
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 309, Number 2, October 1988

BOUNDS ON THE L2 SPECTRUM FOR
MARKOV CHAINS AND MARKOV PROCESSES:

A GENERALIZATION OF CHEEGER'S INEQUALITY

GREGORY F. LAWLER AND ALAN D. SOKAL

ABSTRACT. We prove a general version of Cheeger's inequality for discrete-

time Markov chains and continuous-time Markovian jump processes, both re-

versible and nonreversible, with general state space. We also prove a version

of Cheeger's inequality for Markov chains and processes with killing. As an

application, we prove L2 exponential convergence to equilibrium for random

walk with inward drift on a class of countable rooted graphs.

1. Introduction. Twenty years ago, Cheeger [1] proved a beautiful lower

bound on the next-to-smallest eigenvalue (smallest strictly positive eigenvalue) Ai

of the Laplacian on a compact Riemannian manifold M, in terms of an isoperimet-

ric constant for M. This result inspired many further lower and upper bounds on

Ai in terms of global geometric invariants of M (see, e.g., [2-4] for reviews). Very

recently, Alon [5] proved an analogous bound for the Laplacian on a finite graph.

From a probabilistic point of view, these bounds concern the rate of exponential

convergence of a positive-recurrent reversible Markov process (the Brownian mo-

tion on M) to its unique invariant distribution (normalized Lebesgue measure on

M).
In the same paper, Cheeger also proved a lower bound on the smallest eigen-

value Ao (necessarily strictly positive) of the Laplacian on a compact Riemannian

manifold M with Dirichlet boundary dM. More recently, Dodziuk [6] proved an

analogous bound for the Laplacian on a finite graph with Dirichlet boundary. From

a probabilistic point of view, these bounds concern the exponential decay rate of a

reversible Markov process with killing (the Brownian motion on M killed at dM).

In this note we prove a general version of Cheeger's inequality for positive-

recurrent discrete-time Markov chains and continuous-time Markovian jump pro-

cesses, both reversible and nonreversible, with general state space. In addition,

we prove a general version of Cheeger's inequality for Markov chains and Markov

processes with killing. As an application, we prove bounds on the L2 spectrum

for a random walk with inward drift on a certain class of countable rooted graphs,

generalizing an earlier result of Sokal and Thomas [7].
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We emphasize that our methods in this paper are not new: our proofs are, by

and large, close analogues of Cheeger's original argument. However, we think it is

worthwhile to generalize and unify a number of results which have been scattered

in the literature of fields as diverse as differential geometry, graph theory, linear

algebra, probability theory and mathematical physics. We have tried hard to make

our exposition comprehensible to specialists in all these fields. In §2 we present

our main result in the positive-recurrent case. In §3 we present our main result

for Markov chains and processes with killing, and derive an alternate version of

the positive-recurrent result as a corollary. In §4 we prove some lemmas which

are useful in applying our bounds. In §5 we study the random walk with inward

drift on a countable rooted graph. Finally, in §6 we discuss previous work which is

related to ours.

2. Cheeger's inequality for positive-recurrent Markov chains and pro-

cesses. Consider a positive-recurrent discrete-time Markov chain with measurable

state space (S,3^), transition probability kernel P(x,dy) and invariant probability

measure ir. Then P induces a positivity-preserving linear contraction on L2(ir) [and

in fact on all the spaces Lp(ir)] by

(2.1) (Pf)(x) = jp(x,dy)f(y).

The constant function 1 is an eigenvector of P (and of its adjoint P*) with eigen-

value 1. The goal of this section is to prove bounds on the spectrum of P \ 1±.

The analogue of Cheeger's isoperimetric constant is the rate of probability flow,

in the stationary Markov chain, from a set A to its complement Ac, normalized by

the invariant probabilities of A and Ac:

(2.2) k=      inf      k(A)

0<rr(A)<l

with

,,,* /Mx _ fir(dx)XA(x)P(x,Ac) _ (xa,Pxa')l'{«)

(1.6) K(A)- Tr(A)Tr(Ac) ir(A)ir(A<)      '

If, for some set A, the flow from A to Ac is very small compared to the invariant

probabilities of A and Ac, then intuitively the Markov chain must have very slow

convergence to equilibrium (the sets A and Ac are "metastable"). Another way of

expressing this intuition is to note that if there exists a set A with 0 < ir(A) < 1

for which J n(dx)xA(x)P(x,Ac) = 0, then the Markov chain is reducible, and

(2.4a) / = ir(Ac)XA - k(A)XA'

(2.4b) =XA-ir(A)l

is an eigenvector of P f I1- with eigenvalue 1. Thus, a small value of k indicates

that the Markov chain is "almost reducible", and hence ought to have spectrum

very near 1. For reversible Markov chains a trivial variational argument makes this

intuition rigorous (Theorem 2.1, upper bound).

Much deeper is the reverse inequality, due in the differential-geometric setting

to Cheeger [1]: it states that if there does not exist a set A for which the flow from

A to Ac is unduly small, then the Markov chain must have rapid convergence to
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jquilibrium—or more precisely, that P \ lx must not have spectrum near l.1 We

prove here results of this kind first for reversible Markov chains (Theorem 2.1, lower

bound) and then for nonreversible Markov chains (Theorem 2.3b). We discuss the

intuitions in more detail following the proofs. For convenience we introduce the

operator P = I — P and discuss the spectrum of P \ l1- near 0. We recall that a

Markov chain is called reversible (with respect to ir) if

(2.5) ir(dx)P(x, dy) = ir(dy)P(y, dx).

Equivalently, the chain is reversible if the operator P on L2(7r) is selfadjoint. In

this case we define

(2.6) Ai(P) = A0(P t 1X) = inf spec(P \ l1).

Now consider a positive-recurrent continuous-time Markovian jump process with

measurable state space (S,3*), transition rate kernel J(x,dy) and invariant prob-

ability measure ir. We consider only processes in which the transition rates are

essentially bounded, i.e.,

(2.7) ir- ess sup J(x, {x}c) < M < oo.
X

Then the infinitesimal generator J of this jump process,

(2.8) (Jf)(x) = j J(x,dy)[f(x)-f(y)],

defines a bounded linear operator (of norm < 2M) on L2 (ir) [and in fact on all the

spaces Lp(ir)]. The constant function 1 is an eigenvector of J (and of its adjoint

J") with eigenvalue 0. The goal of this section is to prove bounds on the spectrum

of j r i-1-
The analogue of Cheeger's isoperimetric constant is now

(2.9) k =      inf     k(A)
Ae.?'

0<ir(A)<l

with

,2 10bx -(xa,Jxa°)l*{*) _ (xa,Jxa)l2{*)
1 '      ' '       ir(A)ir(Ac)       ~     ir(A)ir(Ac)    '

A jump process is called reversible if

(2.11) ir(dx)J(x,dy) = ir(dy)J(y,dx),

or equivalently if the operator J on L2(ir) is selfadjoint. In this case we define

(2.12) Ai(J) = A0(J [ lx) = infspec(J \ lx).

'P f lx could have spectrum near other points of the unit circle (e.g., —1 for reversible Markov

chains). Spectrum of this kind is associated with the Markov chain being "almost periodic".

