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THE MINIMAL MODEL OF THE COMPLEMENT OF
AN ARRANGEMENT OF HYPERPLANES

MICHAEL FALK

ABSTRACT. In this paper the methods of rational homotopy theory are ap-

plied to a family of examples from singularity theory. Let A be a finite collec-

tion of hyperplanes in C', and let M = C' — UHeA H. We say A is a rational

K(ir, 1) arrangement if the rational completion of M is aspherical. For these

arrangements an identity (the LCS formula) is established relating the lower

central series of tt\ (M) to the cohomology of M. This identity was established

by group-theoretic means for the class of fiber-type arrangements in previous

work. We reproduce this result by showing that the class of rational K(ir, 1)

arrangements contains all fiber-type arrangements. This class includes the

reflection arrangements of types A/ and B[.

There is much interest in arrangements for which Af is a K(ir, 1) space.

The methods developed here do not apply directly because M is rarely a

nilpotent space. We give examples of K(ir, 1) arrangements which are not

rational K(tt,1) for which the LCS formula fails, and K(tt, 1) arrangements

which are not rational K(tt, 1) where the LCS formula holds. It remains an

open question whether rational K(it, 1) arrangements are necessarily K(ir, 1).

1. Introduction. An arrangement of hyperplanes is a finite collection of C-

linear subspaces of dimension (/ — 1) in C'. To such an arrangement A is associated

an open 2/-manifold, the complement M = C' — (j{H\H E A}. The connections

between the topology of M and the combinatorial geometry of A are the source of

much current research in this area. The most successful investigations concern the

cohomology of M [13, 15], whereas the most difficult unsolved problems involve

the homotopy groups of M [5]. 1 n this paper we study the link between cohomology

and homotopy provided by Sullivan's theory of minimal models [14].

In [6], a numerical relationship was established between rry(M) and H*(M) for

the class of fiber-type arrangements. This LCS formula reads as follows:

Y[(i-tn)"»M = pM(-t),
n>l

where the tpn(M) are the ranks of successive quotients in the lower central series

of 7rr(M), and P\i(t) is the Poincare polynomial of H*(M). Because the sequence

<p„(M) is related to the 1-minimal model 5? of M, we conjecture in [5] that the LCS

formula holds precisely when S? determines H*(M). With the methods developed

in this paper we can resolve this conjecture. Specifically, we show (Corollary 3.8)

that the LCS formula holds when H*(S?) is isomorphic to H*(M). Arrangements

satisfying the latter condition are called rational K(ir, 1).   Corollary 3.8 may be
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paraphrased as "rational K(tt, 1) implies LCS". We can also show (Example 5.3)

that the converse is false. In §4, we show that the fiber-type arrangements of [6]

are rational K(ir, 1), so that Corollary 3.8 implies our main result there.

Much work in this area has been done by T. Kohno. In [10] he obtained the LCS

formula for the arrangements associated with the classical pure braid groups. This

motivated our work in [6]. Recently he has proven the LCS formula for reflection

arrangements of type Di [8], which are not fiber-type. And he has independently

proven Corollary 3.8 [9]. The method of Kohno is more complicated because of its

greater generality. The technique of this paper is simpler and more direct, being

tailored specifically to complements of arrangements. In particular we exploit the

formality (in the sense of [14]) of the complement M.

Our proof of 3.8 is based on the construction of the 1-minimal model S? from the

simple combinatorial model of H*(M) provided in [13]. The subsequent analysis

of 5? greatly clarifies the relationship between the rational K (ir, 1) property and

the LCS formula, and motivates the introduction of (algebraically) 2-determined

arrangements (Definition 3.2). It is shown that rational K(ir, 1) arrangements are

necessarily 2-determined; the converse remains an open question.

The paper is organized as follows. In §2 we carry out the construction of the

1-minimal model of M, and obtain a useful decomposition into finite subcomplexes.

The main results of the paper are stated and proved in §3. We give some examples

in these sections to demonstrate the methods; in particular our approach yields

a simple derivation of the recursive formulas for the <pn (M) which are implicit in

the LCS formula. §4 contains the proof that fiber-type arrangements are rational

K(n, 1). This proof is independent of the rest of the paper. In §5 we give a

necessary condition for 2-determined arrangements, and provide a counterexample

for the converse of "rational K(tt, 1) implies LCS".

This research was undertaken in order to understand the higher homotopy in

the complement of an arrangement. In particular there is much interest in arrange-

ments for which M is a K(ir, 1) space. There is clearly some relationship between

the rational K(tt, 1) arrangements of this paper and topological K(ir, 1) arrange-

ments (both classes contain all fiber-type arrangements), but the precise connection

is unclear. The terminology "rational K(tt, 1)" is deceptive: a K(tt, 1) space is not

necessarily rational K(rr, 1). The minimal model will in general give an accurate re-

flection of the fundamental group, and, in many cases, the higher homotopy groups

as well. For instance, if AT is a K(tt, 1) space with nice fundamental group, the

minimal model will reflect the asphericity of X. Such "nice" groups include nilpo-

tent groups, free groups, and nilpotent extensions involving these groups. How-

ever, there are arrangements [5] with K(ir, 1) complements which are not rational

K(ir, 1). It remains to be seen whether the results of this paper have any bearing

on the various conjectures [5] concerning K(ir, 1) arrangements. In particular, the

conjecture "rational K(-k, 1) implies K(rr, 1)" of [5] has not been resolved.

