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MIXED NORM ESTIMATES FOR CERTAIN MEANS

LENNART BORJESON

ABSTRACT. We obtain estimates of the mean

F2(t) = C-,f       (l-\y\2)y(x-ty)dy
J\y\<i

in mixed Lebesgue and Sobolev spaces.   They generalize earlier estimates of

the spherical mean F%   (t) = C fon-i Kx ~ ^V) dS(y) and of solutions of the

wave equation Axu = d2u/dt2.

Introduction. For / G Co°(Rn) and 7 > -1 we define the mean

1(1+7)      J\y\<l

x E Rn, t E R. T is the gamma function. A computation of the Fourier transform

of F~i(t) gives (see [SWe, p. 171])

F^(t) = f   e-***F2(t) dx = m^tOfc),
J Rn

where the multiplier

"h(0 = i€r*-vt+1(iei).
Ja+1 is the Bessel function of order ^ + 7. (For more details about Bessel functions

consult [E or W].) But since the multiplier m1 is well-defined for all complex 7,

we can extend the mean F1 to these 7's.

The same letter C will be used to denote various constants, not necessarily the

same at each occurrence.

For some values of 7 the mean F~* has a special meaning.

If 7 = 0, then

F°(t) = cf       f(x-ty)dy = —£— [        f(y)dy
J\y\<l \B(X,t)\ JB(x,t)

the mean of / over the ball B(x, t) of radius t with its centre in x.

If 7 = —1, then

F~1(t) = cf      f(x-ty)dS(y)
JS"~l

the mean of / over the sphere of radius t with its centre in x. dS is the normalized

Lebesgue measure on the unit sphere 5"_1.
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-l »;'
If 7 = -aji, then u(z,t) = CtFx    2   (£) solves the following Cauchy problem

for the wave equation.

d u,     .      t—v d u , , , du,      ,        , ,
^2-(a;'0 = X,^2(a;,0 = AIu(a:,t),        «(a:)0) = 0, — (x,0) = f(x)

In this case the multiplier is given by

m_n^(tf) = |tf|-i J4(|te|) = G>n*|e|)/*|£|.

If 7 = -r4^'' *hen u(:r, t) = C£Fz 2 (£) solves the wave equation with Cauchy

data

u(x,0) = f(x),     ^(z,0)=0.

The multiplier is then m_n+i(t£) = \tt\$J_i(\t£\) =Ccosr.|£|.

Estimates of spherical means which are related to the results in this paper can be

found in [B1-B3, OB, PS, Sjl-Sj5, St2, STW, SWa and Str]. Related results
of regularity properties of the solution of the wave equation are found in [Ma, Mi,

Pr, Ss, St2 and Str]. [Sj2] also contains an application to convergence of Fourier

integrals.

2. Preliminaries. Let Co°(R\ {0}) be the functions in C°°(R) with compact

support in R\ {0}.

The operator Ja is defined by the relation (Jatp)~(s) = (l + s2)a/2<p(s), and the

norm in the Bessel potential space =S^P(R) is defined by ||£>||j^j> = ||Ja£>||p, 1 <

p < oo. Cf. [Stl]. 5?l(R\{0}) is the closure of Cf?(R\ {0}) in the norm ||   \\#2.
o

-2^2(R\ {0}) is the space obtained by complex interpolation between 2f\m (R\ {0})

and 5?2[0]+1(R \ {0}), where \B\ is the integral part of /?, [/?]</?< [/?] + 1. The
o

norm is denoted ||   \\j,2 and coincides, by definition, with the norm of ^^ when /?

o w

is an integer. Properties of the spaces Jz?2?(R\ {0}) and .S^2(R\ {0}) can be found

in [LM].
BMO(R) is the space of functions of bounded mean oscillation normed by

IMIbmo = sup   |/|_1 l \<p(t) - ]I]~l     <p(s)ds\dt   ,

where / is a bounded interval. Cf. [Stl, p. 164].

Ag(R), 8 > 0, is the Lipschitz space with norm

IMIa6 = ll^lloo + sup/-15  -z-j;(t,y)
t,y cry

where u(t, y), t E R, y > 0, is the Poisson integral of <p and k is the smallest integer

greater than 8. See [Stl].

The Hardy space Hp(Rn), 0 < p < 1, is defined to be the set of all temperate

distributions / such that

II/Hhp =    SUp|/*Ve|       < OO,
£>0 p



MIXED NORM ESTIMATES FOR CERTAIN MEANS 519

where ip is some fixed element of <9*(Rn) (the Schwartz class) with f ip(x)dx ^ 0

and ip£(x) = £~nip(x/s). If 1 < p < oo, Hp is defined to be equal to IP with norm

H/IIhp = ||/||P. Cf. [FS].
Our results are the following.

THEOREM 1.   Ifn>2,-\ + J7 = l,

(»)      nT^<P<1>

(iii)    /? = a±i + 7, and

(iv)    a = ^ + i+7,

£/ien

(i) (/Rn H^llfe***)    <c|MI^II/lkp,

w/jere<pG^2(R\{0}) and f E Cg*(Rn)(1H?(Rn). For 0 < 0 < ±,^2(R\{0})

and J2?q(R) coincide.   (1) is best possible in the sense that we cannot have a >

REMARK 1. When 7 = — 1 and <p is a fixed function in Co°(R) with compact

support in (0,00) and ||^?|| ~„2 is replaced by CX, in (1), then the result was obtained

by P. Sjolin in [Sj2]. In [Sj4] this was extended to a larger class of means, viz.

/       f{x-ty)p(x,y)dS(y),
Js*-1

where p(x, y) satisfy certain differentiability properties.

COROLLARY  1.   Let n > 2 and 7, p and /3 satisfy (i) and (iii) of Theorem 1,

^G^2(R\{0}) andfEC{?(Rn)r\HP(Rn).

tf(v) ^f^<P<^ and q = -(p±+1)~\ then

(2) (|RJ^Fxl2L,dx)2 <C||^||/||ffP.

//(vi) p= /^-, then

(3) (|Rn \\<pF-J]\2BMOdx^ 2 < C\\p\\^\\f\\m.

