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TRACE IDENTITIES AND Z/2Z-GRAUED INVARIANTS

ALLAN BERELE

ABSTRACT. We prove Razmyslov's theorem on trace identities for M^^ using

the invariant theory of pl(fc,Z).

In [5 and 6] Razmyslov and Procesi independently proved their celebrated the-

orem on trace identities of the algebra of n x n matrices. Their work completely

characterized these trace identities both in the sense of showing that they all result

from the Cayley-Hamilton theorem and in the sense of calculating their cocharacter.

Recently, Razmyslov [7] generalized these results to describe the trace identities of

Mk,i, a Z/2Z-graded analogue of the matrix algebra. In the present paper we re-

prove Razmyslov's results on Mk,i using methods based on Procesi's. This not only

gives new insights into Razmyslov's theorem, but also entails the development of

some Z/2Z-graded invariant theory, which we believe to be of interest in its own

right. We now define our basic objects and state our main theorems.

Throughout this paper we will be working over a field F of characteristic zero.

E will denote an infinite-dimensional Grassmann algebra over F. The algebra E

has a natural Z/2Z-grading, with respect to which it is a graded commutative

algebra. The degree zero part Eo is spanned by all words in E of even length and

the degree one part Ey is spanned by all words of odd length. Then, the statement

that E is "graded commutative" means that if a, b E E are homogeneous, then

ab = (-l)desadesbba. (We will add and multiply degrees as elements of Z/2Z.)

We will denote by V the free E-module on the basis {ty,..., tk, uy,..., u;}. The

module V has a Z/2J?-grading gotten by declaring the i's to be degree zero and the

u's to be degree one. There are three sets of maps V —* V which play important

roles in this paper. One is the ring of E-endomorphisms of V, End£;(V). If we use

our basis {ty,... ,tk,uy,... ,ui} to identify elements of V with column vectors with

entries in E, then elements of EndE(F) will be identified with (k + I) x (k + /)-

matrices with entries in E acting on the left of V. To define EndE(V) in a basis-free

manner we first make V into a left ^-module by setting ve = (—i)des"-deBeet; for

all homogeneous v EV, e E E and then extend to all of E and V by linearity. Then

End£;(V) can be defined as the set of all additive maps f:V —+ V which commute

with the left action of E.

Another set of maps which we will make use of is PL(V), the general linear Lie

supergroup, and it is asubgroup oiEndB(V). We define PL(V) as {/ 6 End^(F) | /

is invertible and, for all homogeneous v EV, degf(v) = deg?;}. As (fc + /) x (fc + /)-

matrices, elements of PL(V) look like (^ ^), where A is a fc x fc matrix with entries

in Eo, D is an / x / matrix with entries in Eq, and B and C have entries in Ey.
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If we relax the requirement on invertibility in the definition of PL(V) we get the

algebra Mk,i = {/ 6 End£;(V) | deg(/(u)) = deg(u) for all homogeneous v E V).

There is an important trace function tr:Mk,i —> E0 given by tr (^ B) = tr(A) -

tr(D). The reader may easily verify that tr satisfies all of the usual properties of

nondegenerate trace functions:

tr(A + B)= tr(A) + tr(J3).

tr(aA) = atr(A),        a E E0-

tr(AB) = tr(BA).

tr(AX) = 0 for all A => A = 0.

We now describe our three basic reuslts:

(1) There is an action of PL(V) on V®n given by the diagonal map, and an

action of Sn on V®n given by a signed permutation (defined below). We denote by

B the E'-subalgebra of End^V®") spanned by PL(V) and by A the E'-subalgebra

of End£;(V) spanned by S„. Then ii f E End.e(V®n) supercommutes with all of

B, then it must lie in A.

(2) There is a natural identification of elements of FSn with trace polynomi-

als.   If a E Sn has cycle decomposition a = (iii2 ■ • -ia)(ji • • 'jt) ■ • •, then a is

identified with tr^ii,..., xn) = tr(xi, ■ ■ ■ XjJ tr(xj, ■ ■ ■ Xjt)_   A more general

a = J2aa E FSn would be identified with Sojo-trCT. The algebra FSn has a well-

known decomposition into simple ideals FSn = T,x£Pa.r(n) 0-^a, where X runs over

all partitions of n. Now, an element of FSn Y>aaa is called a trace identity for Mk,i

ii Eaatra(Ay,... ,An) = 0 for all Ay,... ,An. Then the set of trace identities of

Mk,i is the two-sided ideal of FSn E © I\, where A is constrained to have at least

fc + 1 parts greater than or equal to I + 1, A = (Xy > X2 > A3 > ■ • ■), A^+i > I +1.