2. The 1-minimal model of M. We recall the elements of rational homotopy

theory for non-simply-connected spaces. This material was compiled from various

sources [14, 1, 7, 12].

Let K be a field of characteristic zero. A differential graded algebra (DG algebra)

is a graded commutative algebra over K equipped with a (degree one) coboundary

operator. Let (s/* ,d) be a DG algebra. For each n > 0, let J/(n) be the subalgebra
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generated by sfk, 0 < k < n, and dsfn. Construct subalgebras sf(n,q) of sf(n)

for each q > 0 inductively as follows: s/(n, 0) = sf(n — l), and, for q > 0, sf(n, q)

is the subalgebra generated by si'(n,q— 1) and {x E sfn \ dx Esf(n,q — 1)}.

DEFINITION 2.1  [1]. The DG algebra Jf is minimal provided

(i) Jt° = K,

(ii) J( is a free graded-commutative algebra, and

(iii) Jf(n) = \Sq>ryJf(n,q) for each n > 1.

Given a K-vector space V of finite dimension, we denote by Ar(V) the free

graded-commutative algebra on V, with V homogeneous of degree r. Thus Ar(V)

is an exterior or polynomial algebra depending on the parity of r.

Minimal algebras are usually built using the following construction.

DEFINITION 2.2 [7]. An inclusion sf C 38 of DG algebras is a Hirsch extension

of degree r if, for some V, 38 = sf <g> Ar(V) as graded-commutative algebras, and

dV Csfr+1.

In practice, minimal algebras are constructed inductively by setting ^#(0,0) =

J£(0) = K and ^#(n) = \Jq>0^(n,q) for n > 1, where each ^(n,q), q > 1, is a

degree n Hirsch extension of Jt(n,q — 1).

PROPOSITION 2.3 [1, 7.7 AND 7.8]. Let sf be a DG algebra with H°(s/) =

K. Then there is a minimal algebra -# and a DG algebra map f: J! —> s/ such

that /*: H*(Jt) —► H*(srf) is an isomorphism. The algebra J? is unique up to

isomorphism, and the map f: ^# —► s/ is unique up to homotopy of DG algebra

maps.

The algebra -# of 2.3 is called the minimal model of s/. The subalgebra ^#(n)

of -# (n > 1) is called the n-minimal model of sf. The n-minimal model is

characterized by the following properties:

(i) J?(n) is a minimal algebra,

(ii) Jlf(n) is generated by elements of degree at most n, and

(iii) f\jt(n) '■ j&(n) —* sf induces isomorphisms in cohomology through degree

n, and an injection in degree (n+l).

(This is implied by [1, 7.9].) The minimal (n-minimal) model of a connected simpli-

cial complex X is by definition the minimal (n-minimal) model of the rational DG

algebra of Q-polynomial forms on X. Our main tool will be the connection between

the 1-minimal model of X and the fundamental group of X. This connection is

developed in the following paragraphs; a good reference is [12].

Let s/ be a DG algebra with H°(sf) = K and H*(sf) finitely generated. In

this case the 1-minimal model of sf is an increasing union of degree one Hirsch

extensions. Let S" = J£(l) be the 1-minimal model, and set S?(n) = Jf(l,n).

Then S*(n — 1) C S?(n) is a degree one Hirsch extension for each n > 1; write

S"(n) = y(n - 1) ® Ai^n). Sullivan [14] showed that the 1-minimal model 5?

of a connected simplicial complex X (with finitely generated rational cohomology)

is dual to the Lie algebra determined by the rational nilpotent completion of the

fundamental group of X. As a consequence, the vector spaces Vn are related to the

successive quotients in the lower central series of 7Ti (X).

Let G be a finitely presented group. Construct the lower central series Gn of G

by setting Gq = G and Gn = [Gn-y,G] for n > 1. Set G(n) = Gn-y/Gn.
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PROPOSITION 2.4 (SULLIVAN [14, 7]). Let X be a connected simplicial com-

plex with H*(X;Q) finitely generated. Let G = iry(X,*) and 5" be the 1-minimal

model of X.  Then

rank(G(n)) = dim V„.    O

We denote rank(G(n)) by <pn(X); these are the exponents appearing in the LCS

formula.

The minimal model often contains information on the higher homotopy groups

of a space. In particular, we point out another major result of Sullivan. Let 7rn(^#)

denote the vector space of indecomposable elements of degree n in ^#.

