2 —> R2 is a linear isomorphism (u,v) = A o (x,y),

A_1(u,v) = (au+/3v,^u+6v) and (u,v)*(w) = a(u,v)dv2+b(u,v)dudv+c(u,v)du2,

then

S2 Pb p2 1   a(A~1(u,v))

(a,b,c)(u,v)=   2^6    a6 + fa   2a(3      b(A~1(u,v))
72 07 a2       c(A_1(u,v))
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and

da
ay = ~-(0,0) = 62(aay + ^a2) + f36(aby + ib2) + (32(acy +ic2),

~a2 = ^(0,0) = 62(/3ay + 8a2) + p8([3by + 6b2) + P2(fay + 8c2),

W dc
cy = q-(0, 0) = l2(otay + ^a2) + a^(aby + 762) + a2(acy + 7C2),

dc
~c2 = —(0,0) = 72(/?a, + Sa2) + ai(pby + 6b2) + a2(fay + 6c2).

From this we see that if ay — Cy = 0, then taking 7 = /? = 0 we leave this

condition invariant and equations (*) are a2 = 63a2, c2 = a26c2. Since a2 ■ c2 < 0,

it is clear that there exist a, 6 such that a2 = —c2 = 1.

Now if Ci =0 taking 7 = 0 we leave ci = 0 invariant and it follows from equation

(*) that ai = a6(6ay + (Iby) with by 7^ 0. So if /? = 6ay/by we obtain ai = 0.

Finally if ci 7^ 0 to obtain c"i = 0 it is enough to make a = A7 with A a solution

of the equation ci A3 + (61+02) A2 + (01+62) A + a2 = 0. Thus the proof is complete.

The openeness of the set GT (M) in SFrx (M) will be a consequence of the following

proposition:

5.2. PROPOSITION. Let w E &r(M) andp E Sing(w). Ifp is a simple singular

point of w there exist neighborhoods JV(w) C ^}(M) of w and V C M of p such

that every vf) E jV(w) has a unique singular point p(w) in V, which is simple.

PROOF. Let (x,y): (U,p) —> (R2,0) be a chart such that (x,y)*(w) = a(x,y)dy2

+b(x, y)dxdy+c(x,y)dx2 with (a, b, c)(x, y) = (y, byx+b2y, -y)+(My, M2, M3)(x,y),

where by ̂  0 and Mt(x,y) =0(x2 + y2), i = 1,2,3.

It follows from the transversal intersection of the curves a = 0 and c = 0 with

6 = 0 at (0,0), that there exist neighborhoods V C (x,y)(U) of (0,0) and^(w) C
^(M) of w such that a_1(0) n 6_1(0) f~l c-1(0) n V = {(0,0)} and for each w E

yV(w), the corresponding curves a = 0 and c = 0 have transversal intersection with

b = 0 at a single point V, say (x,y)(py(w)) and (x,y)(p2(w)) respectively. Since

62 — 4ac > 0, we have pi(wi) = p2(w) = p(w) and therefore Sing(w) nV = {p(w)}.

Observe that, reducing jV(w) if necessary, we have

62-4a,ct>0, i = l,2,

and

(62 - 4aici)(&2 - 4a2c2) - (6162 - 2fiic2 - 2a2ci)2 > 0,

where

(ai,6i,ci) = (d/dx)(ct,b,c)((x,y)(p))

and

(a2,62,c2) = (d/dy)(a,b,c)((x,y)(p)).

Therefore the proof is complete.

5.3. COROLLARY. The subset Gr(M) of those w in ^%(M) whose singular

points are all simple is open in SFrx(M).

PROOF. Since M is compact, the proof follows from the previous proposition.
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6. Structural stability. The openness of the set Sr(M) (defined in §3) in

fl^1 (M) will be a consequence of the local stability of the hyperbolic singular points

and the continuity on compact parts, under small C1 -perturbations of singular

separatrices, together with the local stability of hyperbolic compact leaves.

6.1. DEFINITION. A form wq in J^(M) is said to be locally stable at a point p

in M if there exist neighborhoods y^"(u;o) of wo in ^fr1(M) and U(p) of p in M such

that for each w in jV(wq) there is a point q = q(w) in U(p) and a homeomorphism

h: V(q) —* V(p) between neighborhoods of q and p such that h(q) = p and such

that h maps the configuration of w/V(q) onto the configuration of wq/V(p).

6.2. PROPOSITION. Let p be a hyperbolic singular point of w inf^-(M). Then

w is locally stable at p.

PROOF. Since this is similar to the case of an immersion of M in R3 that verifies

condition D at an umbilical point (Proposition 2.1 of [12, pp. 201-206]) only an

outline of the proof is given below.

Let p be a hyperbolic singular point of a w in !Fr(M) and (a;, y): (U,p) —► (R2,0)

be a local chart such that (x,y)*(w) = a(x,y)dy2 + b(x,y)dxdy + c(x,y)dx2 with

(a, 6, c)(a;, y) = (y, byx+b2y, -y) + (My,M2, M3)(x,y), where M{(x,y) = 0(x2+y2),

i = 1,2,3 and by ̂  0.

The vector field Yi = Pd/dx + Qid/dy, where P(x,y) = 2a(x,y) and Qi(x,y) =

-b(x,y) + (-l)t+1 \J(b2 — Aac)(x,y) for i = 1 or i = 2, is tangent to one of the

foliations of w except possibly when P = 0.

Making

{x = s,

y = ts + y(s),

where y = y(s) is the unique solution of P(s, y(s)) = 0 with y(0) = 0 (and therefore

y'(0) = 0) we obtain over R2 - R • (0,1) the vector fields

Zi = H,Yi = Sd/ds + Tid/dt.

Therefore

S(s, t) = 2ts[l + U(s, t)]     with U(0, t) = 0

and

Tl(s,t) = s-1   -(t + y'(s))S + Sy + (-1Y+Iy/S2 + SS2   ,

where

Sy (S, t) = -3[by + b2t + Uy (s, t)]        with Uy (0, t) = 0

and

S2(s,t) = -2s[-t + U2(s,t)}     v/ithU2(0,t) = 0.

Let Zi be defined by

Zi(s,t) = ri(s,t)Zi = Si—+f—
ds        dt

where

ri(s,t) = (ts)-1   -(t + y'(s))S + Sy + (-l)l^S2 + SS2   .
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H6I1C6

- (2s[l + U(s,t)}fi(s,t)        iis>0,

j(S' '     1 2s[l + U(s,t)]f3-i(s,t)    ils<0,

where

fi(S,t) = 2t(t + y'(s))(l + U(s,t)) - (by + b2t + Uy(s,t))

+ (-1)V(6i + b2t + Uy(s, t))2 - 4<(1 + U(s, t))(-t + U2(s, t))

for i = 1,2; and

f(s, t) = 4(1 + U(s, t))[t(t + y'(s))2(l + U(s, t))

+ (t + y'(s))(by + b2t + Uy(S, t)) + (-t + U2(S, t)}.

Observe that

(a) fy(s,t)-f2(s,t) = tf(s,t),
(b) f(0,0 = 4t[*2 + 62« + 6i-l],
(c) fy(s,t) < f2(s,t),

(d)fi(0,t) = 0=>f3-i(0,t)^0.
Let us consider i = 1.