This implies that there is a single trace identity of degree (fc + l)(l + 1) such that

all other trace identities are consequences of it.

(3) Let /:End(V)®ra ->■ E be PL(V)-invariant in the sense that for all

By®---®BnE End(V)®" and all A e PL(V)

f(By (2) • • • ® Bn) = f(AB1A~1 ® ■ • ■ ca ABnA'1).

Then there is a trace polynomial a such that, for all By,..., Bn E Mk,i,

F(By®--®Bn) = a(By,...,B„).

A few final remarks: PL(V) is of interest at least because it is important in

the physics literature, cf. [1]. The identities of Mk,i are of interest because Kemer

[3, Theorem 5] has shown them to be a basic building block in the theory of T-

ideals. Also, one may compare our trace identity theorem with Regev's "sign-trace"

identities in [8]. Finally, it is our happy duty to thank J. Towber for suggesting the

concepts of Z/2Z-graded invariants and the "basis-free" approach to PL(V).

1. The centralizer theorem. In general, if Af is a graded right ^-module

we may consider M as an E-E bimodule via the rule em = (-l)dese degmme

for all homogeneous e E E, m E M. If M and N are graded right ^-modules

we use this construction to define the graded tensor product M ®p N, so that

em (gin = (-l)de^e de^mme® n = (-l)dese desmm® en. In this paper all tensor

products will be graded. An n-fold graded tensor product can be defined similarly.
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In the case of V, let J: V —> V be given by J(U) = U and J(u,) = -Ui for all i.

Then in V®", if e E E0 then vy ® v2 <g> • • • ® evi ® ■ ■ ■ ® vn = evy ® v2 ® ■ ■ ■ ® v„; and

if e E Ey then vy cg> v2 ® ■ ■ ■ ® evi cg> • • • eg) vn = eJvy®Jv2®- ■ -®Jvi-y®Vi®- ■ -®vn.

As in the classical case there are homomorphisms <p:PL(V) —* End^I^®") and

ip:ESn -» EndB(V®"). The former is defined by tp(A)(vy ® ■ ■ ■ ® vn) =def

Avy ® ■■■ ® Avn. To define ip, we recall the functions /j:S„ —► {±1} defined

in [4] and used in [2]. If I C {1,...,n} we choose ey,...,en E E such that

et E Ey if i E I and e% E Eo ii i £ I and such that ey ■ ■ ■ en ^ 0. Then

//(rj) is defined by eff(i) • ■ -ea'n) = fi(a)ey ■ ■-e„. Now to define ip(a):V®n —>

V®n, first let vy,...,vn E V be homogeneous and let I = {i\vi E Vy}. Then

ip(o~)(vy ® ■ ■■ ®vn) =def fi(o~)va(i) ® ■ ■ ■ ®va(n), and we extend ip(a) to the rest

of V®n by linearity, and then to the rest of ESn by linearity, (ip defines an action

of Sn on the right of I/®".) We leave the proof of the following basic lemma to the

reader:

LEMMA 1.1. For all a E Sn and A E PL(V), ip(o) and <p(A) are well-defined
elements o/End£;(V®") and ip(a)<p(A) = ip(A)ip(a).

Let A = the image of ESn under ip and let B = the .E-subalgebra of Endfi(V®")

spanned by the image of PL(V) under <p. By the previous lemma, elements of A

and B graded commute with each other in the sense that if a E A and b E B

are homogeneous, then ab = (-l)degadeg66a. Let C(B) = the subalgebra of all

elements of Ends(V®™) which graded commute with B.

THEOREM 1.2.   (&)C(B) = A.

(b) Let FSn — Z)AePar(n)©^ ^e ^e well-known decomposition of FSn into

minimal two-sided ideals. Then the kernel of ip is Yl ®{EI\ \ X has at least k+l

parts > I + 1}. In the language of [2], ker^ = ^©{-E-Tx I A ̂  H(k,l;n)}.