PROPOSITION 2.5 (SULLIVAN [14, 7]). Let X be a connected simplicial com-

plex with H*(X : Q) finitely generated and iry(X,*) = 1. Let Jit be the minimal

model ofX. Then, for each n > 2,7rn(X)(g)Q is isomorphic to Hom(irn(Jf), Q).    □

This result can be generalized to nilpotent spaces [14, 1]. For an arbitrary

connected simplicial complex X, the minimal model is related to the Q-completion

of A [2]; this fact is exploited in §4.

REMARK. In the sequel we will need to replace the DG algebra of Q-polynomial

forms with the ordinary DeRham complex A*(M) of smooth forms on the manifold

M. According to [7], the minimal model of the real DG algebra A*(M) is isomorphic

to the minimal model of M, tensored with R. Thus, real coefficients should be

understood throughout the rest of this paper, except in §4. The reader should note

that 2.4 remains valid with real coefficients.

We are now prepared to analyze the complement of an arrangement of hyper-

planes.

Let A = {Hy,..., Hn} be an arrangement in C , each Ht is a C-linear subspace

of dimension (/-l) in C'. Let M = C —U™=1 Ht be the complement of A. For each

i, 1 < i < n, let Wj = (l/27ni)d(log<fo), where <pi is a linear form with kernel Hi.

Each 1-form u>i gives a 1-form on M by restriction. Let 32 denote the subalgebra

of the DeRham complex generated over R by {uy,... ,ujn}.

PROPOSITION 2.6 (BRIESKORN). The correspondence Ui —> [wj] induces an

isomorphism of 3? with H*(M;R).

This is proved in [3] for integer coefficients. Tensoring with R yields the corre-

sponding result over the reals.

Proposition 2.6 implies that M is a formal space, that is, that the real homotopy

type of (the rational nilpotent completion of) M is determined by H*(M). Indeed,

by 2.6 the minimal model of 3? will be a minimal model for A*(M), and, again by

2.6, 31 is isomorphic to H*(M).

Let If = Ai (Vi), where Vy is a vector space with basis {ey,... ,en} corresponding

to the hyperplanes in A. Set de^ = 0 for 1 < i < n. If J = {iy,..., ip} C {1,..., n},

we write ej = e,, A- • • Aelp, and dej = YjVk=\{-i)k~len A" ■ -Aeu A- • ■ Ae;p, where

indicates deletion. We say J is dependent if the C-codimension of Htl tl ■ ■ ■\~\Hlp

is strictly less than p.

Let p: & —► 31 be the DG algebra map which sends e, to w, for 1 < i < n.

PROPOSITION 2.7 (ORLIK-SOLOMON). The map 7: I? —► 31 is surjective

with kernel the ideal ^f generated by {dej \ J C {1,... ,n} is dependent}.
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PROOF. The first assertion is obvious. The second is established in [13] for

complex coefficients; the proof carries through for real coefficients.    □

Propositions 2.6 and 2.7 together imply that the minimal model of M is iso-

morphic to the minimal model of & IJ?. This complex has zero differential, so

H*(g'/Jr)&g'/jr.
We will construct the 1-minimal model p: 3? —► % [J? inductively. Set 3*(0) =

R and 3"(1) = %, with p: 3"(1) —> Wf^f the natural projection. Assume n >

2 and p: 3^(n — 1) —► <£ I*? has been constructed, satisfying pod = 0. Let

Vn be a vector space isomorphic to the kernel of the map p*: H2(3"(n — 1)) —>

(W'JJ7)2. Let 3^(n) be a degree one Hirsch extension of 3"(n — 1) with 3*(n) =

3*(n — 1) ® Ai(Vn) and d: Vn —> JP"(n - l)2 any linear choice of representatives;

that is, the composite Vn —► image(d) —► H2(S"(n — 1)) should be an isomorphism.

The map p: 3^(n -1) —► W'l^f is extended to 3^(n) by setting p(v) = 0 for v E Vn.

By construction of d, we have for any v E Vn that p o d(v) is exact in iff J?; since

&/Jr has zero differential, p o d(v) = 0. It follows that p o d = 0.

Let ^ = Ur=o^(n)' with P'-^ ^ ^7^ as above. The condition p o d = 0

guarantees that p is a DG algebra map. The observations below will show that 3?

is the 1-minimal model of WfJ'. We set Vy = %x, so that 3?(1) = Ai(Vi). Note

that d |vj = 0.

Proposition 2.8. (i) dVn n3*(n - 2)2 = 0 for n>2.
(ii) The restriction d: @n>2Vn -^ 3?2 is injective.

PROOF. The second assertion follows easily from the first, since d: Vn —*

3^(n — l)2 is injective for n > 2. For property (i), observe that H2(3^(n — 2)) —►

H2(3"(n - 1)) kills the kernel of H2(3"(n - 2)) -» (%'/Jr)2. Since Vn -»

image(d) —+ H2(5?(n — 1)) is injective, the result follows.    □

COROLLARY 2.9.   The map p: 3? —► f/J2" is Me 1-minimal model.

PROOF. The DG algebra <5^ is clearly minimal, and generated in degree one.