If (vii) jripf < P < 2 and 8 = % + 7, Men

(4) (/Rn ib^n^ dXy < cM^uy,.

It is not possible to take q > — (4 +7)_1 m (2). The BMO-norm in (3) cannot be

replaced by a Lipschitz-norm and (4) is no longer true if 8 > p- + 7.

REMARK 2. For -1 < 7 < 0, set

/(X) = JN—(log i^)"1,   ifo<N<|

I. 0, otherwise.
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Then / G L*(R"), but F^(\x\) = oo. This shows that the BMO-norm in (3) is

not replaceable by the sup-norm. Ifp>l,7>-1 and <p E Cq°(R \ {0}), then

(l)-(4) is valid for / G Lp(Rn). (The case 7 = -1 is contained in [Sj2].) The

details are carried out at the end of the proof of Corollary 1.

THEOREM 2.   Assume that n > 2, <p G Cyf(R\ {0}) and f E Cyf(Rn).
If (viii)    -afi < 7 < -1, (ix)    a=i < p < 2, p < r < p', and (x)    0 <

a< ^+7+1 (or(ix') 2<p< -2=1 = (a=i)', r = p, and (x1) 0<a<

a^+7 + 1), then

(5) (J^mr3ste)T <cv\\nr

7/7 satisfies (viii) and is equal to an integer or is such that ^±1 +^ {s equal to an

integer, then the conclusion still holds, if r = p > 1 and if < is replaced by < in

(ix), (x), (ix') and (x').

REMARK 3. We conjecture that Theorem 2 is still true if we also allow p = a=l

in (ix) and equality in (x) and (x'), since the conclusion holds for the endpoints

7 = — 1 and 7 = — ̂±1 and for some values in between.

COROLLARY 2. Let n > 2, tp E C$°(R\{0}), / G C0°°(Rn) and -=±= < 7 <
-1.

V (xi) ^<P<^<2, p<q<-(p+ 7)-1, P <r < p' (or (xi')

2 < -^ <P<-^j,P<q< -(«=2 +1 + i)-i; r = p); then

(6) (J   \\<pFg\\'qdxy <CM\\p-

If (xii)     ^_ <p< 2, p<r<p' (or (xii')     2<p< -S=2, r = p), then

(7) (/^Ib^irBMO^)'  < C„||/||p.

If (xih) ^ <P<2,0<8 <p\+1,p<r<p' (or (xiii') 2 < p < -0=|,

0<8<^+^+l,r = p), then

(8) (/RJb^llA6^)r <^||/||P.

REMARK 4. Here we also have the corresponding better estimates when 7 or

a±i + 7 are integers. A combination of the methods and results of this paper

with the estimates of F£(l) given by Strichartz [Str] should give more mixed norm

estimates.

COROLLARY 3.   Let <pE Cyf(R).  Then it is possible to replace <p(t) by £>(£)N')

in (5)-(8), if
n

« > -7 + 7,        P< 2,
r

or
n-2

r, > -+7+1,        P> 2.
P
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REMARK 5. Corollary 3 is contained in [Sj4, Theorem 4] in the case 7 = -1

and p < 2, where it is also shown that the value a. — 1 is best possible.

EXAMPLES. The estimate (3), for n = 2, 7 = — 1, can be seen as an endpoint

result of Theorem 2 in [St2] and Theorem 1 in [B3].

Let p =! 1 and 7 = — 5. Then it is easy to see that the 7/1-norm in (1) cannot

be replaced by the L1-norm. However, we have that Fx 2 (t) maps L1(Rn) to weak

L2(R") (since (1 - ]y]2)~i is in weak L2(R")), i.e.

|{x;|^-*(0|>A}|<Crt(Mi)2.

This also shows that the estimate

cannot be extended to

]\F-l+^(l)]\y<C(p)\]f]]y, pER,

where F_1+tM(l) and C(p) satisfy the hypothesis of the interpolation theorem of

Stein [SWe, p. 205]. For it would then be possible to interpolate with

II^WIloo <Ce*Mll/!lf       mGr,

to get

\\F-Hl)\\2<C\\f\\y,

but this is false.

3. Proofs.

PROOF OF THEOREM 1. We start with the case where a = 0 and prove a

somewhat better estimate than (1). Let <p E C$°(R\{0}), f E Cyf (Rn) C\Hp(Rn)

and 7 = k + ip — a±l, where A; is a nonnegative integer and p E R. With Fubini's

theorem and Plancherel's identity we obtain

(jjvm\^)"

= ([  f   \v(t)Fl(t)\'dxdt)   =c(f [   |«J(!).F7(!)|J d(<it)
/qn X./R./R" / \JrJR"' ' /

= c ^R|Rn \^(t)H\-^+^-k-^j,_^+k+l/]tf])m\' dtd?)2

= C (J jRn |^)l^-fc-^-i+fc+lM(|^|)/(£)|2 didt} " .

The next step is to invoke the asymptotic estimate of Bessel functions for large

arguments, i.e.

J-i+k+i/r)\<Ckr-h2*M,
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where r > 0, k E N = {0,1,...}.  See [W, pp.  217-218] or [Bo].  So (9) can be

majorized by

= cke2^\ (|r \<p(t)rk\7 dt^2 ^ |/(oierf d^j2.

Now we make use of the assumption that ip^ (0) = 0 and Hardy's inequality, to

see that

(j \<p(t)rk\2 dt\2 <ck(J \<p'(t)rk+l\2 dt)2

<... < ck (J \rO{k)(t)\2 dt\2 < CuWvWs*.

See [T, p. 262]. This gives

(10) (^ \\<pF2\?j?*dx}    < Cke2^\\\tp\\^\\f | • rfc||2,

for k E N. Consider the function GJ(t), defined by

(G7(*)He) = l€lfc+*M^W-

Then (10) becomes

(j   \\<pGl\\ldxy < Ck<?*M\\<p\\3»\\fh = 6Vr|"1|MLs?||/||2,

where fcGN.  Using complex interpolation (see [CJ, Theorem 2]) between fc and

fc + 1, we obtain

(/RJbG2||2dzy <c|M|^2||/||2,

for -2±i + A; < 7 < -2±i + fc + 1, /? = ^±1 + 7 and fc G N, or equivalently

(11) (^Jb^H^dx)2 <C|M|^3||/|-|^||2,

for 7 > -rL^L and /3 = rL2^- + 7. This is the improved inequality in the case a = 0.