REMARK. Theorem 1.2 is a translation of two theorems from [2]-part (a) is

4.15 and part (b) is 3.20. In our proof of Theorem 1.2 we shall make use of these

theorems as well as the notions that go with them. We recall these notions briefly

for the reader's convenience. Let U C V be the Z/2Z-graded F-vector space

spanned by {ty,...,tk,uy,...,ui}. EndF(C^) inherits a Z/2Z-grading with degree

i part equal to {x: U —* U \ x(Uj) C U%+j,j = 0,1}. Endir({7), together with this

grading (and supercommutator operation) is referred to as pl(t7), the general linear

Lie superalgebra. To each x E pl(U) we associate a map x: t/®n —► U®n. If x is of

degree zero, then x is the ordinary derivation Y17=i I®1-1 ® x ® I^>n~l- if x is of

degree one, then x is defined to be the superderivation J^7=i J^>%~1^x®I®n~'1; and

~ is extended to all of pl(U) by linearity. Finally, our map ip: ESn —* End^(y®™)

restricts to a map (also called ip) from FSn to End f(U®n), and so affords an action

of FSn on«7®n.

PROOF, (a) Let U C V be the graded F- vector spanned by {ty,...,tk,Uy,...,ui}

and let a; be a homogeneous element of pl(U). Let 0 / e E E be homogeneous and

such that deg e = deg x and e2 = 0. Then it is easy to see that I + ex E PL(V) and

we consider ip(I + ex) E B.

ip(I + ex)(vy ® ■ ■ ■ ® vn) = (vy + exvy) ® ■ ■ • ® (vn + exvn)

n

= vi eg) • • • <g> vn + 2J vi <g> ■ • • ® exvi eg) • • ■ eg) vn.

i = l
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Since the identity map is in B, the map fi®- • -®vn —► Y17=i wi®'' -®exvy®- ■ -®vn

is in B. If e is in E0, the map is e times the derivation J27=i I®1-1 ® x eg) In~%, and

if e is in Ey, this map is e times the superderivation X)"=1 J®1-1 ® x ® In~l which

is x. In the language of [2]: If z € pl(f7) and e E E are homogeneous of the same

degree, then e ■ x E B.

Now, if a E C(B) C Endp(U®n) then it can be written as a = Yleiaii where the

ei are distinct words (F-independent elements) in E and the ai are in Endp(U®n).

Also x E Endf({7®"). Since ex graded commutes with J2eiaii % must commute

with ai for each i. By 4.15 of [2], this implies that a^ is gotten from the ^-action

of FSn on U®n. Hence a E ip(ESn) as claimed.

(b) If we restrict ip to a map FSn -» End£(r/®n), then 3.20 of [2] says that this

map has kernel 53 {7.x ̂  H(k, I; n)} and our result follows.

REMARK. The referee has drawn our attention to [9], especially Theorem 2.6(1)

on p. 78. The transition from pl(V) to PL(V) can be accomplished using that

theorem, taking A = E, B = EndF(U®n), A' = E and B' = the image of pl(V).

We refer the reader to [9] for the additional insights into the present case.

2. Traces and permutations. In this section we prove a couple of technical

lemmas which will allow us to translate Theorem 1.2 into facts about traces. Let

W be the ^-module V © V*. As in Lemma 1.1 there is a well-defined right action

of ES2n on W®2n given by signed permutations, (wy eg) • • ■ eg) w2n)o = +.waiy\ eg

•'' ® wa(in) f°r wi > • • • > w2n E W homogeneous. Two important permutations

will be v and r: v = (12)(34)(56) • • • (2n - 1 2n) and r takes (1,2,3,..., 2n) to

(r(l), r(2),..., r(2n)) = (1,3,5,..., 2n - 1,2,4,6,..., 2n). If we restrict attention

to (V eg) V*)®n =V ®V ®V ®V* ®---®V ®V* C W®2n, then the action of r

affords an isomorphism

(1) EndE(V)®n = {V®V*)®n = V®n®V*®n.