GWDi. ((62/2)2 + 1 - 6i <0).
In this case 6i > 0, dSy/ds+(0,0) = -2by < 0, dSy/ds~(0,0) = 0, d5i/d*(0,0)

= 0, dT/dt(0,0) = 4(6i -1) > 0 and the phase portraits of Zy and Yy are as shown
in Figure 2.

Figure 2

Cases D2 and D3. ((62/2)2 + 1 - by > 0).

In order to simplify the analysis of these cases we suppose that 1 — 6i > 0.

Therefore fy(0,t) < 0 and t2 < 0 < ty, where

Hence

(a)

|%(0,0) = -by - \by\,       |^(0,0) = -6X + |6!|,
ds+ ds

^-(0,0) = 0    and    ^(0,0)=4(6i-l)<0.
dt at
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(b)

^(0,ti) = 2fy(0,U)<0,    ||L.(0,t<) = 0,    ^.(0,^ = 0,

^(0.*0 = (-l)<+18*<\/(y)   +I-61 >0    for i =1,2.

Therefore the phase portraits of Zy and Yy are as shown in Figure 3.

a  H />       ^v^___ /^        ^-—-

~."^- ^TV""
" 'l " " ▼^r- ^nS.   "^-^

(f   «i
FIGURE 3

Case D2. ((62/2)2 + 1 > by > 0).        Case D3. (6i < 0).

The construction of the topological equivalence at each case is straightfoward.

6.3. DEFINITION. A form w0 in ^-(M) is said to be locally stable at a compact

leaf c of wo if there exist neighborhoods JV(wcj) of wq in ^~rl(M) and U(c) of c in

M such that for each w in Jlf (wq) there is a compact leaf d = d(w) of w in U(c) and

a homeomorphism h: V(d) —► V(c) between neighborhoods of d and c such that

h(d) = c and such that h maps the configuration of w/V(d) onto the configuration

of wo/V(c).

6.4. PROPOSITION. Le< c be a hyperbolic compact leaf of w in f?~T(M). Then

w is locally stable at c.

For the proof of this proposition we shall need the following definition and re-

mark. They will be used again later.
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6.5. DEFINITION, (a) Let w E ^(M) and U C M be an open set contained

in M — Sing(w). A pair (Xy,X2) of Cr-vector fields is said to be fitted to w in U

if Xi(p) is tangent to fi(w) at p for all p E U and i = 1,2. Such a pair will be

denoted by (Xy(w),X2(w)).

(b) Let (Xy,X2) be a pair of transversal Cr-vector fields defined in an open set

U of M. Consider the 1-forms defined by @i(p)(Xj(p)) — 1 — 6ij for all p 6 £/ and

i,ji = 1, 2. Then the positive quadratic differential form w = Qy ■ ©2 is said to be

associated to (Xy,X2) in f/ and denoted by w(Xy,X2).

6.6. REMARK. Let w be in ^(M), let 7 be a leaf of fy(w), and 70 be a
compact arc of 7. Then:

(a) There exist an open neighborhood U of 70 in M and a pair (Xy,X2) of

Cr-vector fields fitted to w in U.

(b) There exists a Cr-function A: U —► R — {0} such that w/u = Xw(Xy,X2)

(Lemma 4.2).

(c) Given an open subset V with V C U and a pair of transversal Cr-vector

fields (Yy, Y2) defined in U such that Yt = Xi outside V, the quadratic differential

form w defined by w = Xw(Yy,Y2) in U and w = w outside U is Cr and positive.

That is, wE9r(M).

6.7. PROOF OF PROPOSITION 6.4. Take a smooth riemannian metric on M.

Let c be a hyperbolic compact leaf of a w in S?T(M), say c in fy(w). Let U be an

open neighborhood of c in M and 2^ be an open neighborhood of w in f!?rl(M)

such that L7 fl Sing(w) = 0 and the foliations fy(w) and /2(tD) can be oriented

in U for all forms w E 2^. We orient /i(w) and f2(w) in [7 in such a way that

the functions w E 'V -* Ai(w)(p), 1 = 1,2, are continuous for all p E U, where

(Xi(iS),X2(w)) is the corresponding pair of unit Cr-vector fields fitted to w in U.

Since the function w € 2^ —+ (Ai(u)),X2(w)) is continuous and c is a hyperbolic

periodic orbit of Xy(w), it follows from vector field theory that w is locally stable

at c [7, p. 98].

6.8. THEOREM. The set Sr(M) defined in §3 is open in ^(M) and every

w E Sr(M) is structurally stable.

PROOF. As we said, the openness of Sr(M) in 9~TX(M) follows from the local

stability of hyperbolic singular points and the continuity, on compact parts, under

small C1-perturbations of singular separatrices together with the local stability of

hyperbolic compact leaves.

Also, the structural stability of w E Sr(M) follows from the canonical region

method showed in [12, pp. 210-212].

7. Density of Sr(M) in Gr(M). In this section we will prove that Sr(M) is

dense in Gr(M) with the Cs-topology for any s <r. For this consider the following

open subsets oif?~rl(M): %?y is the subset of w in Gr(M) whose singular points are

all hyperbolics; ^ is the subset of those w in %[ with associated foliations without

nontrivial recurrent leaves; and %f3 is the subset of those w in ^ without double

separatrices. We will prove that %?y is dense in Gr(M), that %f2 is dense in %?[,

that ^3 is dense in ^2, and that Sr(M) is dense in ^3.

7.1. PROPOSITION. The set %?y is dense in Gr(M) with the Cs-topology for

any s < r.



POSITIVE QUADRATIC DIFFERENTIAL FORMS 489

PROOF. Let w be in Gr(M), s <r and let p be a singular point of w. Consider

a local chart (x,y): (U,p) —> (R2,0) such that Sing(w)r\U = {p} and (x,y)*(w) =

(y + My (x, y))dy2 + (byx + b2y + M2(x, y))dxdy + (-y + M3(x,y))dx2, with by^O

and Mi(x,y) = 0(x2 + y2), i = 1,2^3. Let Vy,V2 be neighborhoods of (0,0) such

that V2 is compact and Vy C V? C V2 C (x, y)(U). Let </>: R2 -> [0,1] be a smooth

function such that 0_1(1) = Vi and ^_1(0) = R2 - V2. For 8 > 0 let w6 be the

positive Cr-quadratic differential form defined in U by

ws = (x, y),((y + My(x, y))dy2 + (1 + 28<p(x, y))(byx + b2y + M2(x,y))dxdy

+ (-y + M3(x,y))dx2).

Since the functions ffl(8) = (1+2<5)2(62/2)2 + 1-(1+2<S)&i and g2(6) = l-(l+28)by

are not vanishing for all small 8 ^ 0, there exists w in Gr (M) arbitrarily Cs-close

to w such that Sing(w) = Sing(w) and p is a hyperbolic singular point of w.

Finally, since w has only a finite number of singular points, the proposition is

proved.

7.2. PROPOSITION. The set %?2 of w in %?y with associated foliations without

nontrivial recurrent leaves is dense in %y with the Cs-topology for any s <r.

PROOF. We will only prove that nontrivial recurrent leaves of w in %?y can be

eliminated in a way similar to the case of vector fields over orientable two-manifolds

(see proof of Lemmas 2.4 and 2.5 of [7, pp. 144-150]).

Let R be a small square contained in M - Sing(w) with horizontal sides ca

and d6 over fy(w) and vertical sides cd and a6 over f2(w) as in Figure 4 and let

(Xy(w),X2(w)) be the corresponding pair of C""-unit vector fields fitted to w in R.