This phenomenon occurs only for discrete-time Markov chains, not for continuous-time Markov

processes.
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Note that the transition probability P of a discrete-time Markov chain can also

serve as the transition rate kernel of a continuous-time jump process (the process

which waits an exponentially distributed time of mean 1 and then jumps according

to P). Thus, we need only state our results for the generators J of continuous-time

jump processes; the analogous results for the operators P associated to discrete-

time Markov chains follow immediately as a special case (just put M = 1).

Finally, we note that the sesquilinear form associated with the operator J can

be written as

(2-13) (/, Jg)lfl{«) = j p(dx, dy)J(x)[g(x) - g(y)],

where

(2.14) p(dx, dy) = ir(dx)J(x, dy)x(x ± y)

is a positive measure onSxS whose marginals are equal and are < Mir(dx).

The measure p is symmetric if and only if J is selfadjoint, and in this case the

sesquilinear form can equivalently be written as

(2.15) (/, Jg)L2M = i j p(dx, dy)[f(x) - f(y)][g(x) - g(y)],

which is manifestly positive-semidefinite.

Before stating Theorem 2.1, we define a positive constant k by

(0y,,                              -■ t       (E\(X + c)2-(Y + c)2])2

(2J6) K = fS?-E[(X + c)2]-'

where the infimum is taken over all distributions of i.i.d. real-valued random vari-

ables (A, Y) with variance 1. A priori it is not obvious that /c^O; but in Propo-

sition 2.2 we will show that k > 1. (We suspect, however, that this bound is not

sharp.)

THEOREM 2.1. Let J be a bounded selfadjoint operator on L2(ir) whose asso-

ciated sesquilinear form is given by (2.15), where p is a symmetric positive measure

whose marginals are < Mir.  Then

(2.17) Kk2/8M< Xy(J) < k,

where k is defined by (2.9), (2.10b).

PROOF OF UPPER BOUND ON \y(J). Let A E 3* with 0 < ir(A) < 1, and

consider the trial function / defined in (2.4). Clearly f fdir = 0, i.e., / J. 1. A

simple computation yields the Rayleigh quotient

(2.18) (^Wi = (x^;^f;;w = k(A).
(f,f)L*{*) ir(A)ir(Ac)

It then follows from the Rayleigh-Ritz principle that J \ l1 must have spectrum

in the interval [0, A;].    □

PROOF OF LOWER BOUND ON Xy(J). Since J is real and selfadjoint, it suffices

to consider real trial functions. For real / 6 L2(ir), we have

(2.19) (/, Jf)mn) = \j P(dx, dy)[f(x) - f(y)]2.
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Let c be a real constant (to be determined later) and define g = f + c. Then

(f,Jf)L*(*) = 2     P(dx,dy)[g(x) - g(y)]2

>!(/f(^y!"9!?    [^Schwarz]
-2    fp(dx,dy)[g(x)+g(y)]2        [y J

(2'20) 1 (/p(dx,d2/)|g(a;)2-g(^)2|)2

-2/p(dx,d2/)[2ff(x)2 + 2g(2/)2]

1   (/p(dx,dy)|g(a:)2-g^)2|)2

~ 8M /7r(dx)f7(2:)2

Now

(2.21)

/ p(dx,dy)\g(x)2 - g(y)2\

= 2     p(dx, dy)x(g(x)2 > g(y)2)(g(x)2 - g(y)2)    [by symmetry of p]

= 2        da     p(dx, dy)X(g(x)2 > a > g(y)2)

/•OO

= 2/     da-(xAa,JX(Aay)L*(*)
Jo

where Aa = {x: g(x)2 > a}. By hypothesis this is
roo

> 2 /     dakir(Aa)ir((Aa)c)
Jo

= 2k f    da fir(dx)ir(dy)X(g(x)2 >a> g(y)2)

(2.22) °

= 2k j ir(dx)ir(dy)X(g(x)2 > g(yf)(g(x)2 - g(yf)

= k J ir(dx)ir(dy)\g(x)2 - g(y)2\.    ,

Combining (2.20)-(2.22), we have

,,,-             (f fn       > fc2 (/^Wd^x)2-^)2!)2
(2-23) (/,J/)l.W > g^-fir(dx)g(x)2-'

where g = f + c.   We now optimize the choice of c; by definition of k (and an

obvious scaling) we have

(2-24) (fJf)L2{n)>!^   Jfdir-^Jfdir^   .

In particular, if / _L 1, then

(2-25) (fJf)*M>j[fiUffW

This proves that A, (J) > /c/c2/8M.    D

The following proposition, which proves that k > 1, is perhaps of some interest

in its own right.
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PROPOSITION 2.2. Let X and Y be i.i.d. real-valued random variables with

finite variance a2. Then

o ™ ,in (£!(* +c)2-(y + c)2|)2     2

(2-26) T-E[(X + c)2]-* ° ■

PROOF. Without loss of generality we may assume that EX = 0 and a2 =

.E[A2] = 1. An easy estimate gives

By Jensen's inequality, E\X -Y\> E\X - EY] = E\X\. If E\X] > \ we are done;
otherwise we set c = 0 and use the estimate

(2.28) £|A2-F2| >2(1-£|A|).

To prove (2.28), note that

(2.29)
E|A2 - y2| > 2E[(X2 - Y2)X(X2 > 1, Y2 < 1)]

= 2[E(X2X(X2 > 1)]P[X2 < 1] - E[X2X(X2 < 1)]P[X2 > 1]].

(But £[A2x(A2 > 1)] + £[A2x(A2 < 1)] = 1.) Hence

(2.30) = 2[P[A2 < 1] - £[A2X(A2 < 1)]].

On the other hand,

£[A2X(A2 < 1)] < £[|A|X(A2 < 1)]

(2.31) = E\X\ - P[\X\ > 1]E[\X\ | |A| > 1]

<E\X\-P[]X\>1],

which gives the result.    □

REMARK. We suspect that in fact k is strictly greater than 1, but a proof of

this will almost certainly have to consider values of c other than just 0 and ±oo.

Now we turn to the nonselfadjoint case. For any bounded linear operator T on

a complex Hilbert space, the numerical range W(T) is defined to be the set of all

numbers (f,TF) as / ranges over unit vectors. Recall the following facts [8, 9]:

(i) W(T) is convex (but not necessarily closed).

(ii) spec(T) c W(T).        _

(iii) If T is normal, then W(T) is the convex hull of spec(T). But if T is non-

normal, then W(T) can be much larger than the convex hull of spec(T). [Example:

nilpotent operators.]

THEOREM 2.3. Let J be a bounded linear operator on L2(ir) whose associated

sesquilinear form is given by (2.13), where p is a positive measure whose marginals

are equal and are < Mir.  Then

(a) The closure of the numerical range of J contains the number k.

(b) The closure of the numerical range of J, and hence also the spectrum, is

contained in the set

(2.32) {A: |A| <2M and Re A >/cfc2/8M}.
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PROOF. The computation (2.18) is valid whether or not J is selfadjoint (since

JI = J*l = 0); this proves (a).