We now consider the case a = (3, i.e. p = 2 in (iv). Let £>, / and 7 be as in the

proof of the case a = 0 and set Dl = Jp. In this proof we use the following

LEMMA 1.   J/veC,leN,r>0 and 3h> >l - \, then

]rlDl(r-"Ju(r))\ < Ce8*1**'1.

C depends only on fRv and I.
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We postpone the proof of the lemma.

The L2(Jf?£) norm of <pF~<, 7 = k + ip - a±i, is split into two L2 norms.

(/Rn II^ILi? dxy <C   [j    \\<pF2\$dx} 2 + (^ \\Dk(<pFl)Y\\dx^ 2

The first one is easily estimated (/ = 0 in the lemma).

[f  \\<pFg\\ldx)2 = c[ff  \v(t)F-^+k+z»(t)\2dt:d?j2

= c (J I \^(t)\t^-k-^j.i+k+i^m\)i(o\2 dtdt^j2

<C-e3*l"l||p||3||/||3<Ce3*l''l|b|L2?||/||a

Set B(r) = r~%~~lJn+1(r) and estimate the second term again by Hardy's inequal-

ity.

1 f k 2     \ *

[lj]Dk(^)\]2dxy <cURn   Y,[kk_^Dk-lvDlF]     dx\

k -

<cjz(i    \\Dk-l<pDlFf]\\2dx)2
1=0 \Jr" J

k -

= Cil{l l^"VW|2 I    \DlF2(t)\2dxdt)
1=0 \Jr jRn '

k -

= CJ2{[ \Dk-lf(t)\2 [    \DlF^(t)\2d^dt)2
1=0 \Jr Jr" J

= cf^[lR]Dk-^(t)\2lRJD%B(^))m\2dt:dtj

k -

= Cil(l l^"VW|2 I    k\l(s&it)l(DlB)(]tH])f(9)? dfdtY

= Cj2(f \Dk~lv(t)t-1]2 f    \\tf\l(DlB)(]t^])f(0 2 dtdt) 2
(=0 V« JRn ' '

< C7e3x|Ml £ C f  \DK-lp(t)t-'\2 f     |/(0|2 d^t) 2

= Ce»'M fl (I \Dk~l<p(t)t-l\2 dr) 2 H/lla

< C7e3^l||D^I|2||/ll2 < ̂ "'iMLs-ll/lh,
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because 5t(f+7) = fc-5>/-§ and the condition in the lemma is fulfilled. So

(/Rn llP^lliydx)    < Ce^]\p\y.\]f]\2,

for fcGN, and as before we interpolate between the fc's. Using again the extension

of Stein's interpolation theorem for the complex family tpF1 we get

(12) (^J^Hiydl)      <C|H^||/||a,

for 7 > -a±i and Q = aji + 7. See [CJ, Theorem 2]. For interpolation of the

spaces L2(Jz^.2), see [BL, pp. 107 and 153]. This proves the theorem in the case

a = /3.
We end up by interpolating between (11) and (12) with the following result.

(/Rn n*>*2ife dXy < c\\tp\\^\\f\ ■ r%,

where 0 < a < 0. But from the boundedness of fractional integrals on IP spaces

and its extension to Hp spaces we also get that

ii/i-r^ci/iitfp,

if
1 1      0 - a      „      i+7-Q .                n      1
- = o+~- = 1 + --, i-e     a=- + -+1.
p 2         n                       n                               p'      2

See [BL, p. 168 or P, p. 50].
o

Hardy's inequality carries over from Cq°(R \ {0}) to -S^R \ {0}) if the deriva-

tives are to be understood in the weak sense.   Consequently, the proof for <p E

C0X>(R \ {0}) holds also for <p G ̂ \(R \ {0}).

We continue with the proof of the identity ^2(R \ {0}) = ^2(R), 0 < 0 < \.
O _

It is enough to show the identity £?20(R \ {0}) = =2^2(R), since ^2(R \ {0}) =

S?20(R \ {0}) HO<0<\ (see [LM, p. 64]).
O

Take a <p in J?^(R\{0}) and let {^}i° be a sequence in Co°(R\{0}) converging

to <p. Extending the sequence to the whole real line by <fi(0) = 0, for all i, we obtain
o

a sequence in C^R) that converges to tp. Thus S?20(R \ {0}) C -2^2(R).

Now take a tp in ^2(R) and a sequence {'Pi}f> in Co°(R) such that

Hv? — 'PiWjf2 —► 0, n —► oo. From this sequence we shall construct another one

in C0X(R), with supports in R \ {0} and converging to tp thus showing that

J?2(R)c£20(R\{O}).

Let ip(t) E Cyf(R) be equal to 0, if ]t\ < \, and equal to 1, if |e| > 1. For given

e > 0, choose i such that 1/i < e and ]\<p — <Pi\\^^ < e/2. We claim that it is

possible to choose, for each i, an R = R(i) > 1 such that

\\<Pi ~ <Pi1pR(i) IL# < Yi'
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Here ipR(t) = ip(Rt). Then {'PiipR(i)}<y° is the desired sequence, because

\\<P ~ <Pi^R(i)]W* < \\<P ~ &%]]%■* + \\<Pi ~ fi1pR{i) \W* < 2 + ^ < £'

Now to the proof of the claim. For 0 = 1 we estimate the norm

]\<Pi ~ <P%iI)r\\2>* = \\<Pi(l - ^jOlb?

<||p<(l-^*)||a+ 11(^(1-^*))'Ha

= \\<Pi(l ~ Mb + 11^(1 - 1>rY + Pj(l - Mh
< IbiHoolll - iM|a + lbi||oo||(l - ^«)'||a + lbilloo||l - iMIa
< (IbiHoo + Mlloc)(2||l - ipR\\2 + ||(1 - ipR)'\\2)

= (Halloo + II^Hoo)(2||i - tl>Rh + R\\(i - TPY(R')h).