Consider a point p at the interior of R and the leaves 71 of fy (w) and 72 of

f2(w) passing through p. Suppose that there exist points pi,p2 in 71 fl72 nint(i?)

such that the oriented segments ppi (respectively pp2) along 71 (resp. 72) have

first intersection with boundary of R at a point of [a, 6] (resp. [c,d]) and the last

intersection with boundary of R at a point of [c,d] (resp. [a, 6]) (see Figure 4).

Observe that this situation must happen if we have a nontrivial recurrent leaf.

LetXY(w) = Xy(w)+6uY be a family of Cr-vector fields where 6 > 0, 0 < u < 1,

and Y is a field that is transversal to Xy (w) on the interior of R, points upwards, and

vanishes outside R. If 8 is small enough, Xf(w) is near to Xy(w) and is transversal

d b
->

(-^->-)

c       ^—:—
P2n->

>
c a

Figure 4
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to X2(w) for all 0 < u < 1 and we can consider the family {w(u)} C &~r(M) defined

by

. f Xw(X?(w),X2(w))    onR,
w(u> = 1 **     D

( w on M - ft,

where A:fl-»R- {0} is the Cr-function such that w/r = Xw(Xy(w), X2(w)).

Since the manifold is orientable, as in the case of vector fields, the functions

u —► py(u), u —> p2(u) are monotone, one increasing and other decreasing on 72.

Therefore, our proposition can be proved in a way similar to the case of vector

fields over orientable two-manifolds.

7.3. PROPOSITION. The set^ ofw in^ without double separatrices is dense

in J?2 with the Cs-topology for any s < r.

PROOF. Observe that any w in ^2(M) has a finite number of singular points

and therefore a finite number of double separatrices. This double separatrices can

be broken by using Remark 6.6 creating new compact leaves.

7.4. REMARK. To establish the density of Sr(M) in ^3 and therefore in

Gr(M), it is sufficient to approximate any w in ^3 by w in ^3 with only a finite

number of compact leaves, all of them hyperbolics. The proof is and adaptation of

that in [1, p. 114-122] for a similar result for line fields.

7.5. DEFINITION. Let w E 9fr(M) and iE {1,2}.

(a) A Cr-submanifold of M contained in M — Sing(w) is said to be a "quasi-

cylindrical region" of fi(w) if it is either a compact leaf of fi(w), a closed cylinder

or a torus, and

(i) If it is a closed cylinder, its boundary consists of two compact leaves of fi(w).

(ii) If it is a torus, it contains a compact leaf of fi(w) not homotopic to a point.

(In this case, the manifold is the torus.)

(b) If 7 is a compact leaf of fi(w) then J?*(7) will denote the set of all quasi-

cylindrical regions of fi(w) that contain 7, and Ri(-)) will denote the union of all

elements of R*("i).

(c) A quasi-cylindrical region R is said to be a "maximal region" of fi(w) if there

exists a compact leaf 7 of fi(w) such that ^(7) = R.

7.6. REMARK. If w is in ^3, then fy(w) and f2(w) have only a finite number

of maximal regions, all of them compact.

7.7. LEMMA. Let w be in %?3 and 7 be a compact leaf of fi(w). Then, given

s < r, there exist w in %?,, arbitrarily Cs-close to w, and an open neighborhood V

of 7 such that w = w outside V and each compact leaf of fy (w) contained in V is

hyperbolic.

PROOF. Follows from Remark 6.6 and the vector field theory [7, pp. 101-106].

7.8. DEFINITION. Let w E <^(M) and i E {1,2}. A quasi-cylindrical region A

of /, (w) is said to be a "Reeb component" of fi (w) if:

(a) A is a closed cylinder.

(b) There are no compact leaves of ft(w) contained in the interior of A.

(c) There is no transversal section for fi(w) in A joining the two circles of the

boundary of A.
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For instance (see Figure 5):

FIGURE 5

7.9. LEMMA. Letw E^3 and R be a quasi-cylindrical region of fy(w). Then

R contains a finite number of Reeb components of fy(w).

PROOF. Evident because R is compact and at every regular point of w there

exists a tubular flow for fy(w); i.e., for each regular point p there exists a small

square F, with p in int(F') and horizontal sides over fy(w) and such that each leaf

of fy(w)/F meets both vertical sides at exactly one point.

7.10 LEMMA. Let w be in ^3 and R be a maximal region of fy(w). Given

s < r and an open neighborhood U of R with U C M — Sing(tu) and no compact

leaf of fy(w) meeting U — R, there exists w in %?3, arbitrarily Cs-close to w with

w = w outside U and such that every compact leaf of fy (w) in U is hyperbolic.

PROOF. Let s < r and U be an open neighborhood of R as above. If R

is a compact leaf, it is enough to apply Lemma 7.7. If R is a closed cylinder, let

Ay,..., An be the Reeb components of fy(w) contained ini?. So R—int(lj™=1 Aj) =

Uj_i fy w^h eacn Rj a quasi-cylindrical region for fy (w). If some Rj is a compact

leaf, we apply Lemma 7.7. If Rj is a closed cylinder it is possible to find a transversal

for fy(w) and therefore it is possible to orient fy(w) over Rj. Since fy(w) and

f2(w) are transversal we can also orient f2(w) over Rj. Now, we extend these

orientations from a small neighborhood Vj of Rj and we consider the corresponding

pair (Xy(w),X2(w)) of C-unit vector fields fitted to w in Vj. So, the proof of

our lemma for Rj follows from Remark 6.6 and the vector field theory. As the

neighborhoods Vj can be chosen disjoint and contained in U, the lemma is proved

in this case.

Finally, if R is a torus (hence R = M = T2), let c be a compact leaf of fy(w)

which is not homotopic to a point. We can suppose, using Lemma 7.7 if necessary,

that c is hyperbolic. If c is the only compact leaf of fy(w), the lemma is proved. If

not, we consider the maximal quasi-cylindrical region that does not contain c. This

is either a compact leaf of fy (w) or else a closed cylinder. Therefore, we return to

the earlier cases and the lemma is proved.

7.11. PROPOSITION. The set Sr(M) (defined in §3) is open and dense in f??3
and therefore in Gr(M) with the Cs-topology for any s < r.

PROOF. Follows from Lemma 7.10 and Propositions 7.1, 7.2, and 7.3.

8. Density of G^M) in 9£(M). The density of G^M) in 9£(M) (The-
orem B(iii)) follows immediately from the three propositions that we state below.
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Given w in &r\o(M) define:

(i) Mk+y(w) = {p E M \jk(^2w){p) = 0}, where 7r2 is the projection ir2(p,a) = a

and jk(ir2w)(p) = 0 means that if in coordinates (x,y): (U,p) -» (R2,0), (x,y)*(w)

= a(x, y)dy2 + b(x, y)dxdy + c(x, y)dx2, then jka(0) = jkb(0) = jkc(0) = 0.

(ii) Ro(w) = {p E Sing(w)\p is simple}.

(hi) Rk(w) = Mk(w) - Mk+1(w), k > 1.

Given s, k E N, k < s, denote by A(k, s) the following assertion: "For each w in

J?oo(M) and each open subset U C M such that Mk+y(w) C U, there exists w E

J?oo(M) arbitrarily Cs-close to w such that Mk+1(w) = Mk+y(w) and Sing(w) n

(M-U)QRk_y (w)n.