(b) follows from Theorem 2.1 applied to the operator |(J + J*); the point is

that

(2.33) MfJfhn*) = (f,h(J + J*)fh>(*)

for arbitrary (complex) / E L2(ir); and (2.10b) ensures that J and \(J + J*) have

the same constant k.    □

Theorem 2.3(a) is unfortunately not very useful if J is nonnormal, since spec( J)

could be much smaller than W(J). Indeed, it appears to be an open question

whether there exists an inclusion theorem for the spectrum of J in terms of k

alone. On the other hand, Theorem 2.3(b) is very strong. It even implies results

about the numerical range (and hence the spectrum) of operators F(J) for certain

analytic functions F [10]; one case of interest is F(J) = J-1, which arises in the

central limit theorem (see, e.g., [11, 12]).

Here are some examples (for simplicity in discrete time) which illuminate Theo-

rems 2.1 and 2.3:

1. Two-state Markov chain. Let the transition probability matrix be

Then the invariant probability distribution is

the "Cheeger" constant is k = a + b, and the next-to-smallest eigenvalue of P is

Ai(P) = a + b. So in this example the upper bound in Theorem 2.1 is sharp.

2. Symmetric random walk on {1,2, ...,n} with elastic barriers. The nonzero

elements of P = {Py}"J=1 are

plit+1 = \       (l<i<n-i),

Pi,i-i = §        (2 < i < n),

Pll — Pnn — \ ■

Then ir = (1/n,..., 1/n),

{2/n (n even),

2n/(n2 - 1)    (n odd),

and Xy(P) = 1 —cos(ir/n) « ir2/2n2. So the order of magnitude in the lower bound

in Theorem 2.1 is sharp (but the constant is not sharp).

3. Random walk on the cyclic group Zn. The nonzero elements of P = {p«j}",_j

are

Pi,i+i = a,        Pi,i-i — 1 - a.

Then ir = (1/n,..., 1/n); P is selfadjoint if and only if a = \.   The "Cheeger"
constant is

f 4/n (n even),

~~ \ 4n/(n2 - 1)    (n odd),
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and the eigenvalues of F f l1 with smallest real part are A = 1 - cos(27r/n) ±

i(2a — l)sin(27r/n). So the order of magnitude in Theorem 2.3(b) is sharp for all

a, including the extreme cases of reversibility (a = ^) and determinism (a = 0,1).

It can be seen from these examples that there are two distinct physical situations

which can lead to slow convergence to equilibrium (more precisely, to spectrum of

P \ lx near l).2 The first situation is small flow from some set A to its complement

Ac; as seen in the two-state Markov chain, this leads to a spectral gap Xy(P) of

order fc. The second situation is the necessity to traverse a long "tunnel", of length

n; random walk through this "tunnel" takes a time of order n2, so the spectral gap

Ai (P) is of order n~2. What is quite remarkable is that the second of this physical

effects can be bounded in terms of the first: the maximum possible length of a

"tunnel" turns out to be n ~ fc-1, so the spectral gap is always at least const x fc2.

3. Cheeger's inequality for Markov chains and processes with killing.

Consider a continuous-time Markovian jump process with killing, with measurable

state space (5,^), transition rate kernel J(x,dy) and killing rate K(x) > 0. We

assume that the corresponding process without killing is positive-recurrent with

finite invariant measure ir. We consider only processes in which the transition and

killing rates are essentially bounded, i.e.,

(3.1) 7r-ess sup[J(x, {x}c) + \K(x)] < M < oo.
x

Then the infinitesimal generator L = J + K of this jump process,

(3.2) (Lf)(x) = j J(x, dy)[f(x) - f(y)] + K(x)f(x),

defines a bounded linear operator (of norm < 2M) on I? (ir) [and in fact on all the

spaces Lp(ir)]. The goal of this section is to prove bounds on the spectrum of L.

The analogue of Cheeger's isoperimetric constant is now

(3.3) hs    inf    h(A)

tt(A)>0

with

,, , * . ,,* _ f*(dx)xA(x)[J(x,A°) + K(x)}
(3.4a) h(A) = -^

,„     . _ (xa,Lxa)l*(*)

1       j ir(A)

Thus, the numerator is the total rate of probability flow out of the set A, includ-

ing both the flow to Ac and the killing. Note that the denominator is ir(A), not

ir(A)ir(Ac). As usual, the process is called reversible (with respect to ir) if the tran-

sition rates satisfy (2.11), or equivalently if the operator L on L2(ir) is selfadjoint.

In this case we define

(3.5) Xq(L) = infspec(L).

2Slow convergence to equilibrium can also be associated with spectrum of P \ l1- near other

points of the unit circle. Different physical phenomena are involved in these cases. These phe-

nomena occur only for discrete-time Markov chains, not for continuous-time Markov processes.
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The sesquilinear form associated with the operator L can be written as

(3.6)       (/, Lg)L2(n) = j p(dx, dy)J(x)[g(x) - g(y)] + j ir(dx)K(x)J(x)g(x),

where p is defined by (2.14). In the selfadjoint case this can be written as

(3-7) _ _

(/,Lg)L2M = l-jp(dx, dy)[f(x) - f(y)][g(x) - g(y)] + jir(dx)K(x)f(x)g(x),

which is manifestly positive-semidefinite. This sesquilinear form can be written

in a form more closely resembling (2.13)-(2.15) by introducing an enlarged state

space S* = S U {00} (where 00 ^ S). We then define, for any function / on S, the

extended function /* on S* by

„, x      f f(x)    HxES,
(3-8) f*(x) = \ J[ '

( 0 it x = 00.

We further define a positive measure p* on S* x S* by

(3.9a)    p*(C) = p(C) = j' ir(dx)J(x,dy)X(x^y)xc(x,y)    if C C S x S,

(3.9b)      p*(A x {00}) = p*({oo} xA)sf ir(dx)K(x)xA(x)    HAcS,

(3.9c) p*({oo}x{oo}) = 0.

(In probabilistic terms, we are implicitly defining a modified process in which

the particle returns from the "cemetery" state 00 with rates J* (00, A) =

p*({oo} x .4)/7r*({oo}), where 7r*({oo}) is an arbitrary strictly positive number.

However, neither J* (00, A) nor 7r*({oo}) plays any role in our analysis; only the

naturally defined measure p* enters.) With these definitions, we can write

(3.10) (f,Lg)L2M = j p*(dx,dy)Tr(x)[g*(x)-g*(y)]

in general, and

(3.11) (f,Lg)LHn) = 1-jp*(dx,dy)[f*(x) - f*(y)][g*(x) - g*(y)]

in the selfadjoint case.

THEOREM 3.1. Let L be a selfadjoint operator on L2(ir) whose associated

sesquilinear form is given by (3.7), where p is a symmetric positive measure whose

marginals are < [M — ̂ K(x)]ir(dx).  Then

(3.12) h2/2M < X0(L) < h,

where h is defined by (3.3), (3.4b).

PROOF OF UPPER BOUND ON X0(L). Let A E 3* with ir(A) > 0, and consider

the trial function xa- Obviously

/3 13^ {xa,Lxa)l?(7t) _ (xa,Lxa)l?(tt) _ ....     „

(XA,XA)mn) n(A)
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PROOF OF LOWER BOUND ON A0(L). Since L is real and selfadjoint, it suffices

to consider real trial functions. For real / E L2(ir), we have

(/, Lf)L2W = \ f      p(dx, dy)[f(x) - f(y)]2 + j ir(dx)K(x)f(x)2
1 JSxS JS

(3.i4) =\js^sy(^y)\r(x)-r(y)?