The natural evaluation map e:V* ® V —► E is given by <p ® v —> <p(v). Combin-

ing e®n with the natural multiplication map m: E®n —► E gives a natural map

(V eg) V*)®n —> E via tpy ® vy eg> • • • ® <pn ® vn —> ̂ i(wi) ■ ■ ■ <pn{vn)■ There is a

nondegenerate pairing (V®n) ® (V*®n) -► E given by: If x E V®n ® V*®n we

apply r~l and then v to get an element (xr~xv) E (V* ® V)®n and then map to

E.

Denote the image of v ®ip E V®n ® V*®n as (v,<p). Just as in the classical case,

this implies

LEMMA 2.1.   [(V®V*)®n]* =EndE(V®n).

PROOF. By (1), [(V ® V*)®n]* = [V®n ® V*®"]*. Given T E End£(V®") and

v ®<p E V®n eg) V*®n we get an element of E, (T(v), <p). The usual argument from

linear algebra shows that this defines the required isomorphism.

There is a well-known identification of elements of Sn with trace monomials. The

permutation a with cycle decomposition a = (iy,i2 ■ ■ -is)(jy ■ ■ ■ jt) ■ • • is identified

with the monomial

tra(xy,...,xn) =tr(x,-, ■ • • Xi.)tr(x3; ■■■Xjt)--- .
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LEMMA 2.2. Let a E Sn and let vy ® tpy,...,v„ ® <pn E PL(V) C End(V),

so that Vi and <pi are homogeneous and degVi = deg <pi for all i. Under the iso-

morphism of Lemma 2.1 ip(cr) E End(V®") is mapped to the functional which takes

Vy®ipy®---®Vn®<Pn  to trCT(ui ®<py,...,Vn ® <Pn) ■

PROOF. Given a E Sn, let a E S2n be the map with a(i) = o(i), i = 1,... ,n,

a(i) = i, i = n + l,... ,2n. By definition <p(a)(vy ®<py®-- -®vn®<pn) is gotten by

acting on vy ® (py ® ■■■ ® vn ® <pn first by r, then a, then r_1 and finally by ( , ).

Let ai = deg u; = deg <pi for all i.

First, consider the case in which a = (1 2 • • • s)(s + 1 ■ ■ • t) • • •. The effect of

rbr~xv is to take vy ® <py ® ■ ■ ■ cg> vn ® <pn to ±tpy ® v2 ® tp2 ® w3 ® ■ ■ ■ ® <ps ® vy ®

<Ps+y ® vs+2 ®---®<pt® vs+y eg) • • ■. The sign is the sign gotten by moving vy past

<py ® v2 ® ■ ■ ■ ® <ps, vs+y past <ps+y ® ■ ■ ■ ® <pt, ■ ■ ■ ■ Let ai = deg v% = deg <pi for all

i. The sign gotten by moving vy past tpy ® v2 ® ■ ■ ■ ® <ps is (—1) to the power of

degD! -deg(tpy ®v2® ■ ■ -®tpa) = ay(ay+a2 + a2-\-as + as) = (-1) to the power

of ay. Likewise, moving vs+y past tps+i ® ■ ■ ■ ® <Pt costs (-l)"3, and altogether

(Vy ®tpy ®---®Vn®tPn)TCrr~1l> = (-l)ai+a' + '" tpy ® Va(y) Cg) • • • ® tpn ® Va'n).

Hence tp(a) takes vy ® tpy ® ■ ■ ■ ® vn ® <pn to (-l)ai+a,+"'^i(«<r(i)) • •-^(^(n))-

Now, let xz = Vi eg) tpi for all i and compare the quantity to trCT(xi,..., x„).

Tra(xy,...,xn) = tr(xxx2 ■ ■ ■xs)tr(xs+1 ■■■xt)---

= tr(«i ® tpy ■ v2 ® tp2 ■ ■ ■ vs eg) ip,,) tr(«s+i ® tps+1 ■ ■ ■ vt ® <pt) ■ ■ ■

= tr(ui eg) <py(v2)tp2(v3) ■ ■ ■ <ps-y(vs)tps) tr(ws+i ® tps+y(vs+2) ■ ■ ■ <pt) ■ ■ ■

= (±tpy(v2) ■ ■ ■ <ps-y(vs)tpa(vy)(±tps+y(vs+2) ■ ■ ■ tpt(va+y))

In calculating trace Mk,i, tr(u ® tp) = (—l)de*'v<p(v), so here the sign in the first

factor is (-l)ai, the sign in the second factor is (-1)"8, etc. So, we have confirmed

that <p(a) takes vy ® <p y ® ■ ■ ■ eg> vn ® <pn totr(T(vy®tpy,... ,vn®tpn) for this special

choice of a.