From 2.8(h), we conclude that Hl(3") = Hl(3"(l)) S Vi, 80 that p*: Hl(3") -+

(^jS)x is an isomorphism. That p*: H2(3?) —► (% fS)2 is injective follows from

our previous observation that the kernel of H2(3*(n)) —» (^/J2")2 vanishes in

#2(^(n+l)).    D

PROPOSITION 2.10. T/ze map p*: H*(S") -> if/J^ zs surjective. In particu-

lar, p*: H2(3?) —> (£f?/Jr)2 is an isomorphism.    D

COROLLARY 2.11. T/te map p: ^ —> t?/^f is the minimal model if and only

if p* is injective.    □

Let us analyze the construction of 3" in more detail. First observe that V2 is

isomorphic to S2, the degree two part of the relation ideal. In fact, d: V2 —► ^(l)2

is an isomorphism onto J?2. By definition of J2", the subspace J2"2 has a basis

consisting of elements of the form eqer — eper + epeq = (ep — eT)(eq — er), where

Hpr\Hqn Hr has codimension two (Hp, Hq, Hr E A).

PROPOSITION 2.12. Suppose Vn = 0 for some n > 2. TAen Vn = 0 for all
n>2, and the hyperplanes of A are in general position through codimension two.

PROOF. II Hp, Hq, Hr E A with Hp fl Hq n i/r having codimension two, then

there is a v2 E V2 with dv2 = (ep — er)(eq — er).   Then d((ep — er)v2) = 0 and
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p((ep - er)v2) = 0, so there is a v3 E V3 with dv3 = (ep - er)v2. Continuing, we

obtain a sequence vn, n>2, with vn E Vn and dvn+y = (ep - er)vn. Thus Vn ^ 0

for all n > 2. The result follows.    □

This last result, together with 2.4, imply that 7Ti(M) is not nilpotent unless A

is general position through codimension two, in which case 7Ti(M) is known to be

abelian.

The dimension of V2 is easy to compute

PROPOSITION 2.13. dimV2 = (£) - dimH2(M), where n is the number of
hyperplanes in A.

Proof.

dim(V2) = dimp2"2) = dim(g*2) - dim((Wf^)2)

= fy-dim(H2(M)).    D

The betti number dimr72(M) is easily computed using Mobius functions as in [13].

Now, the algebra 3? is a free exterior algebra on 0n>1 Vn. We define a graded

subspace Uk, 0 < k < oo, consisting of elements of 3? with index sum k. More

precisely, Uk = 0 Vj, A • ■ • A Vjp, summing over all {iy,..., ip} satisfying 1 <iy <

■ ■ ■ < ip with iy + ■ ■ ■ + ip = k. By convention, Uq = 3"° = R, and Uq = 0 for

p>l.

PROPOSITION 2.14.   (i) <9p = ®k>0Uk.

(ii) Upk = 0 if p>k,
(iii) ux = vk,
(iv) Ul^Wk, and
(v) Uk~l = %k-2®V2.

PROOF. The proofs are all straightforward and will be left to the reader.    □

The crucial observation is that d preserves index sum, so that each Uk is a

subcomplex. We establish this result in the next sequence of propositions.

PROPOSITION 2.15.   dVn C U2 n 3*(n - l)2.

PROOF. We argue by induction on n. The case n = 2 is verified in the discussion

preceding 2.12.

Assume dVk C t/2 C\3P(k -1)2 for all k < n. We claim that d(U^n3'(n-l)2) C

Uk for any A;. To see this, observe that, if x E Vp and y EVq with dx E U2 and

dy E U2, then d(xy) E Up+q. Since any element of Uk r\3^(n — l)2 is a sum of

terms xy with x E Vp, y E Vq satisfying p + q = k and p,q < n — 1, the claim follows

from our inductive assumption.

Now choose a basis for Vn, and let tj be a basis element. The choice of d in the

construction of 3? allows the alteration of dv by a coboundary in 3^(n-1)2. This is

done in such a way that dv will lie in U2. Using 2.14(i), we write dv = u2 + ■ ■ ■ + um

with ux E U2 for 2 < i < m. According to 2.14(i) and the claim above, we must

have dUi = 0 for each i. Note that p(uj) = 0 for 3 < i < m, by definition of p, and

p(u2) = p(dv) = 0 also. Thus any Uj which lies in 3"(n — 2)2 is exact in 3"(n — l)2

and may be eliminated. This is certainly the case for all i < n. So we may assume

i > n and u%= x + y with x E U2 l~l 3"(n - 2)2 and y E (&pZ2 Vp A Vn_i. Using
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dx + dy = 0, Proposition 2.8(h), and standard facts about linear independence

in tensor products, it can be shown that y = 0. The calculation is tedious but

straightforward and will be left to the reader. As a result, Uj = x E 3"(n — 2)2,

and so Uj may be eliminated. Thus dv = un E U2 n3^(n - l)2. This completes

the inductive step, and the result follows.    D

The general result is an easy consequence of 2.15.