8.1. PROPOSITION. Let SEN. If the assertion A(k,s) holds for all k < s,

then the set Goo(M) is dense in^£(M).

8.2. PROPOSITION. Let w be in ^>(M) and k in N. Given s e N, s > k,

and U an open subset such that Mk+y(w) C U, there exists w inSoo(M) arbitrarily

Cs-close to w such that Mk+y(w) C U and (M — U)C\ Rk(w) is a finite set.

8.3. PROPOSITION. Let w be in ^>(M) and p be an isolated point in R2(w)

(respectively in Ry(w)). Then given s E N, s > 2 (resp. s > 1), there exist w

in f%x,(M) arbitrarily Cs-close to w and a neighborhood V of p such that w = w

outside V and V (1 Sing(wi) C Ry(w) (resp. V n Sing(u)) C Ro(w)).

8.4. COROLLARY.   The assertion A(k,2) holds for all k<2.

8.5. REMARK. The problem of the Cs-density of (^(M) in 9r\o(M) for s > 3

is reduced to the problem of the generalization of Proposition 8.3 for any isolated

point of Rk(w), for all k < s.

In order to prove Proposition 8.1, we will use the following lemma whose proof

can be found in [1, p. 42].

8.6. LEMMA. Let d be a smooth riemannian metric on M. Then, given s E N,

there exists a constant A > 1 such that for every compact K c M, there exists

R > 0 such that for every r, 0 < r < R, it is possible to find a smooth function

<pT: M —> [0,1] satisfying:

(i) (p~l(l) is a neighborhood of K.

(ii) (prl(0) contains the set {pE M \ d(p, K) >r}.

(iii) VJE{0,l,...,s},\\DJ<pr\\<A/ri.

Proof of Proposition 8.1. Let w be in ^oo(M) and e > 0. Let d be a

smooth riemannian metric on M and consider the constants A > 1 and R > 0

associated to s and Ms+y(w) in Lemma 8.6 above. For every point p in Ms+y(w),

let Bp C M be an open ball with center in p and radius smaller than R and such

that Hw/gHs < e/A2s+3. Let py,... ,pk in Ms+1(w) be such that V = (JJ=1 BPi D
Ms+y(w) and r be the distance between Ms+1(w) and the boundary of V. Since

0 < r < R, there exists a smooth function tp: M —» [0,1] such that <^_1(1) is a

neighborhood of Ms+1(w), <p~x(0) contains the set {p E M \d(p,Ms+l(w)) > r}

and WD^tpW < A/r1 for j = 0,1,..., s. Therefore ^(l) C V andM-V C (p~l(0).
Let U be an open subset of M such that Ms+1(w) C U C (/>_1(1).

1. Since A(k, s) holds for all k < s, there exists wy ^^^(M) arbitrarily Cs-close

to w such that Ms+y(wy) = Ms+y(w) and Sing(wy)C\(M-U) C R3_y(wy). There-

fore Ms(wy) C U and there exists w2 in f^x>(M) arbitrarily Cs-close to wy such
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that Ms(w2) = Ms(wy) and Sing(iy2)n(M-or) C Rs_2(w2). Then, repeating this

process s-times more we find a w3 in &rx,(M) such that Ma+y(wa) = Ms+y(w) C U,

Sing(ws) C\(M - U) = {qy, ...,qn} C flo(ws) and ||wa - w\\s < e/A2s+3. Since

ll^s/vlls < s/A2s+2 we also have ||0u>s||s < £/4 (Mean Value Theorem).

2. Observe that any w in H^(M) with ||u)||s small enough and Sing(w) n f/ C

Ro(w) does not solve our problem because the C°°-quadratic differential form w +

(1 — (p)ws is not necessarily positive.

3. To find an appropriate w we extend in a suitable way the foliations fy (wa)/M—

U and f2(ws)/M — U to each connected component of U and then we use our

Realization Theorem (Theorem A). For this note that we can suppose that U has

only a finite number of connected components with boundary a finite union of closed

regular smooth curves that are disjoint from the set Sing(ws). Also we can suppose

that the foliations fy(wa) and f2(ws) have only a finite number of tangencies, all

of parabolic type, with these boundaries.

4. For each connected component Uj of U, let ai (»),..., aj( (i) (resp. 61 (t),...,

bmt(i)) be the points of external (resp. internal) parabolic tangency of the foliation

fi(ws) with the boundary Hj of Uj. Then, we have Ii -mi = l2 — m2 and the

number Cj = ^(2 — ly + my) is the Poincare index of Hj for fy(ws) and f2(ws).

5. Now, we choose some positive C°°-quadratic differential forms 6i,...,6m

defined respectively on small open and disjoint balls By,..., Bm contained in U

such that:

(a) Each ©fc has a unique singular point pk which is simple.

(b) At each connected component Uj of U the sum of the Poincare index of these

singular points is Cj.

(c) There exist transversal smooth foliations fy,f2 defined in M — {qy,..., qn,

Pi,- • • ,Pm} such that fi/M - U = fi(ws) and fi/Bk = fi(Qk) for all k = 1,... ,m
and i = 1,2.

6. Let w in^oo(M) be such that C(w) = {fi,f2,{qi,...,qn,Pi,...,pm}} (The-

orem A).

7. Let ip: M —* [0,1] be a smooth function such that ^>-1(l) is a neighborhood

of {pi,... ,pm} and V_1(0) = M — UfcLi ^fc wltn Vk an open ball centered at pk

and Vk C Bk for all k = 1,..., m. (Therefore ip-1 (1) C UkLi vk-)
8. Let wx be the smooth quadratic differential form defined by w\ = (1 — (p)wa +

X<pw outside of UfcLi &k and by w\ = A[(l - %p)w + ipQk] on each Bk with A > 0.

Then w\ is positive because the corresponding forms have the same configuration

where (p or ip are not vanishing.

Then wx €^o(M) and Sing(wA) = {qi,-■ ■ ,qn,Pi,-■ ■ ,pm}- Clearly pi,...,pm

and the Oj's that are in </>-1(0) are simple. The other q^s are also simple because

w is flat at each singular point (see proof of Theorem A).

Therefore w\ E Goo(M) and if A > 0 is small enough we have \\w\ - wa\\a < e/2

and then \\w\ — w\\a < s. Thus the proof of Proposition 8.1 is complete.

The proofs of Propositions 8.2 and 8.3 will be given in §§10 and 11 respectively,

using some preliminary lemmas that we introduce in the next section.

9. Technical lemmas. In this section we state some technical lemmas that

are used in the proofs of Propositions 8.2 and 8.3 (§§10 and 11).

In order to simplify we introduce the following sets.
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If U is an open subset of R2, let Ar(U) be the set of triples (a, 6,c) of real-

valued functions defined in U such that the quadratic differential form a(a;, y)dy2 +

b(x,y)dxy + c(x,y)dx2 is in &r(U). That is, the functions a, b,c are of class Cr,

(b2 - Aac) >0inU, and (62 - 4ac)"1(0) = a'^O) n &-x(0) n c~l(0).

If Uy,U2 are open subsets of R2 with Uy C U2 and U2 a compact set, let

b(Uy,U2) be the set of smooth functions <p: R2 —+ [0,1] such that </>-1(l) = Uy and

(p~1(0) = R2-U2.