^2 fs.xs.p*(dx,dy)[nx)+ny)]2    [bySchwarzJ-

Now the denominator is

= /      p(dx,dy)[f(x) + f(y)]2 + 2 [ ir(dx)K(x)f(x)2
JSxS Js

(3.15) <[      p(dx,dy)[2f(x)2+2f(y)2] + 2 f ir(dx)K(x)f(x)2
JSxS Js

<4M f ir(dx)f(x)2.
Js

On the other hand,

/    p*(dx,d2/)ir(x)2-r(t/)2i
JS'xS'

= 2 f p*(dx,dy)X(r(x)2 > r(y)2)(f*(x)2 - f*(y)2)
JS'xS'

[by symmetry of p]

(3'16) =2 Hdaj p*(dx,dy)X(r(x)2>a>r(y)2)
Jo JS'xS*

= 2        da P*(dx,dy)xAa(x)[XAa(x)-XAa(y)]
Jo JS'xS'

/•OO

= 2 /     da(xAa,LxAa)L*(TT)
Jo

where Aa = {x e S: f(x)2 > a}. By hypothesis this is

/•OO

> 2 /     dahir(Aa)
Jo

(3.17) =2h I     da I ir(dx)x(f(x)2 > a)
Jo        Js

= 2h f ir(dx)f(x)2.
Js

Combining (3.14)-(3.17), we have

(3-18) (f,Lf)LH7r)>~\]f\\hi7r).

This proves that X0(L) > h2/2M.    D



A GENERALIZATION OF CHEEGER'S INEQUALITY 567

A version of Theorem 3.1 for nonreversible Markov chains with killing can be

proven by an argument similar to that used in Theorem 2.3; we leave the details to

the reader.

One common way of obtaining a Markov process with killing is to take a positive-

recurrent Markov process on a state space 5 and kill it whenever it leaves some

specified subset B C S. More precisely, consider a positive-recurrent reversible

continuous-time Markovian jump process with measurable state space (S,3*), tran-

sition rate kernel J(x,dy) [satisfying (2.7)] and finite invariant measure ir, and as-

sume now that the process is killed when it leaves the subset B (B E 3*). This

latter process is, therefore, a reversible Markovian jump process on B with tran-

sition rate kernel JB(x,dy) = J(x,dy)xs(y) and killing rate KB(x) = J(x,S\B)

[x E B]. Its infinitesimal generator LB = JB + KB,

(3.19) (LBf)(x)= f JB(x,dy)[f(x)-f(y)]+KB(x)f(x)        [x E B],
Jb

defines a bounded linear operator (of norm < 2M) on the space L2(B,ir) [and in

fact on all the spaces LP(B, ir)]. (Note that the assumed reversibility (2.11) for the

pair (ir, J) implies the same relation for the pair (7r \ B, JB); in particular, ir \ B is

an invariant measure for JB.) The sesquilinear form associated with the operator

LB can be written as

(3.20a)

(/, LBg)LHBtn) = f      pB(dx, dy)J(x)[g(x) - g(y)] + f ir(dx)KB(x)J(x)g(x)
Jbxb Jb

(3.20b) = [      p(dx,dy)J(x)[g(x)-g(y)]
JSxS

where p is defined by (2.14), pB is its restriction to B x B, and / and g are defined

to vanish outside B. In other words, the sesquilinear form associated with LB

is just the restriction to the subspace L2(B,ir) C L2(ir) of the sesquilinear form

associated with J.

It follows that if we define

(3.21) hB =    inf    h(A)
ACB       V    '

tt(A)>0

with

(3.22a)

i, A, _ f*(dx)XA(x)J(x,S\A)      fir(dx)XA(x)[JB(x,B\A)+KB(x)]

1   > ~ HA) " ir(A)

II OOM - (xa,Jxa)l*(tt) _ {xa,Lbxa)l*(b,tt)

[6-Z2b}        ~ IrjA) " ^rjA) '

then we obtain immediately from Theorem 3.1 the following corollary:

COROLLARY 3.2. Let LB be a bounded selfadjoint operator on L2(B,ir) whose

associated sesquilinear form is the restriction to L2(B,ir) of the sesquilinear form

(2.15) on L2(S,ir), where B c 5 and p is a symmetric positive measure on S x S

whose marginals are < Mir.  Then

(3.23) h2B/2M < X0(LB) < hB,

where hB is defined by (3.21), (3.22b).
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Now return to the set-up of §2, in which J is the generator of a positive-recurrent

Markovian jump process on S. We can use Corollary 3.2 to give an alternate proof

of (a slight variant of) Theorem 2.1. First we demonstrate a very interesting relation

between Ai for a positive-recurrent process and Ao for the associated killed processes

on subsets B C S.

For any bounded selfadjoint operator H on L2(ir) and any B E 3*, we define

HB = IBHIB \ L2(B, ir), where IB is the operator of multiplication by xs- [Equiv-

alently, HB is the operator on L2(B,ir) whose associated sesquilinear form is the

restriction to L2(B,ir) of the sesquilinear form associated with H.] For example,

(J)b = Lb.

PROPOSITION 3.3. Let H be a bounded selfadjoint operator on L2(ir) whose

associated quadratic form is given by

(3.24) (f,Hf)L.(lx) = l-jp(dx,dy)]f(x)-f(y)\2,

where p is a finite symmetric positive measure.  Then

(3.25) Xy(H) > mimax[X0(HB),X0(HBc)].
B

We first prove this proposition in a special case:

LEMMA 3.4.   Proposition 3.3 holds if Xy(H) is an eigenvalue of H.

PROOF. To shorten the notation, write A in place of Xy(H). Let / E L2(ir)

be real-valued, ^ 0 and satisfy Hf = Xf. Define V+ = {x: f(x) > 0} and

f+(x) = max[/(x),0]. Note that HZ+Hl^tt) ¥" 0 since / ± 1. Then

(3 26) A = fXv+Xf2d7T = (f+>Hf<L2(TT)

$Xv+f2dir        (f+,f+)Lz(n) '

Now

(f+,Hf)L2M = J p(dx, dy)f+(x)[f(x) - f(y)]

(3-2?) >Jp(dx,dy)f+(x)[f+(x)-f+(y)]

=   (/+l^/+)L2(7r).

Hence

(3.28) X>{f;>H/\)L2^>Xo(Hv+).
U+J+)l2(tt)

An analogous argument with V~ = (V+)C = {x: f(x)<0}, f-(x) = max[-/(x),0]

shows that A > Xo(Hv-).    □
PROOF OF PROPOSITION 3.3 IN GENERAL CASE. Let 3" be a finitely gen-

erated subfield of 3*, and let E be the conditional expectation E*^^'). [Ana-

lytically, E is the orthogonal projection in L2(7r) onto the subspace L2(3p',ir) of

^'-measurable functions.] Now define H' = EHE \ L2(3"',ir). Obviously

(3.29) (f,H'f)L2W = (f,Hf)L2M = l-jp(dx,dy)\f(x)-f(y)\2
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for / £ L2(3e", ir). Since L2(3",ir) is a finite-dimensional space, Lemma 3.4 applies

to H', so

(3.30) Xy(H') >   m^max[X0((H')B),Xo((H')Bc)].