PROPOSITION 2.16.   dUpkEUpk + l.

PROOF. Let 1 < iy < • ■ • < ip with iy -\-\-ip = k. Now

p

d(Vtl A • • • A Vip) C J]) Vj, A • • • A dVl} A ■ • • A Vip.

By 2.15, dVlj C U2 . Since V, A • • • A U2 A • ■ • A Vlp C Uvk + 1 for each ;, the assertion

follows.    □

COROLLARY  2.17.   H*(3?) = 0fc>„ H*(Uk).     U

We have succeeded in decomposing the 1-minimal model 3" as a direct sum of

the subcomplexes Uk. By 2.14(h), each Uk is a finite complex

0 -*[/]£ -*-►£/£-» 0.

This observation yields the main results in §3, and also facilitates the computation

of the tpn(M). The calculation is manageable for arrangements of seven hyperplanes

or less and small values of n.

PROPOSITION 2.18. For n > 3, tpn(M) is equal to the kernel rank of the linear

mapd: U2 ->U%.

PROOF. For n > k, each summand of Uk has a factor of Vj, i > 2. Since

p \Vi = 0 for i > 2, we have p |^= 0 for n > k. Since p*: Hk(3") -+ (%jSf is

injective for k = 1,2, we have Hx(Un) = 0 = H2(Un) for n > 3. Then the sequence

0 -> Ux -+ U2 -» C/3 is exact. Since Ux = V„, and <p«(M) = dimVn by 2.4, the

result follows easily.    □

According to 2.13, tp2(M) = (b2) - b2, where bp = rankHp(M) is the pth betti

number of M. Clearly <py(M) = by, the number of hyperplanes in A.

EXAMPLE 2.19. Let A be the arrangement in C3 consisting of the seven hy-

perplanes x = ±y, x = ±z, y = ±z, and z = 0. This is a free, simplicial ar-

rangement with many interesting properties (see [5] for a detailed discussion). The

betti numbers of the complement are bo = 1, by = 7, b2 = 15, and b3 = 9. Thus

<py(M) = dimVi = 7, and <p2(M) = dimV2 = Q - 15 = 6. The degree two
part ^f2 of the relation ideal has a basis arising from the six 3-fold intersections

in codimension two. Using this basis, the map d:V2 —> U2 = %2 is defined (see

remarks following 2.11). Using this, one writes the matrix of d: U2 —> t/f. By 2.14,

this is a map from &1 ® V2 into f3; it is equivalent to the map I?1 ®Jr2 —► J?3

which sends x ® y to xy. The size of this matrix is (3) = 35 by (7)(6) = 42. One

must row reduce to find a basis for the kernel. This provides the rank tp3(M), and
(2)

is also used to define d: V3 —► U3   , which is needed for the computation of tpA(M).

As in the proof of 2.12, each basis element of ^f2 gives rise to two elements of
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J?1 0 V2 which are killed by d. Thus <p3(M) > 12. This observation also reduces

the problem to the row-reduction of a 35 by 30 matrix. The enterprising reader

will find that <p3 = 17.

The computation of tp4(M) is already too large to be done by hand. One must

examine d: U\ - U\, which maps U\ = Vy A V3 0 A2(V2) into U\ = A2(Vi) A V2.

The size of this matrix is (2) • 6 = 126 by (7) (17) + (|) = 134. As above, one easily

finds three independent kernel elements for each basis element of J?2; this reduces

the size of the computation to 126 by 116.

We will return to this example throughout the remainder of the paper.      □

3. Rational K(ir, 1) arrangements and the LCS formal. In this section we

apply the results of §2 to derive equivalent conditions for rational K(ir, 1) arrange-

ments (Corollary 3.5) and for arrangements satisfying the LCS formula (Corollary

3.7). As a corollary we obtain the result "rational K(rr, 1) implies LCS". We pre-

serve the notation of §2.

DEFINITION 3.1. The arrangement A is a rational K(ir,l) if p*: H*(3*) -►

£?/3r is an isomorphism.    □

So, if A is a rational K(ir, 1), then 3" is the minimal model of A*(M). By 2.11,

this holds when p* is injective. The terminology is motivated by 2.5. (The minimal

model of M will satisfy nn(Jf) = 0 for n > 2.) However, as pointed out in §2,

M will be a nilpotent space only in trivial situations, so the general version of 2.5

rarely applies in our setting. In fact, the only rational K(ir, 1) arrangements for

which M is nilpotent are the arrangements of coordinate hyperplanes in C(, I > 1.

In general, A is a rational K(ir,l) if and only if the rational nilpotent completion

of M is aspherical (see §4).

Let f C If be the ideal generated by J?2.
DEFINITION 3.2. The arrangement A is (algebraically) 2- determined if / = J2".

In 2-determined arrangements, all relations in H*(M) arise from codimension

two degeneracies. This should be compared with the notion of formal arrangements

[5, 2.7.11], which might be called "geometrically 2-determined". Definition 3.2

generalizes the notion of parallel for arrangements in C3 [5, 2.7.10]. That is, parallel

arrangements in C3 are 2-determined.