9.1. LEMMA. Let U be an open neighborhood of (0,0) in R2 and (a,b,c) be

a triple in Ar(U). Suppose that (dk /dxldyk~l)(a,b,c)(0,0) ^ (0,0,0) for some

0 < k < r and 0 < i < k. Then given s E N, s < r, e > 0, and an open

neighborhood V of (0,0) contained in U, there exist (a, 6, c) 6 Ar(U) such that:

(a) (b2 - 4ac)-1(0) = (62 - 40c)-1 (0).

(b) (a, 6, c) = (a, 6, c) outside V.

(c)

(d) max{||a - a||s, ||6 - 6||s, ||c - d||s} < e.

PROOF. Let sSN, s < r, e > 0 and V be an open neighborhood of (0,0)

contained in U. Consider 6 E b(Uy,U2) with (0,0) 6 Uy and U2 C V. Then if
(dk/dxldyk-i)(a,b,c)(0,0) = (a0,b0,c0), for 8 > 0 we define

' (a, 6, c) + 8Q(-b, 2(a - c), b)    if [60 ̂  0 or 60 = 0 and

a0   c0 7^0 and a0 ^ c0],

(a, 6, c) = <   (a, 6, c) + 8@(0, 2a, 6)     if 6n = 0 and ao = Co,

(a, 6, c) + 8Q(0,2a, b + 8Qa)     if b0 = c0 = 0,

. (a, b, c) + 8e(b + 8Qc, 2c, 0)     if 60 = a0 = 0.

Therefore (a, 6, c) E Ar(U) and verifies conditions (a) and (b) and if 8 > 0 is

small enough also verifies conditions (c) and (d).

9.2. LEMMA. Let (a,b,c) be a triple in Ar(U). Then given s E N, s < r,

e > 0, and any open set V o/R2 with V a compact set contained in U, there exists

a triple (a,b,c) in Ar(U) such that:

(a) (a, 6, c) = (a,b,c) outside V.

(b) (b2 - 4acJ)-1(0) = (62 - 4ac)"1(0).

(c) If(x,y) isinV, (dk/dyk)(a,b,c)(x,y) ? (0,0,0) and

((0)  -40-0)(x<^°
for some k < r we have

((dkbY       dka    dkcf\ .      .      n

\\d^)    -4rV'^J(X'y)>0'

(d) max{||a - a||s, ||6 - 6||s, ||c - c||s} < £.
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PROOF. Let SEN, s < r, e > 0 and V be an open set such that V is a compact

set contained in U. Let <p E b{Vy,V) and 8 > 0 such that 8 ■ max{||</> ■ (a — c)\\a,

\\2tp ■ b\\a} < e. Then the triple (a, 6, c) = (a, 6, c) + 8(p(a — c, 26, c — a) belongs to

Ar(U) and satisfies (a), (b), (c), and (d).

9.3. LEMMA. Given r > 0, for all k E N there exists a smooth function

ipk: R —► [0,1] such that:

Vfc-1(l) = [-r,r],    Vfc1(0)=R-]-2r,2r[,

|Vfei)(z)l<2i(i+1)/2-r-i     for all x €R and i=l,...,k.

PROOF. Let r > 0. It is sufficient to prove that for all fc E N, there exists a

smooth function 9fc: R -> [0,1] such that: Qkl(0) =] - oo,0], 9^(1) = [r,+oo[,

and \eki](x)\ < 2'(i+1)/2 • r~* for all x G R and t = 1,..., fc.
To obtain Ofc we see by induction that for all fc E N there exists a smooth

function/fc: R - [0,1] such that: /fc_1(0) =]-oo,0]; 4_1(1) = [2fc,+oo]; \f^(x)\ <

2t(t+i-2fc)/2 for gji j- _ 1? j fc; yfc^j _ ! _ yfc(2* - x) and therefore /„2* fk(d)dx =
2k-i

If we define Qk(x) = fk(2k • r_1x) the lemma is proved.

9.4. COROLLARY. For r > 0 let us consider the rectangles Ry = {(x,y)\\x\ <

r> \y\ < r} and R2 = {(x,y) \ \x\ < 2r, \y\ < 2r}. Then given s E N there exists

4>s E b(intRy,intR2) such that 1(3*0,/^9y<--'')(a;,y)| < 2^+1)/2 • r~' for all
(x,y)ER2,i=l,...,s, j = 0,1,...,i.

PROOF. For r > 0 and s E N, it is enough to define (ps(x,y) = ips(x) ■ ips(y) for

all (a:, y) E R2 with tps from the previous lemma.

9.5. REMARK. If we have r > 0, s E N, and a CMunction /: R -» R

(resp./: R2 -» R) such that /(!)(p) = 0 (resp. (9lf/dx^dyl~^)(0,0) for all / =

0,1,...,i) for t = 0,1,..., s and ||//[_2r,2r] lis < e/K (resp. ||/r2 ||s < e/As) where

e > 0 and Xs = 2s ■ J2i=i (^)2(s-i)(s-i+1)/2, then it follows from the Mean Value

Theorem that \\ipa ■ f\\a < e (resp. \\(pa ■ f\\a < e) where xpa (resp. (pa) is the function

of Lemma 9.3 (resp. Corollary 9.4).

10. Proof of Proposition 8.2. The proof of Proposition 8.2. will be a conse-

quence of some lemmas.

10.1. LEMMA. Let w E ^^(M) and I be a compact segment of a smooth curve

in M. Suppose there exists an open set V containing I such that V fl Rk(w) = I.

Then, given s E N there exists w E Hoo(M) arbitrarily Cs-close to w such that

w = w outside V and V C\ Rk(w) is a finite set.

PROOF.   Let s E N and (x,y): U C M -* R2 be a chart such that I C U C

U C V with U compact and (x, y)(I) = J x {0} and we suppose J not a singleton.

If (x, y)*(w) = a(x, y)dy2+b(x, y)dxdy+c(x, y)dx2, it follows from the Mather Di-

vision Theorem [6, p. 104] that there exist smooth functions My,M2,M3,hi, ki,gi,

i= 1,..., fc, defined in (a;, y)(U) such that

fc

(a, 6, c)(x, y) = yk(My,M2,M3) + ^ yk~l(hi(x), k,(x), gt(x))

i=l

in (x,y)(U).
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Then for all x E J, (hi,ki,gi)(x) = (0,0,0) and (My,M2,M3)(x,0) # (0,0,0)
and we can suppose that Mi(x,0) • M2(x,0) ■ M3(x,0) ^ 0 for all x E J (Lemma

9.1).

If J = [xo,a;i] consider the following rectangles: Ry = [x0 + r, xy — r] x \—r,r\

and R2 = [xq, xy] X [-2r, 2r] with r > 0 small enough to have xq + r < xy — r and

My(x,y) -M2(x,y) ■ M3(x,y) ^ 0 for all (x,y) E R2.

Let (p E 6(inti?i,inti?2)- Define

(db c) = ( (a>M + ^>(Mi,0,-M3)     ifM1(x0,0)M3(x0,0)>0,

^ ,C)     \ (a,b,c) + 8<p(0,M2,0) ii My(x0,0)M3(xo,0) <0

with 8 ^ 0.

Then in both cases (a,6,c) E Aoo(U), (a,b,c) = (a,b,c) outside R2 and R2 fl

(62 — 4dc)_1(0) = {(xo,0),(xy,0)}. Therefore if 8 ^ 0 is small enough, w$ =

(x, y)*(a(x,y)dy2 + b(x,y)dxdy + c(x,y)) verifies our lemma.