A dilation gives that

lb, - wprWs* < (Halloo + IMIoo)(Jr*2||i - <p\\2 + Ri||(i - ^)'||2).

<«*2(||<0<||oo + ||pJ||oo)||l-^IL2?.

if we choose R > 1. Setting rpy = 1 — tp this can be rewritten as

(13) \\<phI>i(R-)\\j?> < ̂ (ii^Hoo + MlWIWLgy.

For 0 = 0, we have

\\<Pi - <Pi1pR\\sf2 = ][<Pi(l - ipR)h ^ lb»lloo||l - ^fllla

= H^llooJJ-illl - V||2 < iT*2(||^||oo + ||^||oo)||l - th

or equivalently

(14) \\tPilPy(R')\\^   <  JT *2(||^||oo + IIPilUHlMLs?-

Interpolating between (13) and (14) yields

(15) l|^i(*-)lby < ̂ -^(H^Hoo + IIVilUlliMby-

Since 0 < 0 < \ it is possible to choose R > 1 so that the right-hand side of (15)

becomes less than ir.it
We finish the proof of Theorem 1 by showing that it is impossible to have a >

£ + i+7hi(l).

Take a fixed a > 1. Set T?f(x) = F£(t) and ga(x) = g(ax). Computing the

Fourier transform of ga yields (ga)(£) = a~ng(c]/a). With these identities we get

(Wa)H£) = m^OUTXO = m7(*0a-n/(£/a)

= m1(a«ea-1)a-"/(e/a) = a^^Uf/a) = (CC/),)^)-

That is T?(fa)(x) = (T2J)(ax). Applying (1) gives

[l^\\tpaT^(fa)(x)]]2^dxy = [l^]]tp(a-)(TZf)a(x)]\2^dxy

<C\\tp(a-)\\^\]fa\\HP.
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Putting %pa(t) = ip(at) = T2tf, then

u^aiu- = [I i(M.rwi2(i + s2r dS^j2

= ^|a-1(^)(S/a)|2(l + S2rdS)2

= a~1([ ](^P)(t)]2(l + a2t2)aadty

>a~i (lj(^P)(t)\2(a2t2)adty

= a-i+a[lj(^P)(t)\2t2adty .

A change of variables in the integral defining the /7p-norm gives ||/a ||#p = a~ p ||/||/jp.

We introduce the space

^2(R\{0})={^; tpeJ?20(R\{O}), |-|^-^^^GL2(R\{0})}

with norm

\\<p\\°°=\\<p\y> + \\\-\w-0Dm<Ph-

With this space we have a description of 5C0{R \ {0}), viz.

[ y^(R\{0}),      otherwise.

See [LM, p. 66]. Thus J^R \ {0}) C -S^2(R \ {0}) and we get that

lb(a-)||^2<||^(a.)||.2 + |||.|['?l-'?JDl''V(a.)||2

= (f la-'tp^/a^^ + s^dsy + U \\t\W-0aM(DWv)(at)\2 dt\2

= (f \a-1£(u)]2(l + a2u2faduy + (f \a0\v\^-0(D^<p)(v)\2 a^V

<a~i(f \£(u)]2(a2(l + u2))0du\i+a-i+0([ \\v\^-0(D^tp)(v)\2 duV

= a~5+/3|M|oo .
\f2

Summing up the estimates gives

[l     ]\<Pa(Tlf)a(x)\\\* <fc) 2   = a-f  (^ |kaTaV(x)||2/Q2 dx^j '
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J does not depend on a. But we also have that

U ^ IbaT^/aXaOII2^ dx\ 2 < t7||^a||^2||/a||HP < a-i+0Ca-TC = Ca-$+0~$,

oo

tp E S?20. With the a's on the left-hand side

a-f-I+«+i-/?+£ = aa-/3-f+ f < C

because a > 1. But this implies

„     n     n      n +1 nnnl
a<0+--- = -—- + 7+--- = - + - +7.

2      p 2 2      p      p'      2

So it is impossible to have

n      1
a > — + x + 7-

p      2

This ends the proof of Theorem 1.    D

PROOF OF LEMMA 1.   We use the formula

2DlJu(r) = Jv_y(r)-Jv+y(r)

and the fact that

\Ju(r)]<Ce2*^r-i,

if $tv > -± and r > 0. Here C depends only on 3oa See [W, pp. 45 and 217-218]

or [B6]. The first identity repeated / times gives

3

D3Jv(r) = ^2 atJv+i(r).
i=-j

So

I l j

rlDl(r-vJ„(r)) = rlJ2bjr~"~{l~3)D3Mr) = r*J2bir~"~i+i E aiJ"+i(r)
>=0 j=0 i=-j

I        J I        j

= r'E E bjair-l+i+ir-v-iJv+i(r) = Y, E b^r^r^^ Jv+i(r).

j=0i=-j j=0i=-j

The case 0 < r < 1: rL,+t < 1, since j + i>0 and

\r-^+^Ju+l(r)\ <Ce2*\*"\,

since fR(y + i) > fkv - j > dtv - I > —\ and as a consequence the double sum is

bounded by Ce3"!3"', because bj have only polynomial growth in Si/.

The case r > 1. We have that

Ir-^+^+iMI < Ce2^u\r-i-v-1,
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since 3J(i/ + i) > -|. Therefore,

l

|r'£>' (r~vJv(r)) I < E l*>;air~1/+Jl<?e2'r,SHj,~"*

j=o

i
< Ce3'r|9:'/| y^r"^"1"^"^ < Ce3*13"'1,

j=o

because — SRf + / - | < —$ti/ + l — ̂  < 0. This shows the lemma.    □

PROOF OF COROLLARY 1. IfA = A-aandO<a< \, then.2^2(R) c L"(R)

with corresponding norm inequalities. Thus (2) follows if

r.^ «      1 1 ,    1      1     /n     1       \
0<- + - + 7<x    and    - = --- + -+7,

p'      2 2 9      2      \p'      2       /

but this is (u).

J?i2(R) is continuously embedded in BMO(R), i.e.

1 n      1
- =-1-h7
2 p'      2      '

which is (vi) and then (3) follows.