In order to translate from this special case to the general one we need to

describe some maps Sn —* S2n. If 7r e Sn we will associate to ir three el-

ements of S2n:ir = (t, 1) will be the permutation which takes (1,2,... ,n,n +

1,..., 2n) to (tt(1), ..., ir(n),n + 1,..., 2n), so (vy ® ■ ■ ■ ® vn ® tpy ® ■ ■ ■ ® tpn)ir =

±(w7r(i) ® ■ ■ • ® v^(n) ®tpy®---® <pn); (n, ir) will be the permutation which takes

(1,2,..., n, n + 1,..., 2n) to (ir(l),..., ir(n), ir(l) + n,..., ir(n) + n), so (vy ® ■ ■ ■ ®

vn ® tpy ® ■ ■ ■ ® <pn)(ir,ir) = ±i\-(1) ® ■ ■ ■ ® tV(„) ® <pn(y) ® ■ ■ ■ ® <p*{n) \ and ir* will

ber_1(7r,7r)r so (vy ®<py ®- ■ ■®vn®tpn)ir* = ±v„w ®<pnry) ®- ■ -®vn'n) ®<pn(n)-

The map 7r* has a number of properties we will find useful:

(1) 7r*r = r(7r, ir), (ir, ir)r = ir*r by definition of 7r*;

(2) ir*v = vir*, by a calculation;

(3) (V y ® tpy Cg) • • • eg) Vn ® <Pn)lT*  = +Vn(y) ® ^w(l) ® ■■■ ® Vw(n) <S> <Prv(n), Since

deg Vi = deg tpi, each Vi ® tpt has degree zero and ir* moves the Vi ® tpi together;

(4) for anyv'y,...,v'nEV,tp'y,...,tp'nE V*,

m[(tp'y ®v'y®---®tp'n® v'n)ir*] = m(<p'y ®v'y®---®<p'n® v'n),

by a calculation.
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Now let a = (iyi2 ■ ■ ■ is)(is+1 ■ ■ ■ it) ■ ■ ■ be arbitrary and choose ir so that 7r_1tT7r

= (1 2 ■ ■ • s)(s + 1 ■ • • t) • ■ •, i.e., ir(j) = ij for all j. We now repeat a basic formula

from [6]:

''^7r_1<T7rl-''7r(l)i • • • ) •^7r(n) J

= tr(x7r(1)Z7r(2) ' • • X,r(s)) tr^s+i) ■ ■ • xnW) ■ ■ ■

— tr(j(Xi,..., xn).

But, by the previous case

^ir-ienyXn'y^, ■ . . , Xn'n))

= ^n-^an(Vn(l) ® £>tt(1) , • • • ,«T(n) ® <Pn(n))

= ^[(^(i) <2> <p„(y) eg) • • • eg) tV(„) ® tp7T{n))T(ir~1air)T~1iy]

= m[(vy ®tpy®---®Vn® V3n)7r*r(7T~1(T7r)r~1l/]

by property (3) of ir*. Now,

7r*r(7r_1fJ7r, l)r-1^ = r(7r,7r)(7r_1<T7r, l)r_1i/

= r(air, ir) A r~1v = t(o, l)(ir, ir)r~1y

= r(a, l)r_17r*i/ = t(ct, l)r~1uir*,

by repeated use of the properties of ir*. Substitution now yields

trCT(xi,.. .,xn) = m[(vy ®tpy®---®vn ® tpn)rar^1vir*]

= m[(vy ®tpy®---®vn® tpn)rar~xv],

by (4). This proves the lemma.

3. Trace identities. As in Theorem 1.2, consider the map

ip:FSn ^End(V®").