We proceed to analyze p*: H* (3*) —► WIS using the decomposition of Corol-

lary 2.17.

PROPOSITION 3.3.   Hn(Un) = (W/Jr)n.

PROOF. To compute Hn(Un), consider the sequence U^~x -* U„ -> 0. We

have U^-1 = Wn~2 0 V2 and U% = Wn by 2.14, and Hn(Un) = Wn/image(d).

As was noted in remarks following 2.11, d|v2 is an isomorphism onto J?2; d\g

is identically zero.   It follows that d(Wn~2 ® V2) = fn.   Therefore Hn(Un) =
gn/jrn = (% j f)n.      Q

PROPOSITION 3.4. The kernel of p*: Hn(3y) -> (W/Jr)n is precisely
®P>nHn(Up)®(JrIJr)n.

PROOF. As noted in the proof of 2.18, p is identically zero on Up for p > n.

When p < n, U£ = 0 by 2.14. And p*: Hn(Un) -» (W/J?)71 is equivalent by

3.3 to the projection (W/f)n -» (W/S)n. The assertion is then a result of the

decomposition Hn(3") = 0p>o Hn(Up) of 2.17.    □
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COROLLARY 3.5. The arrangement A is a rational K(tt,1) if and only if A is

2-determined and Hn(Up) = 0 for all 0 < n < p.

This last result is of limited utility because of the latter condition, which is

false in general and virtually impossible to check with particular arrangements.

There is some evidence to support the conjecture "rational K(n, 1) if and only if

2-determined".

We now discuss the implications of §2 with respect to the LCS formula. Let

G = ny(M) and let G = Go 2 Gy D ■ ■ ■ 2 Gn D ■ ■ ■ be the lower central series of

G as defined in §2. Let tpn be the rank of Gn-y/Gn for n > 1. Let bp be the pth

betti number of M. Let P(t) = J2p>0bptp, the Poincare polynomial of M. The

following identity holds for a wide class of arrangements [6].

LCS formula.

(*) H(i-tny»=p(-t).
n>l

For example, when A consists of (r + 1) lines through the origin in C2,iry(M) is

the product of a free group of rank r and an infinite cyclic group. In this case the

LCS formula is Witt's formula [11, p. 330] for free groups, multiplied by (1 - t).

By 2.4, tpn = dimV„. So the left-hand side of (*) bears some relation to the

1-minimal model 3*. The connection is made precise using the decomposition

3" = 0fc>o Uk. We introduce a formal power series Q(t) defined by

Q(t) = J2x(uP)tp,
p>0

where x(UP) is the Euler characteristic of the finite complex Up.

PROPOSITION 3.6.   Let A be an arbitrary arrangement.  Then

Yl(i-tny-=Q(t).   a
n>l

We will postpone the proof of 3.6 to the end of this section.

COROLLARY 3.7. The arrangement A satisfies the LCS formula if and only if

x(Up) = (-l)pbpforallp>0.

PROOF. Comparing coefficients in Q(t) and P(—t), the result is obvious.    □

COROLLARY 3.8. Suppose A is a rational K(ir,l) arrangement. Then A sat-

isfies the LCS formula.

PROOF. According to 3.5, Hn(Up) = 0 for n < p. Since U£ = 0 for n > p, 2.17

implies HP(UP) = Hp(3*), which is isomorphic to (W/Jr)p by hypothesis. Thus

X(UP) = x(H*(Up)) = (-l)p rank HP(UP) = (-l)pbp.

The result now follows from 3.7.    □

The converse of 3.8 is false; a counterexample will be furnished in §5. (This

example also shows that the latter condition of Corollary 3.5 is not satisfied in

general.)

Corollary 3.7 provides an easy method for determining the recursive formulas

among the tpn which are implicit in the LCS formula. We demonstrate by deriving
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the formulas for <p3 and tpA. Recall that tpy = by and tp2 = (62') — b2 are satisfied

in general. Now assume A satisfies the LCS formula. We compute the Euler

characteristic of the chain complex 0 —► U3 —► U2 —* U3 —* 0, using U3 = V3,

^ = Vy A V2, and r/33 = A3(V,). Thus X(U3) = -<p3+<Pi<P2 - (%*), and 3.7 yields

-63   =   -tp3 + tpytp2  -   [   ^   j   .

Similarly, the computation of x(Ui), using U\ = V4, U2 = Vy A V3 © A2(V2),

r/3 = tf(Vy) a V2, and U\ = A4(Vi), yields the formula

64 = -^ + ^3+(*322)-(V521)^+(7).

Let us check the ^3 formula for the arrangement of Example 2.19. Recall that

63 = 9, tpy = 7, and <p2 = 6. The formula for tp3 above yields —9 = —<p3 +42 — 35,

or tp3 = 16. Since we computed <p3 = 17, we conclude that this arrangement does

not satisfy the LCS formula. This is a K(tt, 1) arrangement, since it is simplicial

[4]. However, by 3.8 it is not a rational K(ir, 1).