If
1 nil

8 = a-- and    a= - + -+-)> -,
2 p'      2 2

then S?2 (R) c A« (R) and as a consequence we have (4) if (vii) holds.

Compare with the proof of Corollary 2.

In the homogeneity argument showing the necessity of

n      1

p      I

in (1), we used that

ll^all^ >Ca-i+a.

Here C is independent of a. In the same way it is easy to see that (2), (3) and (4)

can not be improved using
— -M

l|Pa|U=a   "IMI«

and, for 0 < 8 < 1,

I,       |. \\<pa(u + t) -!Po(«)||oo
\\<PaUs  = \\<Pa\\oo + SUp  -j-rg-

|t|>0 1*1

\\<p(au + at) - ipfatfWoo _   s „m \\<P(v + <*t) ~ <P(v)\\oo _ r„s
-^   SUD   -r-Tc-  — "     SUp   -;-tt-  — O Ci   .
~|t|>0 1*1* |t|>0 \<*t\s

When 8 > 1 the argument is similar but involves higher order differences. See [Stl,

Chapter V, §4].
Next we prove the extension of / to Lp(Rn) ifp>l,7>—1 and tp E

Co°°(R\{0}).
Assume that supp tp c (0, oo) and / G Lp(Rn). Let {/fc}i° be a sequence of

functions in Co°(Rn) converging to / in Lp(Rn), as fc —► oo, and let F^k(t) be
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the mean of fk- Estimating the Fourier transform of <p(t)(F£(t) - F^k(t)) in the

^-variable gives

\(<p(F2 - F2<k)T(s)] = I / e-^tp(t)(Ff](t) - Ff]ik(t))dt

Jf™ e-lsttp(t) j   (f(x-ty)-fk(x-ty))(l-]y]2)\dydt
\J0 JRn

Iroo rl     r
/     e~lsttp(t)        /       (f-fk)(x-try')(l-r2rdS(y')rn-1drdt

Jo Jo Js"-1

= \f rn-l(l-r2)i f   (f - fk)(x - ry)e-isMtp(\y\)\yf-n dydr .
\Jo Jn.n

Set <py(y) = <p(]y\)\y\l~n and change variables, y = *, in the inner integral. Then

\(<P(F2-FZk)r(8)\< f I    \tpy(^)\](f-fk)(x-z)]dz(l-r2y^
Jo  JR"i       vr/i r

Jo   N      \r/\\p' r

by Holder's inequality. Here

riUf-)!    (I-r2V-<C,
Jo  II      Vr/llp' r

if p > 1, 7 > —1, and ||/ - /&||p —► 0 as fc —► oo. An application of Fatou's lemma

now shows that

(/Rn ii^iil- dXy = (l^lj&F2r(S)]2(i+s2rdsdxy

= (fRJRKm\(<pFZkr(s)\*(l + s*rdadx)

<}m[[lRnlR K^fcr(S)i2(i + s2r dsdx^j2

<limC||/fc||p = C||/||p

and (l)-(4) can be extended to / G Lp(Rn).

This also applies to tp such that suppip c (—oo,0), and therefore all tp E

Cq°(R \ {0}) by splitting the support in two.     □

PROOF OF THEOREM 2. The proof is divided into two parts. In the first

one we prove (5) in the case a = 0. The second part contains an interpolation

argument, where the result proved in the first part is interpolated with the L2 case

of Theorem 1.

Assume that <p E Cox(R\{0}) and / G C§°(R") nHp(Rn). Consider the mean

for 7 = -1 + e + ip, 0 < e < 1, p E R.

pcy-e-ip      r

p-l+e+i^ = /        (1 _ |2/|2)-i+£+!M/(x _ ty) dy

1 (e + ip) J\y\<:y
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C depends on the dimension n only. Taking t = 1, the L1(Rn) norm of the mean

can be estimated:

f        (~"}—e—ip,     r

llF.y+£+i,{1)h= /       (l-\y\2)-1+*+i«f(x-y)dy dx
Jr"   1 (£ +W J\y\<y

G2~E      f r

(~">-£        r

imTmLll-^r'+'d»m
<Ct|r(E + irt|-'||/||,=C£e-"|l/tli.

The estimate of the gamma function can be found in [E, Volume 1, p. 47].

We continue with the L2 estimate of the mean when 7 = —rL^- + ip and t = 1.

In this case the multiplier

m-H±+i„(0 = \&-l>iJ-i+i,(\li\)

and as we have seen in Lemma 1 it can be estimated, i.e.

m_,±.+lM(0|<Ce3^l.

C depends only on the dimension n. Therefore by Plancherel's identity

||F-a*1+'>(l)||a = C||F-^+^(l)||2 = C\\m_n_^+lJ\\2

<Ce3^l||/||2=Ce3^l||/||2.

The operator F^l) is of "admissible" growth, so we can perform the complex

interpolation of Stein (see [SWe, p. 205]) to get the following:

(16) ||^(1)||P<C||/||P,

where -^ < 7 < -1 + £ and p = n~+j~+* ■ By duality we also have (16) if

p' = "n+tfe- Now the standard dilation argument shows that (16) can be replaced

with

II^WIIp < qi/llp.
The constant C does not depend on the variable t. Now by Fubini's theorem

(J    IbF^HJdx) " = (|Rn 1^ \v(t)F2(t)]pdtdx^j '

= (/ \<p(t)\"l jFKtWdxdty

<(/Rk(*)lpcp||/||^*)P=c|b||p||/||p.
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Take tp, /, e, and p as before and define a+ = max(a,0). This gives

A change of variable z = ty makes this equal to

Again using the asymptotic expansion of the gamma function and Fubini's theorem

we get that

||^r1+t1i <C£e3^l /    \f(x-z)\ f \v(t)]\t\-n(l-]i\2)%-ldtdz.
Jr" Jr

If we can show that the kernel

/ \<p(t)\\t\-n{l-\tfY+-1dt
Jr

of the convolution of the right-hand side is bounded, then

(17) sup|bFr1+v||i<ae37rM||/||i.
x

But by the trivial estimate (1 - |f |2)+_1 < (1 - If |)+-1 and splitting the integral

defining the kernel in two parts, we can find a bound of the kernel

/    \<p(t)\\t\-n(i - if i2rx dt < f    \<p(t)\\t\-n(i - if D-1 dt
J\*\>\*\ J\t\>\z\

= /     \<p(t)\\t\-n(i - ud-.1 dt + [       Mon*rn(i - if i)-1 ̂
J\t\>2\z\ •'|2|<|t|<a|«|

<[ \<p(t)\\t\-n21-edt+ ! \<p(t)\\t\-n+l\t\-l(l-\^\f-\dt

<2J-£ / \<p(t)\\t\-n dt
J\t\>2\z\

+ (     sup     \<p(t)\\t\-n+1) [ (i-lfl)*-1!*!-1*-
\\z\<\t\<2\z\ j J\<\zlt\<\

Changing variable s = Q in the second integral makes it equal to

f      (l- \s\y~1 - Mds < 4 [\i - sy-1 ds = —.