Now

(3.31a) A0((//')b) > Ao(HB),

(3.31b) A0((H')Bc) > A0(//sO

by the Rayleigh-Ritz principle (since the LHS is the infimum of (f,Hf)/(f,f)
over a smaller class of functions). Now let {3^} be the net of all finitely generated

subfields of 3", directed by inclusion, and let {E'a} be the corresponding conditional

expectations. Clearly lima E'af = / for all / e L2(ir). Moreover, if / _L 1, then

E'af 1 1 for all a. Thus, for all /1 1,

(3.32) (/, Hf) = lim(E'J, HE'J)    [by boundedness of H]
a

and for each a,

(E'J,HE,af)>Xy(H'a)\\E'af\?

> ( inf[fimax[Xo((H'a)B),Xo((H'a)Bc)]) ]]E'aff

(3 33)
> (infmax[A0(7/B),A0(//Bo)]) ||^/||2

^ (infmax[Ao(Hfl),Ao(/rB.)]) ||/||2.

This proves the proposition.    □

REMARK. One consequence of Proposition 3.3 is that

(3.34) A1(//)>suPA0(i/{x}c)
X

(since for every B, either {x}c D B or {x}c D Bc). This result can also be proven

by the min-max theorem, and has interesting applications [13, 7]. Proposition 3.3

gives additional insight into why (3.34) is true (and why it is not optimal).

We can now prove a slight variant of Theorem 2.1. Define the modified Cheeger

constant

(3.35) h* =      inf     h*(A)
Ae.?

0<tt(A)<1

with

(3.36a) h* (A) = max[h(A), h(Ac)]

to ™M (Xa, Jxa)l*(tt)
[6-6bb) ~ min[ir(A),ir(Ac)Y
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Note that h*(A) < k(A) < 2h*(A) and hence that h* < k < 2h*. We have

THEOREM 3.5. Let J be a bounded selfadjoint operator on L2(ir) whose asso-

ciated sesquilinear form is given by (2.15), where p is a symmetric positive measure

whose marginals are < Mir.  Then

(3.37) Xy(J)>h*2/2M,

where h* is defined by (3.35), (3.36).

PROOF. By Proposition 3.3 and Corollary 3.2,

Xy(j) > infmax[A0((J)B),Ao((J)Bc)]
B

>        inf        M(J)b) >        inf inf    M^L
(3.38) ~ B: tt(B)<1/2       U    '    ' ~ B: tt(B)<1/2    AcB       2M

tt(A)>0

h(A)2      h*2     m= inf v   '   =-.    D
A: 0<tt(A)<1/2    2M 2M

REMARKS. 1. Since h* > fc/2, Theorem 3.5 implies that Ai(J) > fc2/8M. Thus,
if k = 1, then Theorem 3.5 is stronger than Theorem 2.1; but if k > 1, then the

two theorems are incomparable.

2. It is useful to note that

(3.39) h* > suph^c
X

[since the A <-► Ac symmetry in (3.36) means that the infimum in (3.35) can be

restricted without loss to A $ x, and then h*(A) > h(A)]. This relation is analogous

to (3.34).

4. Some lemmas for evaluating fc, h and h*. The theorems of the preceding

sections are, as they stand, rather difficult to apply, since fc is defined as the infimum

of k(A) over all measurable sets A (and likewise for h and h*). In this section we

prove some useful lemmas which show that the infimum can be restricted to much

smaller classes of sets A.

A family 3q C 3" is said to be dense if for all A E 3* and all e > 0 there exists

BE 3% such that ir(A A B) < e.

LEMMA 4.1.   Let 3*o be a dense subfamily of 3"'.  Then

(4.1) fc =      inf      k(A) =      inf      k(A)
A€^ Ae-9b

0<tt(A)<1 0<tt(A)<1

and likewise for h and h*.

PROOF. Immediate.    □

For example, if S is a metric space, 3o can be taken to be the family of closed

(or open) sets; if S is a topological space and ir is a Radon measure, 3o can be

taken to be the family of compact sets; or if S is an n-dimensional smooth manifold,

3o can be taken to be the family of n-dimensional smooth submanifolds of S with

smooth boundary.

We say that sets A and B are separated (for the operator L) if ir(A fl B) =

(xa,Lxb)l*(tt) = (Xb,Lxa)l?(tt) = 0.
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LEMMA 4.2. Let {Ai}i<=i be a countable family of pairwise separated sets of

nonzero ir-measure, and define A = \JiAi. Then either h(Ai) = h(A) for all i, or

else there exists an index io such that h(Ai0) < h(A).

PROOF. We have

/. „•. ,,Ax _  (XA,Lxa)l2(tt)   _ J2i(XA,,LXAi)L2(TT)

*(A) Ei*(A)

since Ai and Aj are separated for i ^ j. The claim easily follows.    □

LEMMA 4.3. Let {A}ie/ be a countable family of pairwise separated sets of

nonzero ir-measure, such that B = Ac = (|Jj Ai)c also has nonzero ir-measure.

Then

(a) Either h*(Ai) = h*(A) for all i, or else there exists an index io such that

h*(Al0) < h*(A).

(b) Provided that \I] > 2, there exists an index io such that k(AiQ) < k(A).

PROOF, (a) We have

(431 h*(.\\= ^A^XA^L2^) >   T,i{xAi,JxAi)mTT)
(1.6) n (Ji,     min[7r(^)j7r(^c)] - Ejmin[7r(yiJ),7r((^)«)]'

The claim easily follows,

(b) We have

,..-> ,(A] _ {xa,Jxa)l2(tt) _ DjCxa^^XaJl^tt)
1     j [   >~      «(AMB)      ~     [XMAi)]*(B)

and

(A c,) ht A  ) = (XAj,JXA,)l2(tv) (XA^JXA^LIJtt)

[ '0j [   l)     ir(Ai)[ir(B) + j:^ir(A3)] *(At)ir(B)      '

The claim follows as before.    □

If the state space S is countable, we define the (undirected) graph associated to

the transition rate J by declaring that x is adjacent to y (x, y E S) if x ^ y and

either J(x,y) > 0 or J(y,x) > 0 (or both). A set A C S is said to be connected

if for every pair x,y E A (x ^ y) there is a path from x to y lying entirely in A.

Lemmas 4.2 and 4.3 then have the following consequence:

COROLLARY 4.4.   If the state space S is countable, then

(4.6) h = inih(A)=       inf       h(A)
A A connected

and likewise for h* and fc. //, in addition, S is connected, then

(4.7) h* = inf h*(A)
A: A,AC both connected

and likewise for fc.

PROOF. Take any set A with ir(A) > 0, and decompose it into its connected

components {Ai}. Then h(A) = h((ji. via,)>o-Ai), and Lemma 4.2 implies that

h(Ai0) < h(A) for at least one index io with 7r(.4;0) > 0. This proves (4.6).