We now prove 3.6. The Poincare series of a bigraded module C = 0i ->0 Czj

is defined by Pc(x,y) = ^i j>r)(dimCl^)xly:'. If D is another bigraded module,

the tensor product C ®D receives the total bigrading. The identity Pc<s>D(x,y) =

Pc{x,y)PD(x,y) is easily verified. We obtain a power series in t with the same

multiplicative property by setting Qc(t) = Pc(t, —t). Observe that

Qc(t) = T.\   E (-i)JdimCiAtp.
p>0 \i+j=p J

Let 3" be the 1-minimal model; 3" is bigraded by Sij = f//+,-.

Lemma 3.9.  Q.y(t) = Q(t).

PROOF. For each p,

£ (-l)'dim^ = £(-1)'dim 172 = X(UP).
i+j=P 3>0

By definition, Q(t) = £p>0 x(Up)tp, so Q,r(t) = Q(t).    a

PROOF OF 3.6. Recall 3" = \Jm>03"(m), with 3"(0) = R and 3*(m) =

3"(m - 1) 0 Ai(Vm) for m > 1. Each 3^(m) inherits a bigrading from 3". Write

Q.7J(m){t) = Qm(t). Then limm^oo Qm(t) = Q(t) by 3.9. We will show by induction

that Qm(t) = fl£=1(l " in)^"; the equation Q(t) = n„>i(l " *")"" of 3-6 wiU
follow by passing to limits on both sides.

First we examine the exterior algebra Ai (Vm), with the bigrading inherited from

3". Note that U$ n A(Vm) = 0 unless p = mj, and that U3m] H A(Vm) = A](Vm)

has dimension (<p"%). Thus

Qa(v„)(o = Et-1)' (^) tmi = (1- tmrm-

In particular, Qi(t) = (1 — t)^', which starts the induction. The inductive step

is easily accomplished using 3*(m) = 3^(m — 1) 0 A(V„) and the multiplicative
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property of Qc(t); the bigrading on 3?(m) is the total bigrading because both

degree and index sum are additive under multiplication. This completes the proof.

D

We must acknowledge T. Kohno's contributions with regard to the results of

this section. The polynomial Qc(t) used in the preceding proof was introduced

in [10]—there it is used with a different bigraded algebra to obtain a different

power series representation for nn>i(l ~ tn)'Pn. Our proof of 3.6 is essentially an

adaptation of the argument in [10]. Also, Kohno proved 3.8 by different methods

in [9].

4. Fiber-type arrangements. In [6] it was shown that the LCS formula is

satisfied by arrangements of fiber-type. In this section we show that a fiber-type

arrangement is necessarily rational K(it, 1). Thus the main result of [6] follows from

Corollary 3.8. At this point it is unclear whether we have examples of rational

K(tt, 1) arrangements which are not fiber-type—see remarks following Corollary

3.5. The methods of [6] are mainly group-theoretic; by contrast, the derivation of

3.8 here is essentially a cohomological argument.

DEFINITION 4.1. The arrangement A in C' is fiber-type if there is a tower of

bundle maps

M = Mi^ Mi-y —-► M2 Q My = C*

such that, for each k, 2 < k < I,

(i) Mk is the complement of an arrangement in Cfe,

(ii) pk is the restriction of a linear map Cfc —> Cfc_1, and

(iii) the fiber Fk of pk is a copy of C with finitely many points removed.    □

Terao [16] has shown that A is fiber-type if and only if the intersection lattice

of A is super-solvable. Observe that the complement of a fiber-type arrangement

is a (topological) K(tt, 1) space—this is a consequence of the long exact homotopy

sequences of the fibrations pk.  Further properties of fiber-type arrangements are

tabulated in [5].

To analyze the effect on minimal models of the fibrations pk, we will use the

Q-completion functor defined in [2]. The actual definition of Q-completion is un-

enlightening and will be omitted. Interested readers may consult the references.

Let A be a connected complex with minimal model Jf'. The Q-completion Qoo A

of A can be constructed up to homotopy type from the minimal model [1, 12.2].

Recall irn(Jf) is the vector space of indecomposable elements of degree n in J?.

The main property of Q-completion is the following.

PROPOSITION 4.2. Suppose X is connected with finite dimensional Q-

cohomology groups. Then 7rn(Q00A) is isomorphic to Hom(7r"(^#),Q) for all

n>2.

PROOF. See [1, 12.8(iii)].    □

The Q-completion behaves well with respect to nilpotent fibrations.

PROPOSITION  4.3.   Let p: E -> B be a fibration with fiber F.   Then QooP
Qoo-E —► Qoo-B is a fibration.   If, in addition, ity(B) acts nilpotently on H*(F),

then the fiber o/Qoop is homotopy equivalent to QooF.

PROOF. See 5.1 of Chapter II in [2].    □



554 MICHAEL FALK

We refer the reader to Chapter II, 4.1 of [2] for the definition of nilpotent action.