Summing up we see that the kernel is bounded if tp E C0X>(R\ {0}). We now use an

extended version of Stein's interpolation theorem for a complex family of operators

(see [BP, p. 313]) to get

(18) (^JI^;||?'dx)F<C||/||p,
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P = n+T+if' ^rom (^) an<^ tne earlier used L2 estimate

(19) (|RJbF-^+tM||2dxy <Ce3^l|b||2||/||2=Ce3^l||/||2.

Let 7 be fixed in [-!L2^,— 1]. Using Riesz-Thorin's theorem for vector-valued

functions (see [BL, p. 107]) we can interpolate between

(20) (fKJvF2\\*dxy <C\\<p\\p\\f\\p,

where p = 7^^ > 1 and (1) for a = 0 = a±i + 7, i.e.

(21) (|Rn Ib^ll^dx)5 < CIMUj.il/lla

and obtain

(22) t^l^\\tpF2\]p^dxy <C|b||po-9|M|^2||/||p.

Here ^L±2£ = p0 < p < 2, a = a=l + 7 + 1 + £(1 _ 3.) and 0 = a.

Using the same argument we can interpolate between (20) with p such that

P' = p^r = ^^ < 00 and (21) to obtain (22) with 2 < p < p0 = -^+j±f,

" = v+^+1+£(1-F)and^ = f-
We now continue with the interpolation of (18), p = ^+~"+2/, and (21). This

yields

1

(23) (f    llv^lllp dx) "   < C^H/llp

for n+ffi/ < P < 2 and a = ^1- + 7 + 1 + e(l - |). Another application of the

above type of Riesz-Thorin's interpolation theorem, now applied to (22) and (23),

gives

(f \\pF2\\r<ad*y <cAf\\v

Here *=1±2* < p < 2, p < r < p' and a = ^ + 7 + 1 + e(l - |) (7 fixed). But

since the spaces Jz?p(R) decrease when a increases, the conclusion still holds if we

allow0<a< EpT1+7+l + e(l-|) (orO<Q< 2=i+7 + l+£(l-^r)ifp>2).

So, for an arbitrary p such that ^+^ < p < 2 and 0 < a < ^^r- + 7 + 1 we choose a

small positive e so that a=I < n=A±M < p < 2 and a < a=I + 7 + 1 + e(l - |) <

a^- + 7 + 1. The same thing is done for 2 < p < ~a=l and 0 < a < a=I + 7 + 1.

This proves (5) under the conditions (viii), (ix) and (x) (or (viii), (ix') and (x')).

We now prove (5) under the assumption that a < 2^+7 + 1 and the restriction

r = p and 7 an integer.

Let M(A, B) be the class of multipliers that give bounded operators from A

to B, and set Mp = M(LP,LP).  The estimate ||/ * dS||i < C||/||i is easy, since
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the convolution with a finite measure is bounded in L^R"). This shows that the

corresponding multiplier

mm) = (dS)(t) = C|e|^ + 1 Jf-i(lel) G My.

Now a computation (see [Pr and E, Volume 2, p. 11]) of the derivative of the

multiplier gives

;,.,..,-,.,„.,.(£,,,„),

where r = |£| and Ri are the Riesz transforms, defined by (Rif)(£) = &/(£),

i = l,... , n. So the new operator looks as follows:

(n \ n n

£ Ri(Xi dS(x))    * / = £ ((Ri(xi dS(x)) * f) = £((/*/) * (* dS(x)).
i=l J i=l i=l

The convolution of a function with the measure XidS(x) is bounded on L1(Rn),

since it is finite. The Riesz transforms are bounded on H1(Rn) (see [Stl, p. 232]).

Thus the operator £"=1((i?i/) * (xidS(x)) from ff^R") to L1(Rn) is bounded,

or equivalently Ifl"*"1"1 J$(|£|) GM(r71,L1).

LEMMA 2.   Assume that ~a±i < 7 < -1, p(7) = a=i and 0 < A < a±i + 7-

//

ier*-vf+7(iei)6MPh)1

ieiAier^^t+,(iei)eMp(7_A).

ierf-^f+^i(iei)eMph),     7<-L
£/ien

|e|AK|-^-Vt+,+ 1(|e|)GMp(7_A).

Assume for a moment the truth of this lemma.  We use induction to prove our

assertion. The induction hypothesis is

(24) r-t+i+*Jt_1.fc(r), r-* + 1+fcJt_fc(r) G Mp(_fc_x),

where fc = 1, 2, ..., m — 1 and m < a±i. We shall show that (24) holds true even

for fc = m.
With use of the recursion formula J„_i(r) = ^ Jv(r) - J„+y(r) (see [E, Volume

2, p. 12]) we obtain

r-t+i+»»Jf_1_m(r)

= r-t+1+m [^f^f-i-(m-i)(r) - Jt_i_(m_2)(r)'

= (n + 2m)r-* + 1+(— l> J^y_{m_y)(r) - r • r-* + i+("-0 J^Mm_2)(r)

The first term belongs to Mp(_m) according to the assumption, but Mp(_m) C

Mp(_m_!) by duality and interpolation.    See [BL, p. 133].    The second term
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belongs to Mp(_m_i), because

r-*+l+(m-l)^_i_(m_a)(r) g Mp(_m)

by the assumption and this together with the lemma gives

r ■ r-t + *+(—U J„_x_(TO_2)(r) G Mp(_m_1}.