Analogous arguments work for h* and fc.
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Now assume that S is connected, and consider any connected set A with 0 <

7t(,4) < 1. Decompose Ac into its connected components {Bj}. Then h*(A) =

h*(Ac) = /i*(Uj. n(B )>o-^j)> anc' Lemma 4.3 implies that h*(Bj0) < h*(A) for at

least one index j0 with ir(B]0) > 0. But by Lemma 4.5 below, (Bj0)c is connected.

This proves (4.7). Analogous arguments work for fc.    □

LEMMA 4.5. Let G be a connected graph, let A be a connected subset ofG, and

let B be a connected component of Ac. Then Bc is connected.

PROOF. Write C = AC\B, so that Bc = A\JC. To show that Bc is connected,

it suffices to show that every y E C can be connected to some point in A by a

path in Bc. Now we know that there exists a path in G from y to A (because G

is connected); but this path cannot pass through B before entering A, since B is a

connected component of Ac and y £ B.    □

REMARK. The strict inequality in Lemma 4.3(b) implies also that if k(A) = fc,

then A must be connected (and its complement must be connected if S is connected)

except possibly for components of 7r-measure zero.

5.   Random walk with inward drift on a countable rooted graph. In

this section we use Theorem 2.1, Corollary 3.2 and Theorem 3.5 to study the L2

spectrum of a random walk with inward drift on a countable rooted graph. This

Markov chain is an abstraction of a Monte Carlo algorithm for the self-avoiding

walk proposed by Berretti and Sokal [14]. Our results, together with those of Sokal

and Thomas [7], go part way toward analyzing a conjecture made by Berretti and

Sokal concerning the autocorrelation time of their Markov chain.

Let G = (V,E,0) be a countable connected rooted graph with vertex set V,

edge set E, and a distinguished vertex 0, called the root. The level of a vertex x,

denoted |x|, is the number of edges in the shortest path which connects x to the

root. We write cn for the number of vertices of level N (N = 0,1,2,...). If x is

adjacent to y, then \y] must be either |x| — 1, |x| or |x| 4-1; we call y a parent, sibling

or child of x, respectively, and write p(x),s(x) and c(x) for the number of parents,

siblings and children of x. Each vertex other than the root must have at least one

parent. We remark that G is a tree if and only if each vertex other than the root

has precisely one parent and no siblings. Finally, we say that y is a descendant of

x (and that x is an ancestor of y), denoted x < y, if there exists a path of length

]y\ from y to the root which contains x. Equivalently, y is a descendant of x iff it

is either x itself, or a child of x, or a child of a child of x, etc. We denote by Vx the

set of all descendants of x, and by Gx = (Vx,Ex,x) the associated rooted graph

with x as the root.

We restrict attention to graphs satisfying

(5.1) supp(x) < Mp < oo,
X

(5.2) supc(x) < Mc < oo.
x

It follows that

(5.3) p = limsupc^    < Mc < oo.
N — OO
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We call p the growth factor of the rooted graph G.   We define for /? > 0 the

generating function

X

(5.4) Z(/?) = J>I*I =£<*/?".
xgV" N=0

Z(0) is finite for 0 < j3 < p_1 and infinite for /? > p~l.

We now fix /? > 0, and define a continuous-time jump process on V with transi-

tion rates

1    if y is a parent of x,

(5.5) J(x, y) = <  P   if y is a child of x,

0    otherwise.

This process is a reversible Markov process with invariant measure

(5.6) rr(x)= const x/?1*1.

7T is finite iff Z(/3) < oo (as we assume from now on); in this case we normalize it

to be a probability measure

(5.7) tt(x) = Z(/?)-V|x|.

Finally, we define

(5.8) ZX(P) = J2 Plyl~lx] = P~^Z(p)ir(Vx)

2/614

[this is the generating function of the rooted graph Gx = (Vx,Ex,x)] and

(5.9) Ry=Ry(p)s supZx(p),
z#0

(5.10) R2 = R2(p) = sup min  1,* ~*)\x>   Zx(p),

(5.11) R3 = R3(P) = sup[l - ir(Vx)]Zx(p),
x#0

(5.12) Ri = R4(j3) = limsup ZX(P).
\x\—+oo

Clearly Ry > R2 > R3 > R4 and R3 > 2R2. We can now state our main technical

result:

PROPOSITION 5.1. Let P > 0 be such that Z(P) < 00. Then, for the process
defined by (5.5):

(a) // each vertex other than the root has precisely one parent (e.g., if G is a

tree), then hi0yc = Ry1, h* = R2l and k = R^1.

(b) In general, k > h* > hi0yc > Ry1.

PROOF, (a) By deleting all edges between siblings (they play no role anyway),

we can assume that G is a tree. First consider hi0yc By Corollary 4.3 (applied

to the operator LW), we can restrict the infimum to sets A C {0}c which are

connected. It is not hard to convince oneself that all such sets are of the form

-4 = Vx.\((ji Vxf) where x* ^ 0, x* < x, for all i, and the {VXi} are disjoint. Now

(5.13) h(A) = ^yeA,,eAMy)Jiy,*)^
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from which it easily follows that

(5.14) h(A) > h(Vx.) = jrfV,.)"1^-1/'1**1 = zx>-

Thus hsoy = Ry1, as claimed.

For h* and fc, we can restrict the infimum to sets A with 0 < ir(A) < 1 such that

both A and Ac are connected; again, it is easy to see that the only such sets are

either Vx or (Vx)c for some vertex x ^ 0. The equalities h* = R2X and fc = R^1

easily follow.

(b) It is a general fact that 2h* > k > h* > h{x}c for all x [cf. (3.39)]. So we

need only show that hi0y > Ry1.

Let G = (V, E, 0) be the rooted spanning tree in G formed by deleting all edges

between siblings and deleting all but one (arbitrarily chosen) of the edges from each

vertex x ^ 0 to its parents. The level numbering of vertices in G is easily seen to be

the same as that in G. We have (in an obvious notation) Z = Z, ir = ir, Vx C Vx,

Ry < Ry and hi0y < ht0yc. Now, by part (a), we know that ht0yc > Ry1. It

therefore follows immediately that hi0yc > Ry1.    □

Proposition 5.1 together with Theorems 2.1 and 3.5 immediately yields a bound

on the spectral gap for the operator J:

THEOREM 5.2.   Let P>0 be such that Z(p) < oo, and define

M = sup[p(x) + Pc(x)\.
X

Then, for the process defined by (5.5),

(a) Xy(J) > A0(( J){0}c) > Ry2/2M.

(b) Xy(J) > max[R22/2M,KR32/8M].

(c) // each vertex other than the root has precisely one parent (e.g., if G is a

tree), then Xy(J) < R^1 ■

In particular, if G is a tree, then Xy(J) > 0 if and only if R3 < 00.

It is thus necessary to obtain bounds on Ry,R2 and R3. One case is easy:

Proposition 5.3. Ifo < p < M~l, then Ry(p) < (1 - ^Mc)_1 < 00.