For our purposes we need only observe that the trivial action is nilpotent.

For simply-connected spaces, the Q-completion QooA is homotopy equivalent to

the more familiar construction [7] involving localization in the Postnikov decom-

position of X, the construction originally used by Sullivan. A similar method for

constructing QooA can be used for nilpotent spaces. This leads to the following

result, which, together with 4.2, provides the connection with 2.5.

PROPOSITION 4.4. If X is a nilpotent space, then 7r„(QooA) is isomorphic to

nn(X) 0 Q for each n > 2.

PROOF. See 3.1 of Chapter V in [2].

In this case 7Ti(QooA) is the Malcev completion of 7Ti(A), and the canonical

map A —» QooA induces isomorphisms Hk(X; Z)^Q-» Hk(QooX; Z).

The conclusion of 4.4 also holds for some nonnilpotent spaces.

PROPOSITION 4.5. Suppose X is a K(ir, 1) space with rr = ny(X) a free group

of finite rank.  Then ̂ (Q^A) = 0 for i>2.

PROOF. See Chapter IV, 5.3 of [2].    □

Let A be an arrangement in C' with complement M and minimal model ./#.

Then A is a rational K(ir, 1) ii J? is generated by elements of degree one. By 4.3

this is equivalent to the asphericity of QooAf- This observation leads to the main

result of this section.

PROPOSITION 4.6. Suppose A is a fiber-type arrangement. Then A is a ratio-

nal K(ir, 1).

Proof. Let

M = M,^- Mi-y -+-► M2 ^ My = C*

be the tower of fibrations of Definition 4.1. We will show QocMk is aspherical

for each fc using induction on fc. For fc = 1 this is a special case of 4.5. For

fc > 2 we consider the fibration pk: Mk —> Mfc_i with fiber Fk. The crucial

observation here is that 7ri(Mfc_i) acts trivially on H„(Fk). This was proved in [6].

Then, by 4.3, we have a fibration QooPfc: QooAffc —► QooAffc-i with fiber homotopy

equivalent to QooFfc. By the inductive hypothesis QooAffc-i is aspherical, and

QooFfc is aspherical by 4.5 (recall Fk is a plane with finitely many punctures). The

long exact homotopy sequence of the fibration Q<x>Pfc yields 7rn(QooAf/c) = 0 for

n > 2. The result follows by induction.    □

COROLLARY 4.7 [6]. Suppose A is a fiber-type arrangement. Then A satisfies

the LCS formula.    □

5. Algebraically 2-determined arrangements. In this section we derive a

simple necessary condition for an arrangement to be 2-determined (recall Definition

3.2). This result allows us to exhibit a counterexample for the converse of 3.8.

Specifically, we show that the reflection arrangement of type D4 is not 2-determined,

and therefore not rational K(rr, 1). The LCS formula has been verified for this

arrangement by Kohno [8].
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PROPOSITION 5.1.   Let A be an arrangement in Cl.  Suppose A contains hy-

perplanes Hi, 1 < i < k + 1, satisfying the following conditions:

(i) Hj=i H% has codimension k in C', and

(ii) for 1 < i < j < fc, Hi fl Hj is contained in no other hyperplane of A.

Then A is not 2-determined.

PROOF. Let et be the generator of f corresponding to H% for 1 < i < fc + 1. By

(i), d(ey ■ ■ ■ ek+y) is an element of the relation ideal J7'. We claim that this element

is not contained in ^, the ideal generated by J?2. To see this, observe that (ii)

implies that no monomial in J2"2 involves two of the ej for 1 < i < k. Therefore

ey ■ ■ ■ ek cannot be an element of ,fk = Wk~2 l\J?2. But ±ey ■ ■ ■ ek is the last term

in d(ey ■ ■ -ek+l). Since <§* is free, the claim follows. Thus ^ ^ S, and therefore

A is not 2-determined.    □

COROLLARY 5.2. Under the hypothesis of 5.1, A is not a rational K(ir,l)

arrangement.

PROOF. This is immediate from 5.1 and 3.5.    □

Let us return to Example 2.19. The hyperplanes x = y, x = —y, z = 0, and

x = z satisfy the conditions of 5.1. Therefore the arrangement of 2.19 is not rational

K(ir, 1), though it is a topological K(w, 1). This was noted in §3, using the fact

that the LCS formula fails. Chronologically, Corollary 5.2 was discovered prior to

Corollary 3.8.

EXAMPLE 5.3. Let A be the arrangement in C4 consisting of the 12 hyperplanes

Zi = ±Zj, 1 < i < j < 4. This is the arrangement of reflecting hyperplanes for

the Weyl group D4. The hyperplanes zy = z2, zy = —z2, z3 = Z4, z3 = —Z4, and

zy = Z4 satisfy the conditions of 5.1. Therefore this arrangement is not rational

K(ir, 1). But the LCS formula holds in this case. Indeed, Kohno [8] has established

the LCS formula for all the Di arrangements. Thus the implication "LCS implies

rational -K"(7r, 1)" is false.
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