Therefore, r"» + 1+mJf_1_m(r) G Mp(_m_1).

Consider now

r-f+1+mJf_m(r) = r   r_t+1+(m_1)j^_i_^_i)(r)

But according to the assumption

r-t+l+(m-l)j„_1_(m_l)(r)eMp(_rn)

and a multiplication with r puts the multiplier in the class Mp(_m_i) by the lemma.

Thus (24) is true for fc = m. This proves the induction step. To conclude the

starting point fc = 1, we observe that it follows from the fact that

(25) r-%+1J%-y(r)eMy    and    r"*+1 Jf (r) G M(/71,L1).

Applying the above argument and the inclusions Mp(_i) = My C M(i71,L1) C

Mp(_2). (25) can be interpreted as step fc = 0. But the assumption (24) implies

that ||F^l) ||p < C||/||p, for integral 7. By the same homogeneity argument as

before one easily sees that

||^(0||p<C||/||p, p = p(7),

with C independent of t, and as a consequence, for r = p,

[j^tpF^dxy = [j^nF^midiy <ciiHipii/nP.

Thus (5) follows from the above mentioned interpolation with (1) (a = 0).

We next assume that a < a=l + -y + 1; r = p and ^^ + 7 is equal to an integer.

For such 7's Jn.+1 becomes a "spherical" Bessel function and the remainder term

in its asymptotic expansion vanishes (see [E, Volume 2, p. 78]), i.e.

k

ji+1(\z\) = Yl (c^l?l+^e~m) ier *-j-
i=0

Let 4> be a cut-off function in C0X>(R) such that 0(|£|) = 1 for |f | < 1 and </>(|£|) = 0

for |f | > 2. Then

0(iei)ier^^f+^(iei)eMp, P>i,
since |f|-$-tj§ +7(|£|) is C°° and bounded for small cf if 7 > ~a±i. It will be

enough to find an estimate for the first term (l-<p(|f|)) (c0e^^ +d0e_t^l) |£|~"2 ~n

in

(i-0(iei))ierf-^f+,(iei)

= (1 - <A(lel)) (c0e*l€l + doe-^l) ler2^"7

+ ■ • • + (1 - 0(kd) (c^^i+d^-^i) ier sti—'-k,
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since the others decay faster, fc is a number depending on ^ + 7 only. But such an

estimate falls under the scope of Theorem 1 in [Mi] and as a consequence we get

that the first term belongs to M(HP, Hp) if

(n~1} p-2   ~—+^

This means that ||F^(1)||P < C||/||p, 1 < p < 00, if -a±i < 7 < -1 and a=I <

p < 2 (or a=i < pi < 2). ||F_1(l)||i < C||/||i is contained in the above case where

7 is an integer. From this we obtain, as before, (5) under the desired conditions by

interpolation with (1) (a = 0).     U
PROOF  OF  LEMMA  2.   It is known that |£|^ G M(Hl,Hl) C M(Hl,L^,

p E R, with

llltflw(*i,Li)<c(i + H)B+1.
(|£|tM satisfies Hormander's hypothesis for the Mihlin multiplier theorem and gives

rise to an operator bounded on H1(Rn). See [FS, p. 159].) This implies that

ler-^^-ideDGM^1,^1),

\^\-^ + lJn_y(^\)  =C(dS)(0  E My.

We have that M(Hl,Ll) c Mp^ if -a|— < 7 < —1, and as a consequence

Kr-f-^?+1(iei)eMPh)

if

ier^-vt+^(iei)GMPb).
In the other endpoint we have that

Ki^-^ier*-^+,(iei)| = |iei^t+,(iei)| < c,

if 7 > -a±i. cf. Lemma 1 (/ = 0). Thus

lil^+^Ki-s-v^oeDGM,,
with the M2-norm independent of p. Interpolating the complex family of operators,

defined by the multipliers |f|A+tM|£r^~~<Jn+1(\€\), between the endpoints A = 0

and A = a±I _|_ ̂ g[ves

i^rier^-vt+^(iei)GMp(7_A),

0 < A < a±i + 7. if

|er^-Vf+7+1(|e|)GMp(7),        7<-l,    or    \(\-9+^J9Q(\)eM(H\Ll)t

we replace Ja+7 (J|-i) by Ja+^+1 (Jn) in the previous discussion and obtain

ieherf-vf+7+i(iei)GMPh_A),

for 0 < A < a±i + 7.    n

PROOF OF COROLLARY 2.  As in the proof of Corollary 1 we use that S?g is

continuously embedded in Lq, BMO and Ag for certain values of p, a, q and 8.
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For q ~ p ~ a and l<P<9<°°we have the embedding =S^P(R) C Lq(R).

See [BL, p. 153]. So for 7, p and a satisfying (vii), (ix) and (x) this becomes true

if
1      1 1      n-l (n       \
- = --a>-— -7-l = --+7>0,
q     p p        p' \p'       /

which is (xi).   If p and a satisfy (ix') and (x') instead of (ix) and (x), q is then

forced to satisfy

1      1 1      n-l , (n-2 \
- =-a >-7 - 1 = -    -+7+1    > 0.
a      p p        p \    p )

This is (xi') and proves that (xi) or (xi') is sufficient for (6).

If a = }- and 1 < p < 00, the space =2^P(R) embeds continuously in BMO(R).

See [Stl, p. 164]. This substitutes the endpoint q = 00 in the previous case, and

by the same reasons (7) is true if

-(^ + 7j>0        (p<2)    or     - j'!l^+7 + ij >0        (p>2)

which is contained in (xii) and (xii').

In the proof of (8) we need the following embedding ^fp (R) C Ag (R), a = -)■ + 8,

1 < p < 00, 6 > 0, which can be obtained from the chain of embeddings

^l+6 C A?    C Ap~fi C A?°° = As,        p < 2,
P P P

or

-S?+, c App    c Ap~6 c A?000 = As, P > 2.
p p p

(The definition of the Lipschitz-Besov spaces Apq and the embeddings can be found

in [Stl, Chapter V, §5-6].) With a satisfying (x) we have

1        c n~i
-+8 = a < —— + 7+I
P P

and therefore 8 < —, +7    so that if    ^— < p < 2 the conditions for the embedding

are satisfied. This proves (8) in the case (xiii). For a satisfying (x') we get that

.     n-2
8 <-1-7 + 1

P

and (5) if
n-2

2<p<---.    □
1+7

PROOF OF COROLLARY 3.   We recall the estimates in the proof of Theorem 2

and take a closer look at the dependence of tp.