PROOF. For any x E V,

X

(5.15)      zx(p) = J2 /?|y|_N ̂  E(M^)fc = (! - w1 < °°- D
y€Vx k=0

It follows that for /? < M"1, the process (5.5) has a nonzero L2 spectral gap and

is geometrically ergodic. These facts can alternatively be proven by a Lyapunov-

function argument [7]. On the other hand, Proposition 5.3 is, in a very strong sense,

the best one can do without further assumptions on the structure of the graph G:

PROPOSITION 5.4. Let c0 = l,cy,c2,... be any sequence of positive integers

satisfying limAr-,x cm = +00 and supn>q(cn+i/cn) < 00, and let Mc be any inte-

ger > supN>Q(cN+y/civ). Then there exists a countable rooted tree T = (V,E,0)

such that:

(a) #({x: |x| = N}) =cN,

(b) supxc(x) < Mc,
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(c)

fM      [(1-PMc)-1 ifO<p<M~\
Ry(P) = R4(P) = \  \     M taliu-i(  + oo if P > Mc 1.

PROOF. We construct a "maximally unbalanced" tree having the given {cn}:

the root has ci children, which are labelled "eldest", "second-eldest", etc.; these

children procreate, beginning with the eldest, each one having the maximum allow-

able number of children (Mc) until c2 children have been generated; and so on. [In

other words, of the cn vertices at level N, the [cn+i/Mc\ eldest of these have Mc

children each, the one next-eldest has cn+i — Mc[civ+y/Mc\ children, and the rest

have no children. Moreover, if |x| = ]y\ and x is "elder" to y, then all the children

of x are elder to all the children of y.] Now let x*N be the eldest vertex of level

N; then the tree of descendants of x^ contains a complete Mc-ary rooted tree of

Kn + 1 generations, where Kn is the largest integer such that CN+k > Af* for all

0 < fc < KN. Hence

(5.16) Zx.N(P)>Y,(Mcp)k.
k=0

Now Kn > inffc>0logCAr+fc/log Mc —> +00 as N —> 00. It follows that

,      x „ //»      ((1-pMc)-1    iiO<p<M~1,(5.17 r*(0)>{ \ ,„:.., c
I,  + 00 if P > Mc   .

The rest follows from Proposition 5.3.    □

Thus, for P > Afc-1 it is impossible to prove the existence of an L2 spectral gap

(much less lower bounds on it) given only the {cat}^°=0 and Mc; it is necessary to

have more detailed information about the structure of the graph G. One tractable

case is that of a sub-Cay ley rooted graph:

Rooted graphs G = (V,E,0) and G' = (V',E',0') are said to be isomorphic if

there is an isomorphism of (V,E) onto (V',E') which takes 0 onto 0'. A rooted

subgraph of G = (V,E,0) is a rooted graph Gy = (Vy,Ey,0) where (Vy,Ey) is a

subgraph of (V, E) containing 0. A connected rooted graph G = (V, E, 0) is said to

be Cayley (resp. sub-Cayley) if, for each x E V, the rooted graph Gx = (Vx,Ex,x)

is isomorphic to G (resp. to a rooted subgraph of G). Some important examples of

sub-Cayley rooted graphs (both trees and nontrees) will be given below.

For a sub-Cayley rooted graph we obviously have ZX(P) < Z(P) for all x, and

hence Ry(P) < Z(P) < 00 for all p < p_1. We have thus proven

COROLLARY 5.5. Let G be a sub-Cayley rooted graph, let P > 0 be such that

Z(P) < 00, and define M = supx[p(x) + /?c(x)]. Then, for the process defined by

(5.5), Xy(J) > X0((J){oy) > Z~2/2M.

EXAMPLES. 1. Consider the countable rooted tree in which the root has q

children, each of these has q children, and so on indefinitely. We call this graph the

Cayley rooted tree of order q. For this graph, explicit computation shows that the

lower bound in Theorem 5.2 and Corollary 5.5 is sharp in order of magnitude (but

not in constants) as /? | q_1 ■
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2. Let V be the set of all nearest-neighbor self-avoiding walks on Zd (of arbitrary

length) starting at the origin and ending anywhere. We give V the structure of a

rooted tree by declaring the zero-step walk to be the root, and declaring lj' to be a

child of w if it is a one-step extension of lj. This is a sub-Cayley rooted tree: every

descendant w of w can be written uniquely as3 ii = wow' where oj,lj' E V, since

every segment of a self-avoiding walk must itself be self-avoiding. However, this is

not a Cayley rooted tree, since not every walk of the form ljolj' with lj, lj' E V is self-

avoiding. The discrete-time analogue of (5.5) [see (5.18) below], with M = l + 2dp,

is the transition matrix of a Monte Carlo algorithm for self-avoiding walks first

proposed by Berretti and Sokal [14].

3. More generally, let sf be a finite "alphabet" (of cardinality q), and let V*

be the set of all finite words (including the empty word) formed from the "letters"

in sf. We give V* the structure of a rooted tree by declaring the empty word 0

to be the root, and declaring w' to be a child of w if it is a one-letter extension

of lj. Clearly, V* is the Cayley rooted tree of order q. Now let F C V*\{0} be

a set (finite or infinite) of "forbidden phrases", and let V be the set of all words

oj EV* which do not contain any element of F as a sub-word. Then V is a rooted

subtree of V*, and it is easily seen that V is sub-Cayley. (This example includes

the preceding one as a special case: the alphabet sf is the set of neighbors of the

origin in 3f, and the forbidden phrases F are (for example) the walks which return

to the origin.)

4. Let G = (V, E, 0) be an arbitrary connected rooted graph, and define

G* = (V*,E*,0*) to be the (connected) rooted graph with V* = V x Z+, E* =

{{(x,k),(y,k)}: (x,y) E E} U {{(0,fc), (0,fc + 1)}: fc E Z+} and 0* = (0,0). Then
G* is sub-Cayley (resp. a tree) whenever G is. An easy computation shows that

Z*(P) = (1 - P)~1Z(P). Thus, if p > 1, then p* = p and Z* has the same singu-

larity at P = p_1 that Z has. Moreover, Z*(0) = Z*(0) for all x = (0,fc); hence

R\(P) = Z*(P). In other words, for any type of singularity which is achievable

in a sub-Cayley rooted graph, there exists a sub-Cayley rooted graph with this

singularity and with R4(P) = Z(P). So the bound Ry(0) < Z(P) for sub-Cayley

rooted graphs cannot in general be improved.

We note, however, that Sokal and Thomas [7] have proven a lower bound on

Xo((J){o}c) and Ai(J) for random walk on a sub-Cayley tree, which should in

many cases be strictly stronger than that given by Corollary 5.5. (Their proof is

based on a detailed analysis of the hitting time to the root.) Assume, for example,

that cn ~ pNN1~1 as TV —» oo for some exponent 7. Then the sub-Cayley property

implies that the {cn} are submultiplicative and hence that 7 > 1. In this case, the

lower bound of Sokal and Thomas yields Ai(J) > Xo((J){o}") ~ (1 — Pp)1+1, while

Corollary 5.5 yields only the weaker bound Ai(J) > Xo((J{oy) ~ (I~Pp)21- Thus,

if G is a sub-Cayley rooted tree with p > 1 and 7 > 1, then for the graph G* the

lower bound in Theorem 2.1 does not give the optimal order of magnitude. We note

that for self-avoiding walks (Example 2) in dimensions d = 2 and 3, it is believed

that cn ~ pNN1~1 with 7 > 1 (and it is trivial to see that p > d). However,

the authors do not know any examples of sub-Cayley rooted trees for which such a

behavior is rigorously proven.