Let Ay,...,An E Mk,i C End(V) and Ay ® ■ ■ ■ ® An E End(V)®" = End(V®").
Then by Lemma 2.2, if a = Ylao°~ E FSn then

tp(a)(Ay ®--.®An) = Y2,aa tra(Ay,..., An),

where trCT is the trace monomial corresponding to the permutation a. Hence, all

elements of the kernel of ip are trace identities for Mk,i in FSn- Conversely, if

a = Yl ao-o~ is a trace identity for Mk,i then ip(a) vanishes on all degree zero elements

of End(V®n), since any such can be written as an F-linear combination of terms

of the form Ay ® ■ ■ ■ ® An with each Ax E Mk,i- But if By ® ■ ■ ■ ® Bn E End(V®ra)

has degree one, then e(By ® ■ ■ ■ ® Bn) has degree zero for all e E Ey and so

0 = ip(a)(e(By ® ■ ■ ■ ® Bn)) = eip(a)(By ® ■ • ■ ® Bn).

This implies that ip(a)(By ® ■ ■ ■ ® Bn) = 0 and so a E ker ip. Combining this result

with Theorem 1.2(a) yields

THEOREM 3.1.   If a = Yao-o~ E FSn then the trace polynomial

Y2,aatra(xy,...,xn)
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is an identity for Mk i  if and only if a belongs to the two-sided ideal in FSn,

Z{h\\£H(k,l;n)}.'

REMARK. Expressions of the form Yao i-Tc(xy, ■ ■ ■ ,xn) are called pure trace

polynomials, as opposed to mixed trace polynomials which are combinations of

terms of the form Xj, ■ ■ ■ x;s tr(xj, • • • Xjt) tr(- ••)•■•. But it is known how to de-

duce the mixed trace polynomials identities from the pure ones, in the case of

a nondegenerate trace which is the case here. For each a let iy = 1 so a =

(1 *a •••»«) (ji •••jt)--', andletmtrCT(x1,...,x„) = xi2 ■■■xiatr(xjl ■■•Xjt)---. By

the general properties of traces, mtrCT = tr(xi trCT) and so ^a^m tr^ is an identity

if and only Y a<r trCT is- Hence, Theorem 3.1 identifies the mixed trace identities as

well as the pure ones and, in principal also identifies the polynomial identities. We

now quote a result from [6], which is stated first as a corollary and then as part of

Theorem 3. A proof of this basic lemma comes at the end of the section.

RAZMYALOV'S LEMMA. Let X be a partition of n, I\ the two-sided ideal cor-

responding to X in FSn and let I be the ideal of all trace identities which are

consequences of elements of I\. Then for all m, I C\ FSm = YUn I A* > M> where

by p > X we mean that if p = (py,p2, ■ ■ ■) and X = (Ai, A2, • ■ •) then pi > Xi for

all i.

Combining Razmyslov's lemma with our 3.1 yields

THEOREM 3.2 ( = THEOREM 1 OF [7]). All pure trace identities of Mk,i are

consequences of the identities of degree (fc + 1)(/ + 1).

PROOF. By the standard linearization argument, all identities are consequences

of the multilinear ones, which are identified with elements of FSm for various m.

Theorem 3.1 says that the identities in FSm live in the sum of the JM where

p ^ H(k,l;m). But p £ H(k,l;m) if and only ii p > (k + l)l+1, the partition

of / + 1 parts, each equal to fc + 1. But the ideal of all such trace polynomials is

generated by I(k+i)'+1 by Razmyslov's lemma, completing the proof.

Note that it follows from the previous remarks that the mixed trace identities

for Mkii all follow from those of degree (fc + 1)(Z + 1) — 1.

PROOF OF RAZMYSLOV'S LEMMA. By the branching theorem for the symmet-

ric group, Razmyslov's lemma is equivalent to the following:

Let I c FSn be a two-sided ideal, and let J C FSm be the set of consequences

of elements of I, considered as trace identities. Then J = FSmIFSm.

We will prove only that FSmIFSm C J, which is all we use in the proof of

Theorem 3.2. The interested reader should be able to fill in the details for the

opposite inclusion.

First of all, by induction, it suffices to prove the case of m = n + 1. In order

to avoid ambiguity, we will let i: Sn —* Sn-\-i be the natural inclusion map. Next,

since J is closed under conjugation by elements of Sn+i and under multiplication

by elements of F, it suffices to prove that ISn+y C J. Let a E I and a E Sn+y. We

want to show that i(a)a E J. The proof now breaks down into two cases, depending

on whether or not a fixes n+l.