Another estimate of the kernel

/ \tp(t)\\t]-n(i-^t]2y-'dt
Jr

gives

c(iM-rii + iM-rn+1iioo)
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as an upper bound. Therefore (17) can be rewritten to yield

suPibFTl+iii < c^icaM • nil + im • r+i lUU/lli.
X

Interpolating with the L2 estimate (19) of the endpoint 7 = -rt2^- + ip gives

(26)   (J ii^iip' dx}' < cm ■ r"iii + \\<p\ • r+'iioo)1-*1 ml111/iip,

where
n - 1 + 2e

p =-
n + 7 + e

and
g1 = i = -21 + ** + e.

p' n - 1 + 2e

We continue, as in the proof of Theorem 2, by the interpolation between (26) and

(21) with the following result (replacing (23)):

(27)   (£,!**£*)*

< o«iipi ■ i-iii+im ■ r»+1iu)'-*' iMi!,)'-',iMi5,a/b-

Herea=l^=p0<p<2,a = api + 7 + i + e(i-|))/?=s±l + 7and<?2 = |.

Finally, we interpolate (27) with (22) (9 = 02) in the case when p < 2 and obtain

(28) < c(((\]tp\ ■ |-"||i + |M • rn+ioo)1-^||2!l)1-*2IMl|2)1-('3

x(\\<p\\P;e^\\eL)e3\\f\\p-

Where p < r <p' and
1 + 1-1

a  — r     p

p

Choose po € Co°(R \ {0}) so that supp p0 C {t; \ < \t] < 2} and

00

J2   Po(2kt) = l,        t^O.
k=—00

Set pk(t) = p0(2kt), fc G Z, and

00

p(t) = J2Po(2kt),
k=0

then p(t) = 1 for 0 < \t] < 1. It is sufficient to prove that (5) holds with p(t)|t|7?

instead of tp(t)\t\n. We first obtain (5) with pfc(i)|i|'7 and then the full result by

summing them up.  Here is where the above estimates come in.   Replacing tp by
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Pfc | • C in (28) gives that

(((im • nil + im • rn+1iioo)l-fliibii2,)1-fl2ii¥'ii52)1-fl3(ibiiPo-fl2iipii52)9s

can be estimated and an upper bound is a constant times a power of 2~k. If n is

chosen so that the exponent becomes positive, then the geometric series converges

and we obtain (5).

Therefore, we proceed with the estimates of the norms of p/-| • l^

\\pk\ • n • rii + iifti • n • rn+1iioo = c(2-T-n+i,

iiPfci-niP0 = c(2-fcr+^

and

IN • ni^a < c(2-ky-^.

So the considered exponent becomes

(ri-n + l)(l-9y)+(r, + l)0i   (1 - 92) + (r, - 0 + ^j 92   (1 - 93)

+ U + ±)(i-e2)+(v-p + ^\e3 93

= 77+     (l-n)(l-9y) + ^   (1 - 92) + (^ - 0^92   (l-03)

+ \-(i-92)+(l--0]92]9z

= n+   (l-n)(l-9y)+6^(l-92)(l-93)

+ —(1 -92)93+ (1-0) H-
Po \2       /

Since we only consider positive exponents we can take e = 0 where it appears above.

Performing the substitutions

n-l n+l 0l + 7
Po = ——,    8=—5—+ 7,    9y = -2--,

n + 7 2 n-l

a=l + -1 + 1 1 + 1-1

92 = ^E±rbr and ^3 = j-^t-
2    "r7 p
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in the exponent gives

+ n-l y        =±i + 1   )     2_! {2+1)     n±l + 1

-:UU     ,     2     2..     l + 7\^+7-^-7-l    l-l-^-i + 1
"I 27     n-l) =±L+1 2(i_i)

. n + 7    ^+7-^-7-1   i±i^_/n       x^+7+1

n-l ^±i+7 2(1-1)       V2      V     n±i+7

"+V 2l     n-l)       =±1+1 2(1-1)

, n + 7(n-l)(|-|)    1 + 1-1     „_! i+l±2

«-l      ^ + 7      '2(1-J) 2    1" + ^ a±i+7

«-!     17   , „       l+7\ /I      1\
= ??+nT27n[r1-n-27-n^lj(p-rJ

n + 7 /l      1       \     ,       „ . /I      I+7Y
+-1    - + - - 1   - n + 27     - +-\

n - 1 \r     p       J \p'     n-l J

n—1     \1 ( „       1 + 7     n + 7 \
= v H-^--1 - n - 27-^ -I- + n + 27

n + 27+l[p\ n-l      n-l'/
V-v-'

=0

1 (. r.        1 + 7      n + 7\      n + 7
+ -    1 + n + 27 +-1 +-1-1

r\ n—1      n—1J      n-l

n—1      Tnn + 27 + 1      . . n + 7"
= r? +-^-(n + 27+l—-±

n + 27 + 1 |_ r n-l v ' n-l

n     ,        . n
= r? +-(n + 7) = 77 - — - 7.

Which is positive if n > p- + 7.

For p > 2 we repeat the argument for (22) (9 = 92), but now putting p0 = —jrr

and

The exponent becomes

(, + l)(l-.2)+(r,-/3+i).2

= „ + l(l-*2) + (1-^
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and with the substitutions

V     n-l [l        =±1 + 1   J     {2+1J     «±i+7

1    l+7-(n-l)(f+7)
= V H— • -n-

P ^+7
y-v-'

= -n + 2

(1 1+7 ™ + 7  \

-n^I + (n-l)(^±l+7) " %T^J
V-v-'

=-1

n-2
= 77- -7-1.

P

Taking 77 > ^^ + 7 + 1 gives a positive exponent. This ends the proof of Corollary

3.    □
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