3The symbol 0 denotes concatenation. That is, if ui = (wo, • • ■ ,^m) and w' = (%■ • • ■ > w/v)

with uq = u'Q= 0, then u> ou/ = (ljq, ■ ■ ■ ,um,wm +w'x,... ,u>m + w'N).
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Finally, we remark that our analysis of the continuous-time jump process (5.5)

applies almost without change to the discrete-time Markov chain given by

{1/M if y is a parent of x,

P/M if y is a child of x,

(M=[p(x) + Pc(x)])/M iiy = x,

0 otherwise,

where Af is any number > supx[p(x) + /3c(x)]. This includes, as a special case, the

Monte Carlo algorithm of Berretti and Sokal [14].

6. Discussion. In this section we discuss the meaning of our theorems and

their relation with results obtained previously by other authors.

Consider first Theorem 3.1. According to the Rayleigh-Ritz principle, Xo(L) is

the infimum of the Rayleigh quotient (f,Lf)/(f,f) over all / E L2(ir). On the
other hand, h is the infimum of this same Rayleigh quotient over the particular

class of functions f = xa (which are a total set in L2(ir) but not, of course, a linear

subspace). The upper bound in Theorem 3.1 is therefore trivial; the lower bound is

the striking statement that the Rayleigh quotient for arbitrary / can be controlled

in terms of that for / = xa—the price being that the lower bound involves h

squared.

Theorem 2.1 has a similar interpretation: By the Rayleigh-Ritz principle, Ai(J)

is the infimum of the Rayleigh quotient (f,Jf)/(f,f) over all /el"1. On the

other hand, fc is the infimum of this same Rayleigh quotient over the particular

class of functions / = xa — ir(A)l (which are a total set in l1- but not a linear

subspace). The upper bound in Theorem 2.1 is therefore trivial; the lower bound

says that the Rayleigh quotient for arbitrary / can be controlled in terms of that for

f = Xa — tt(A)1—the price, again, being that the lower bound involves fc squared.

Our argument in §3 follows very closely the original proof of Cheeger [1], adapted

to the class of operators we are considering. Our proof of Theorem 3.1 is very close

to that of Dodziuk [6, Theorem 2.3]. An alternate proof of a weakened version

of Theorem 3.1—namely, A0 > h2/(AM + 2h)—can be given along the lines of

Alon [5, Lemma 2.4], using the max-flow-min-cut theorem (we omit the details).4

Proposition 3.3 is implicit in both Cheeger [1] and Alon [5]; our proof of the special

case (Lemma 3.4) is a direct adaptation of Alon's. Finally, it is known [2] that the

constant in Cheeger's original inequality is sharp in both the Dirichlet-boundary

and no-boundary cases, so we wonder if the constants in Theorems 3.1 and 3.5

may be sharp as well. It would be interesting to prove this by constructing explicit

examples of finite graphs which saturate (or asymptotically saturate) the inequality.

Our argument in §2 is somewhat different from Cheeger's (all integrations are

extended over the entire space S), but is clearly inspired by it. (In fact, our proof

of Theorem 2.1 was inspired by our initial rm's-reading of Cheeger's paper, in which

we failed to notice that the integrations were restricted to the subset where / > 0,

and we therefore failed to understand why / was taken to be an eigenvector of J

rather than an arbitrary vector in l"1!) It would be interesting to find the optimal

4We remark that Alon's bound Ao > c2/(4 + 2c2) is significantly weaker than this one, since

his constant c involves the number of vertices in Ac that are adjacent to A, whereas h involves the

number of edges that connect Ac to A, which could be much larger.
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constant in Proposition 2.2, but we suspect that this will not give the optimal

constant in Theorem 2.1.

Our methods do not apply directly to Markovian diffusions, but might be em-

ployed indirectly. One strategy would be to apply Theorem 2.1 (or 3.5) to the time-t

evolution operator Pt = e~tH and then invoke the spectral mapping theorem to

deduce bounds on the spectrum of H. For sets A with smooth boundary, it should

be possible to compute kt(A) for t —► 0 in terms of the behavior at the boundary

dA. For example, for H = —A on a compact Riemannian manifold, we expect that

,r. .-. ,  , ^      7r-1/2area(d.A) ,/9     ,_, .
(6-1) kt(A)=     <A)T{\e)]tl>* + 0(t).

However, in order to get an analogous formula for fct it is necessary to control the

interchange of t —► 0 with the infimum over A, and this seems to be a difficult

technical problem. Moreover, this approach, even if it can be carried through, will

give suboptimal constants in the final bounds. Probably a better approach is to

work directly with the generator H and imitate Cheeger's original argument.

Davies [15-19], in a series of papers on metastability in reversible Markov pro-

cesses, has proven results which appear to be closely related to the lower bound

in Theorem 2.1. His results are stated in the contrapositive form: if (among other

hypotheses) the spectral gap Ai is small, then there must exist a set A which

is "metastable" (in several senses which Davies defines, one of which implies the

smallness of fc(^4)). However, his hypotheses are considerably stronger than just

the smallness of Ai: he assumes that the remainder of the spectrum of J is far

separated from Xy. Thus, his results do not appear to contain Theorem 2.1, but

rather prove stronger results under stronger hypotheses.

On the other side, a result closely related to the upper bound in Theorem 2.1 (and

which in fact strengthens it for a certain class of operators) was proven recently by

Alon and Milman [20, Lemma 2.1]. Some related results can be found in [21-23].

Further results on the spectrum of the Laplacian on a finite graph can be found

in [24-29, 13]. In particular, Thomas and Zhong Yin [13] use (3.34) to prove a

lower bound on Ai which is in some cases significantly better (and in other cases

significantly worse) than that of Theorems 2.1 and 3.5.

Two papers by Fiedler [30, 31] are also worth mentioning. He considers finite

stochastic matrices P, and introduces a quantity which is identical to the numerator

of fc or h*. He then obtains a lower bound on Ai which closely resembles that of

Theorems 2.1 and 3.5, but is a factor ~ n2 worse, where n is the order of the matrix.

A subsequent paper by Fiedler and Ptak [32] proves, by similar means, bounds on

the eigenvalues of P near —1, in terms of an additional quantity which measures

how near the matrix is to being periodic of even period. It would be interesting

to extend this result to general discrete-time Markov chains, and to spectrum near

other points of the unit circle.

Finally, we mention the papers of Pignataro and Sullivan [33] and Dodziuk et al.

[34], which prove bounds on the spectrum of the Laplacian for certain hyperbolic

surfaces, both compact and noncompact. The hyperbolicity allows them to prove

lower bounds which are roughly of the form fc rather than fc2 (hence of the same

order as the upper bound). We remark that from a probabilistic point of view, the

results for noncompact manifolds concern a transient Markov process: a nonzero

lower bound on A0 shows that the process is "Z,2 geometrically transient".
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