If a fixes n+l, then a = i(a') for some a' E Sn, i(a)o = i(aa'). By hypothesis,

aa' is an element of I. liaa' is identified with f(xy,..., xn), then i(aa') is identified

with f(xy,...,xn)tr(xn+1). This is clearly a consequence of /.
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If a does not fix n + 1 assume w.l.o.g. that cr(n + 1) = 1. Then a = t(l n + 1),

where t fixes 1. By the preceding case, we may assume that a = (1 n + 1). Let

v £ Sn be any permutation, with cycle decomposition v = (1 i2i2 •••)•••, so

v corresponds to the trace monomial tr„(ii,..., xn) = tr(xyXi^i2 ■■■)■■■. We

calculate v(l n + l) = (1 n + 1 iyi2 ••■)•••, hence tr„(i n+i)(xi,... ,xn+1) =

tr„(xix„+i, x2,..., x„). More generally, for any a E FSn, if a corresponds to the

trace polynomial f(xy,..., xn) then i(a)(l n + l) corresponds to

f(XyXn+y,X2,...,Xn),

which is clearly a consequence of /. This completes the proof.

4. Invariant maps. If Theorems 3.1 and 3.2 are thought of as "second fun-

damental theorems" gotten from the centralizing property, then Theorems 4.1 and

4.2 of this section can be thought of as "first fundamental theorems."

LEMMA 4.1. Lettpy®---®tpn eV*®n, vy®---®vn EV®n and A ePL(V)

so tp(A) E End(V®n). Also, let ( , ) be the pairing V®n x V*®n -> E.  Then

(tp(A)(vy ® ■ ■ ■ ® Vn), tpy®---® <pn) = (vy ® ■ ■ ■ ® Vn, (tpy ® ■ ■ ■ ® <pn) o tp(A)).

PROOF. Left to the reader.

LEMMA 4.2. LetT E End(F®"), By ® ■ ■■ ® Bn E End(V)®" and Ay,A2 E
PL(V), so tp(Ay), <p(A2) E End(V®n). Also let i: End(V®n) -» [End(V)®"]* be the

isomorphism of Lemma 2.1.  Then

i(tp(Ay)Ttp(A2))(By ®---®B„) = i(T)(AyByA2 ®---® AyBnA2).

PROOF. We assume without loss of generality that under the isomorphism

End(F) = V ®V* each Br corresponds to vt ® tpr where each vr and tpr is homo-

geneous. Then, under the isomorphism End(V)®" = V®n ® V*®n, By ® ■ ■ ■ ® Bn

corresponds to evy ® ■ ■ ■ ® vn ® <Pi ® ■ ■ • ® <pn where e = ±1.

On the other hand, each AyBrA2 corresponds to Ayvr®tproA2, where degvr =

deg Ayvr and deg^r = deg^v ° A2 since Ay,A2 e VL(V). Hence AyByA2 ® ■ ■ ■ ®

AyBnA2 will correspond to eAyVy ® ■ ■ ■ ® Ayvn ® tpy o A2 ® ■ ■ ■ ® <pn o A2 where

e = ±1 is the same as above. Now calculate

i(T)(AyByA2 ® ■ ■ ■ ® AyBnA2)

= (eT(AyVy ® ■ ■ ■ ® AyVy), tpy O A2 ® ■ ■ ■ ® tpn O A2)

= (eTtp(Ay)(vy ® ■ ■ ■ ®Vn),tpy ® ■■ ■ ®tpn Otp(A2)).

By the previous lemma this equals

(etp(A2)Ttp(Ay)(vy ® ■ ■ ■ eg) Vn), tpy®---® tpn).

But, this is just i(tp(A2)Ttp(Ay))(By ® ■ ■ ■ ® Bn), which proves the lemma.

Now call a map T: End(V)®" -* E PL(V)-invariant if

T(ABlA~1 ® ■ ■ ■ ® ABnA-1)

for all By ® ■ ■ ■ ® Bn E End(V)®", A E PL(V).

THEOREM 4.1. The set of Ph(V)-invariant linear maps from End(V)®" to E

equals the image of ESn under p.

PROOF. If T e [End(V)®"]* is PL(V)-invariant then, by Lemma 4.2 taking

A2 = Ay1, T must equal tp(A)~1Ttp(A) for all A E PL(V). By Theorem 1.2, T

must be in the image of tp.
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