10.2. LEMMA. Let w E ^q(M) and p E Rk(w), fc > 1. Suppose that there

exists a sequence {pn}raeN contained in Rk(w) — {p} converging to p. Then given

s E N there exists a neighborhood V of p and w E J^o(M) arbitrarily Cs-close to

w such that w = w outside V and Rk(w) n V is the union of a finite set and a

compact segment of a smooth curve containing p.

PROOF.    Let s E N and (x,y): (U,p) -» (R2,(0,0)) be a local chart with

y(Pi) = 0 for i large enough. Let (x,y)*(w) = a(x,y)dy2+b(x,y)dxdy + c(x,y)dx2.

Since p E Rk we have (dk/dyk)(a,b,c)(0,0) # (0,0,0).

Therefore, we can suppose, using Lemma 9.2 if necessary, that

((0)'-0   0)<O,O)>O     a»d      0,0,0). 0(0,0,. 0,0,0), 0.

Then, the C°°-Weierstrass Preparation Theorem [11, p. 152] implies that there

exist an open neighborhood Vy C (x,y)(U) of (0,0) and smooth functions My,M2,

A^3, hi, ki, gi, for i = 1,..., fc, defined in Vy such that

a(x,y)= lyk + J2yk-lhi(x)\ My(x,y),

b(x,y)= lyk + Yjyk-lkl(x)\M2(x,y)

and

c(x,y)= [yk + Y^yk~lgl(x)\M3(x,y)     for all (x,y) E Vy.

So (M2 - 4MiM3)(0,0) > 0, Mt(0,0) ^ 0 for z = 1,2,3 and ^n)(0) = fc,(n)(0) =

g\n) (0) = 0 for all n E N and i = 1,..., fc.

Let e > 0. Let V2 be an open neighborhood of (0,0) such that V2 is a compact

set contained in Vi; Mt(x,y) / 0 for i = 1,2,3 and (M% - 4MyM3)(x,y) > 0 for
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all (x,y) E V2, and

(*)        max{\\(H + G- 2K)My\\a, \\(H - G)My\\a, \\(K - G)My\\a,

\\(K-G)M3\\a}<e/4Xa3s

on V2 where As is as in Remark 9.5 and

fc

(H, K, G)(x, i/) = 2 Vk~l(hi(x), ki(x),9l(x)).

i=l

Consider the following rectangles: Ry = {(x,y)\\x\ < |r, \y\ < ^r},R2 =

{(x,y) | |x| < |r, \y\ < |r}, and R3 = {(x,y) \ \x\ < r, \y\ < r} with r > 0 small

enough to have R3 cV2.

Let (py E 6(int/?2,intr?3) and (p2 E 6(inti?i,inti22) such that

(**)        dx^dyi-i&y) ^2'(8+1)/2 • (r/3)"  for a11 (*•»)e r2>

fc = 1,2, i = 1,2,..., s, and j = 0,1,..., i (Corollary 9.4).

It is sufficient to prove that there exists (5,6, c) E Aoo(V2) such that:

(1) (5,6, c) = (a, 6, c) outside inti23,

(2) max{||5 - a||s, ||6 - 6||s, ||c - c||s} < e,

(3) (d,b,c)(x,y) = (yk - K(x,y)) ■ (My,M2,M3)(x,y) for all (x,y) E Ry,

(4) (62 - 45c)-1 (0) n (V2 - Ry) = (b2 - Aac)-1 (0) n (V2 - Ry).

Let us consider the cases Mi (0,0) • M3(0,0) > 0 and Mi (0,0) • M3(0,0) < 0

separately.

Case A: Mi(0,0) • Af3(0,0) > 0.
Let

(a,b,c)(x,y) = (a,b,c)(x,y)+<py(x,y)(H(x,y)+G(x,y)-2K(x,y))-(My(x,y),0,0).

Then

(62 -4ac)(x,y) = (1 - tpy(x,y))(b2 - 4ac)(x,y) + (py(x,y)

■[(yk - K(x,y))2(M2-4MyM3)(x,y)

+4My (x, y)M3(x, y) ■ (K(x, y) - G(x, y))2}.

Therefore, (a,6,c) 6 A00(V2) and estimates (*), (**) and Remark 9.5 imply that

||a-a||s<e/2.

Now let

(a,b,c)(x,y) = (a,b,c)(x,y) + (p2(x,y)(K(x,y) - G(x,y)) ■ (My,0,-M3)(x,y)).

Then for all (x, y) E R2 we have

(62 - 4ac)(x,y) = (yk - K(x,y))2(M2 - 4MyM3)(x,y)

+ 4(1 - <p2(x, y))2(K(x, y) - G(x, y))2My (x, y) ■ M3(x, y)).

So (5,6,c) E Aoo(V2) and satisfies (1), (2), (3), and (4).

CaseB. Mi(0,0)M3(0,0) < 0.
Let

(a,b,c)(x,y) = (a,b,c)(x,y) + <py(x,y)(H(x,y) - G(x,y))(My(x,y),0,0).
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Then

(62 - 4ac)(x,y) = (1 - cby(x,y))(b2 - 4ac)(x,y) + (py(x,y)

■ [(/ - K(x, y))2M2(x, y) - 4(yk - G(x, y))2My (x, y)M3(x, y)].

Therefore (d,b,c)(x,y) E Aoo(V2) and ||a - a||s < e/2.

Now let

(a,b,c)(x,y) = (a,b,c)(x,y) + (p2(x,y)(G(x,y) - K(x,y)) ■ (My,0,M3)(x,y).

Then for all (x, y) E R2 we have

(62 - 45c)(x, y) = (yk - K(x, y))2M2(x, y)

-4-[yk- G(x,y) + <p2(x,y)(G(x,y) - K(x,y))}2

■ My(x,y)M3(x,y).

So (5,6,c) E Aoo(V2) and satisfies (1), (2), (3), and (4).

10.3. Lemma (Proposition 8.2). Let k e N, w e ,%o(M) and V be

an open subset of M such that ^#fc+i(w) C M — V. Then, given s E N, s > fc,

there exists w E H^(M) arbitrarily close to w such that ^k+i{w) C M — V and

V fl Rk(w) is a finite set.

PROOF. Since y^k+y(w) C M — V, VC\Rk(w) is contained at the union of a finite

number of disjoint smooth curves and we can suppose they are transversal to the

boundary of V. If / is one of these curves, consider a chart (x, y): U C M —> R2

such that / C U, Jfk+i(w) C M-U and y(p) = 0 for all p E I. Then if (x,y)*(w) =
a(x, y)dy2 + b(x, y)dxdy + c(x, y)dx2, it follows from the Mather Division Theorem

that there exist smooth functions My,M2,M3,hj,kj,g3, j = l,...,fc, defined in

(x,y)(U) such that

a(x,y) = ykMy(x,y) + H(x,y),     b(x,y) = yk M2(x,y) + G(x,y)

and

c(x, y) = ykM3(x, y) + G(x, y)

where
fc

(H,K,G)(x,y) = '£iyk-i(hj(x),kj(x),gj(x)).

3 = 1

Therefore for all p E Rk(w) l~l / we have hj(x(p)) = kj(x(p)) = gj(x(p)) = 0,

j = 1,..., fc, and (M22 - 4MiM3)(a:(p),0) > 0.

Let S°(/, w) = {p E I\ there exists a sequence {pn}neN contained in (/ - {p}) D

Rk(w) converging to p}.

If p E TP(I,w) then hf(x(p)) = kf(x(p)) = gf (x(p)) = 0 for all i E N and; =
l,...,fc and (dk/dyk)(a,b,c)(x(p),0) = k\(My,M2,M3)(x(p),0) ± (0,0,0). More-

over, we can suppose M,(x(p),0) 7^ 0 for i = 1,2,3 and (Mf-4MiM3)(x(p),0) > 0

for all p E T,°(I,w) (Lemma 9.2).

Consider the following set: E00(I,w) = {p E T,°(I,w)\ there exists a sequence

{Pn}«eN contained in S°(7, w) — {p} converging to p}. Let us fix 8 > 0 small enough

such that J x [-28,28] C (x,y)(U) where (x,y)(I) = J x {0} and Mt(x(p),y) ^ 0,

i =1,2,3 and (M22 - 4MyM3)(x(p),y) > 0 for all 0 < \y\ < 28 and p E S00(7, w).
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For each p E £00(J, w) consider a closed rectangle Rp = Ipx [-28,28] such that

(x(p),0) E'mt(Rp) and

max{||rc,-||s, ||fcj||s, ||oj||s} < e/2As on Ip for all i = l,...,fc (As as in Remark

9.5).
(Ml - 4MiM3)(x, y) > 0 for all (x,y) E Rp.
b\ - 4axcx > 0 in Ipx ([-28,-8] U [8,28]) for 0 < 8 < 1 where (aA,6A,cA) =

yk(My,M2,M3)(x,y) + X(H,K,G)(x,y).

Since S00(I,w) is a compact set, there exist pi,... ,pk E T,00(I,w) with x(pi) <

■ • • < x(pfc) such that E00(7, w) C U,=i int^J and RPi n Rpi+1 is empty. For i =

1,... ,fc consider two points: q\,q2 of E°(7, w) fl RPl such that (x,y)(Y,°(I,w)) C\

Rp,C[x(ql),x(q2)]x{0}.

Let J = \Jl=y[x(ql),x(q2)] and H,K,G be the smooth functions defined by

(HKGMx   ) = { (0'°,0)     ifx€j'

'    '   >[X,y)     \ (H,K,G)(x,y)     iixtl

Let (p: R —► [0,1] be a smooth function such that 0_1(1) = [—£,£], 0_1(O) =

K-]-28,28[, and \(p{l](y)\ <2i(-l+1^2-8~1 for all i = 1,..., s (Lemma 9.3).

Define

(a,~b,c)(x,y) = yk ■ (My,M2,M3)(x,y) + </>(y) ■ (H,K,G)(x)

+ (l-<P(y))(H,K,G)(x).

Then (5,6,c) E A00((xl2/)(f/)); (a,b,c)(x,y) = yk ■ (My,M2,M3)(x,y) for all

(x,y) E J x [-8,8]; (a,b,c) = (a,b,c) outside (Ji=1 in^RpJ and max{||5 - a||s,

||6 — 6||s, ||c — c||s} < e. So, we can get wy E ^o(M), arbitrarily Cs-close to w such

that ^fc+i(«;i) C M — V and Rk(wy) fl V is a union of a finite number of disjoint

compact segments, a finite number of points, and a finite number of sequences of

isolated points accumulating on those points. Now the proof follows from previous

lemmas.

11. Proof of Proposition 8.3. Let p be an isolated point of R2(w) (re-

spectively, of Ry(w)) and let s be a positive integer. Let(x,y): (U,p) —► (R2,0)

be a chart with U n R2(w) = {p} (resp. U n Ry(w) = {p}) and (x,y)*(w) =

a(x,y)dy2 + b(x,y)dxdy + c(x,y)dx2. It is sufficient to prove that there exists a

triple (5,6,c) E Aoo((x,y)(U)) arbitrarily Cs-close to the triple (a,6,c) and that

there exists a neighborhood Vi of (0,0) contained in (x,y)(U) such that:

(1) (5,6,c) = (a,6,c) outside Vi.

(2) (d/dx)(a,b,c)(x,y) ? (0,0,0) or (d/dy)(a,b,c)(x,y) ^ (0,0,0) for all (x,y)

E Vy n (62 - 4a£)-1(0) (resp. ((db/dx)2 - 4da/dx ■ d£/dx)(x,y) > 0 and

/Y/^V-4— —\ ((^lY-a— —\
I \\dxj dx    dy j    \\dy J dy    dy J

(db    db       dd    dc       da    dc\   \

dx   dy       dx   dy       dy   dx J   J

for all (x,y)€ V1n(62-45c)"1(0)).
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11.1. The point p is an isolated point of Ry(w). Since Rq(w) is contained in

Ry(w) we have U fl Sing(w) = {p}. First we consider the cases when the vectors

(oi,6i,ci) = (d/dx)(a,b,c)(0,0) and (a2,62,c2) = (d/dy)(a,b,c)(0,0) are linearly

independent. In this case we can suppose that 62 —4aiCi > 0 and that 62 —4a2C2 > 0

(Lemma 9.2.). If (62-4aiCi)(62-4o2C2)-(6i62-2aic2-2a2Ci)2 = 0 we define for

8 > 0 (a, 6, c) = (a, 6, c)+<59(0,6,0), where 9 G b(Uy,U2) with Uy an open neighbor-

hood of (0,0) and U2 C (x,y)(U). Then (5,6, c) isin A00((x,j/)(L7)), it is arbitrarily

Cs-close to the triple (a,b,c) tor 8 > 0 small enough, (b2-4dc)-1(0)nU2 = {(0,0)},

and if (d/dx)(d,b,c)(0,0) = (5i,6i,c"i) and (d/dy)(a,b,c) = (d2,b2,c2) we have

(62 - 45iCi)(62 - 452c2) - (6i62 - 25ic2 - 252c"i)2

= 4[(1 + <5)2(ax62 - a26i)(6ic2 - 62ci) - (ayc2 - a2cy)2]

= 48{2 + 8)(ayc2-a2cy)2 > 0.

Now we consider the case when the vectors

(d/dx)(a,b,c)(0,0)    and    (d/dy)(a,6,c)(0,0)

are not linearly independent. In this case we can suppose that

(da/dy)(0,0) ■ (db/dy)(0,0)) ■ (dc/dy)(0,0) # 0    (Lemma 9.1).

It follows from the C°°-Weierstrass Preparation Theorem [11, p. 152] that there

exist an open neighborhood Vi of (0,0) contained in (x, y)(U) and smooth functions

h, fc, g, My, M2, M3 define in Vi such that

a(x,y) = (y-h(x))My(x,y),

b(x,y) = (y- k(x)) ■ M2(x,y),

c(x,y) = (y — g(x))M3(x,y) with Mi(x,y) ^ 0 for all (x, y) E Vy and i = 1,2,3.

Let us consider the rectangles

Ry = {(x,y)\\x\ < r, \y\ < r},    R2 = {(x,y)\\x\ < 2r, \y\ < 2r}

with r > 0 small enough such that R2 C Vi. Let (p E 6(int(i?i),int(/?2)).

Let us consider the cases My (0,0) • M3(0,0) > 0 and Mi (0,0) • M3(0,0) < 0

separately.

Case A: Mi (0,0) • M3(0,0) > 0.
Since 62 -4ac > 0 and (62 -4ac)_1(0)nVi = {(0,0)} we have that for 0 < |x| <

2r, h(x) 7^ g(x) and fc(x) belong to the open interval whose endpoints are h(x) and

g(x). Essentially we only have two cases:

(Aj) g(x) < k(x) < h(x) for all x E [-2r,2r] - {0},

(A2) h(x) < k(x) < g(x) for all x E [-2r,0[ and g(x) < k(x) < h(x) for all

xE ]0,2r[.

For Case Ai, let (a,b,c)(x,y) = (a,b,c)(x,y) + 8(p(x,y)(—My,0,M3)(x,y) with

8 > 0. Then

(62 - 4dc)(x, y) = (b2 - 4ac)(x,y)

+ 48(p(x,y)[h(x) - g(x) + 8tp(x,y)]My(x,y)M3(x,y) > 0.

For Case A2, let (a,b,c)(x,y) = (a,b,c) + 8x(p(x,y)(-My,0,M3)(x,y) with 0 <

6 ^ fc'(0) - ft'(0). Then

(62 - 45c) (x, y) = (b2 - 4ac)(x, y)

+ 48x(p(x,y)[h(x) - g(x) + 8x<p(x,y)] ■ My(x,y) ■ M3(x,y) > 0,
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(62-45c)-1(0) = (0,0)

and the vectors (d/dx)(a,b,c)(0,0),(d/dy)(d,b,c)(0,0) are linearly independent

(since 8 ^ fc'(0) - h'(0)).

Case B: Mx(0,0) • M3(0,0) < 0.
Then for 0 < |x| < 2r, fc(x) is outside the closed interval whose endpoints are

h(x) and g(x). Also, essentially we only have two cases:

(Bi) fc(x) < min{g(x),h(x)} for all x G [-2r,2r] - {0},

(B2) fc(x) < min{g(x),h(x)} for all x E [—2r,0[ and fc(x) > max{g(x),n(x)} for

allxG]0,2r].

For Case Bi let (5,6,c)(x,y) = (a,b,c)(x,y)+8(p(x,y)(0,M2,0)(x,y) with 8 > 0.

Then

(62 - 45a)(x, y) = (b2 - 4ac)(x, y)

+ 8tP(x, y)[2(y - k(x)) + 8qb(x, y))Ml(x, y) > 0

since d(x,y) ■ c(x,y) > 0 implies y - fc(x) > 0.

For Case B2 let (d,b,c)(x,y) = (a,b,c)(x,y) + 8xcp(x,y)(0, -M2,0)(x,y) with

0<8^h'(0)-k'(0). Then,

(62 -45c)(x,y) = (62 - 4ac)(x,y) - 28x<p(x,y)(y - k(x))M%(x,y)

+ 82x24>2(x,y)M22(x,y)>0„

(b2 -4dc)~1(0) = {(0,0)} and (d/dx)(5,6,c)(0,0), (d/dy)(a,b,c)(0,0) are linearly
independent vectors.

11.2. The point p is an isolated point of R2(w). As in 11.1 in this case we can

suppose that a(x, y) = (B(x,y) + xA(x,y))My(x,y), b(x,y) = B(x,y)M2(x,y), and

c(x,y) = (B(x,y) + xC(x,y))M3(x,y) for all (x,y) on a small open neighborhood

Vi of (0,0), where B(x,y) = y2 +xyby(x)+x2b2(x), A(x,y) = ycty(x) + xa2(x), and

C(x,y) = ycy(x) + xc2(x) with ay,a2,by,b2,cy,c2,My,M2,M3 smooth functions

such that My(x,y) ■ M2(x,y) ■ M3(x,y) 7^ 0 and (M2 - 4MyM3)(x,y) > 0 for all

(x,y)EVy.

Case A. The functions ai,a2,ci,c2 are flat in 0. That is, a\n'(0) = a2 '(0) =

4n)(0) = c2n)(0) = 0 for all n G N.

In this case, as in the proof of Lemma 10.2 we find a triple (a, b, c) in

A00((x,y)(C/))

arbitrarily Cs-close to the triple (a, 6, c) such that (a, 6, c) = (a, 6, c) outside a

small neighborhood Vi of (0,0) and (a,6,c)(x,y) = B(x,y)(My,M2,M3)(x,y) for

all (x,y) E Vy. Then if Mi(0,0) • M3(0,0) is positive we define (5,6,c) = (a,b,c) +

8@(My,0, -M3) and if Mi(0,0) • M3(0,0) is negative we define (5,6,c) = (a,6,c) +

<5'9(0, M2,0) with 8 7^ 0 small and 9 G b(Uy, Vy), where Uy is an open neighborhood

of (0,0) with Uy c Vi.
Case B. There exists fcGN such that A(x,y) = xk(cty(x)y + a2(x)x) and

C(x,y) = xk(/3y(x)y + p2(x)x) with (ay,a2,/3y,p2)(0) ? (0,0,0,0).

In this case, we will prove that, choosing <5 / 0 with appropriate sign, the triple

(a, 6, c) = (a, 6, c) + 6Q(My, M2, M3) is such that 62 -4ac > 0, where 9 is a function

in b(Uy,U2), with Uy and U2 small neighborhoods of (0,0).
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For a triple as above, we have

62 - 4ac = 62 - 4ac + 2<59(M26 - 2aM3 - 2cMi) + c5292(M22 - 4MiM3).

Let us consider the functions h = M26 - 2aM3 - 2cMi and A = h2 -

(62-4ac)(M22-4MiM3). Thenh(x,y) = 0 implies A(x,y) < 0; h(x,y) = A(x,y) =

0 implies (62 -4ac)(x,y) = 0 and A(x,y) = x2l-k+1",Ay(x,y) ■ A2(x,y), where

At(x, y) = [A(x, y)ay (x) + (7(x, y) + (-l)lp(x, y))0y (x)]y

+ [X(x,y)a2(x) + (i(x,y) + (-l)lp(x,y))p2(x)]x

and A = 2M!M3, 7 = M\-2MyM3, p = M2S/M% - 4MyM3. Therefore A ■ 7 • p ^

0 on Vi, and if Hi = Xa% + (7 - p)/3i and Gi = Aa,j(7 + p)/?j we have

(1) Hi(0,0) = Gi(0,0) = 0 if and only if Qi(0) = A(0) = 0, and we can suppose

(2) Hi(0,0)Gi(0,0) = 0 if and only if Hi(0,0) = 6^(0,0) = 0.

(If for example #t(0,0) =0/ Gt(0,0) defining (5,6,c) = (a, (1 + eG)b,c) with

£ > 0 small we obtain Hi(0,0) ■ Gi(0,0) 7^ 0.)

So £>Ai(0,0) 7^ 0 and DA2(0,0) 7^ 0 and the curves Ax = 0 and A2 = 0
determine at a small neighborhood U2 of (0,0) two sectors where the discriminant

A is not negative. Since d2h/dy2(0,0) 7^ 0, the function h is always positive or

negative where A is positive and we choose <5 7^ 0 such that 8h(x,y) > 0 for all

(x,y)G(72nA-1(]0,+oo[).

Observe that if (a,b,c) is in Aoo((x,y)(U)), taking the neighborhood Uy of (0,0)

with Uy C U2 and 8 small enough we have solved our problem. If (a, 6, c) is not

Aoo((x, y)(U)) we define (5,6, c) = (a, (1 + eO)6, c) with e > 0 small enough.
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