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CONNECTED LOCALLY CONNECTED TOPOSES

ARE PATH-CONNECTED

I. MOERDIJK1  AND G. C. WRAITH

Abstract. A conjecture of A. Joyal is proved, which states that, in contrast to

topological spaces, toposes which are connected and locally connected are also

path-connected. The reason for this phenomenon is the triviality of cardinality

considerations in the topos-theoretic setting; any inhabited object pulls back to an

enumerable object under some open surjective geometric morphism. This result

points towards a homotopy theory for toposes.

Introduction. The proposition stated by the title was conjectured by A. Joyal in

1983 during a seminar at Columbia University. Every topologist knows that a

connected locally connected topological space is not necessarily path-connected. The

set of natural numbers with the cofinite topology is an example, and so is " the long

segment". However, it is true that all connected locally connected complete metric

spaces are path-connected (Menger (1929), Moore (1932)).

Toposes are generalizations of (sober) topological spaces if we identify a topologi-

cal space X with the topos of sheaves on X. The notions of connectedness and local

connectedness were defined in SGA 4 (Grothendieck and Verdier (1972)) for toposes

in a way that extends the usual versions of these concepts for topological spaces.

How then can Joyal's conjecture be true? The explanation lies in the correct

interpretation of what path-connectedness means for a topos S. It does not mean

that "for every pair of points x0, xx of S there is a path I -> S with /(0) = x0,

f(l) = xx". This is an inappropriate definition, inasmuch as toposes do not neces-

sarily have points. Instead, one has to construct the "space of paths in S" as again

being a topos. More precisely, a topos 3? is exponentiable if the 2-functor J^X ( —)

has a right 2-adjoint ( - ) ■**, and S * is interpretable as the topos of maps from 3* to

S. Points of S^ correspond to maps from 3* to S. The (topos of sheaves on the)

unit interval / is an exponentiable topos, so for any topos ê we may form the topos

S' of paths in S. The inclusion of the endpoints (0,1}-»/ induces a map of

toposes S' —» Sx S, and it is natural to say that S is path-connected if this map is

a surjection. We will prove the following slightly stronger result (over an arbitrary

base topos).
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Theorem. For any connected locally connected topos S, the canonical map S1 -»

SX S is an open surjection; so, in particular, S is path-connected.

The explanation of what "goes wrong" for spaces like the long segment L is

straightforward. The topos V has no points corresponding to nontrivial paths

reaching the endpoint (see e.g. Steen and Seebach (1978), Engelking (1977)), but

L1 —> L X L is nevertheless a surjective map of toposes.

In attempting to prove a result of this kind, two approaches are available. One is

to manipulate directly with a site for S' (or a suitable site "covering" this topos). In

this rather algebraic approach, one generally "stays at one place" (one base topos).

The other approach is more geometrical: the strategy is to use adequate extensions

of the base topos available from general topos theory, which enable one to follow

classical arguments about points of separable metric spaces rather closely. Although

both approaches are equivalent, we will follow the second one, because it shows

more clearly the interplay between general topos theory and arguments (somewhat

similar to those) from topology. (But we will also give a brief description of the maps

of sites involved in the "algebraic approach"; see 2.6 below.)

Apart from the element of surprise, and as an illustration of the slogan that

generalized spaces are better behaved than topological spaces, what can this result be

used for? One answer is: homotopy theory for toposes. Homotopy groups of

topological spaces are really topological groups (which usually, but not always, turn

out to be discrete), so it is hardly revolutionary to insist that homotopy groups (or

groupoids, or other gadgets) of toposes are themselves toposes. The point is made in

SGA 4 that the right notion of quotient by an equivalence relation for toposes is to

take the topos of descent data. If iTm denotes a simplicial topos, no(#\) will denote

the topos of descent data; that is, its objects are pairs (A, o), where A is an object of

¿¥0 and a is an isomorphism d£A -> dx*A in 3CX satisfying the usual coherence

conditions. We have a surjective map of toposes 9C^ —> U0(¿£0). Let A. denote the

cosimplicial topos given by the standard simplices. For any topos S, we have the

simplicial topos SA\ and we define tr0(S) to be the topos U0(SA-). This is the topos

of connected components of S.

Of course, Aj is just the unit interval /. Let us denote by P(S) the Sx <?-topos

S' -> Sx S. We denote by T(S) the <?X <f-topos T^e? ) -* Sx S given by tt0(P(S)),

obtained by applying ir0 in the context of SX cf-toposes. We assert that TX(S) ->

S X S is a groupoid topos and is the fundamental groupoid topos of S. Pulling back

along the diagonal S^> Sx S gives the fundamental group -nx(S) as an <f-topos

(this takes care of the base point). We hope to say more about this in a later paper.

P. Johnstone has pointed out to us an example of a topological space having a

trivial fundamental group as a topological space but a nontrivial fundamental group

as a generalized space, a topos. The example is a "long loop" (obtained from the

long segment by identifying the two endpoints), which admits no nontrivial maps

from the circle, but—being connected and locally connected—has a nontrivial, but

pointless, generalized "space" of loops. Since the homotopy relation for it is given

by an open equivalence relation, its fundamental group as a generalized space will be

discrete and isomorphic to Z.
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1. Preliminaries. In this paper, all toposes are Grothendieck over a fixed, but

arbitrary, base topos if (thought of as "the" category of sets).

1.1 Spaces and locales. Our terminology concerning locales, spaces, etc., will be as

in Joyal and Tierney (1984). So a locale is a complete Heyting algebra, and a map of

locales is a function which preserves finite meets and arbitrary sups; spaces are the

duals of locales. For a space X, 0(X) denotes the corresponding locale, the elements

of which are called the opens of X. A (sober) topological space is a space with

enough points.

A presentation of a space A- is a poset P equipped with a stable system of covering

families such that 0(X) is isomorphic to the set of downwards closed subsets of P

which are closed for the system of covers; i.e.,

0(X) m { 5 ç P|(p < <7G S => p g S), and ( T covers p, T Q S => p g S)).

(Equivalently, P is a site for the topos of sheaves on X.)

For general information about spaces and locales, see Isbell (1972), Johnstone

(1982), Joyal and Tierney (1982), and Hyland (1981).
«¡p

1.2 Open maps. A geometric morphism J*7-» S is open if <p* preserves first-order

logic. <p is open iff its localic part (its spatial reflection) is, iff the unique A V-map

Og -» <p^(0^) in S has an internal left adjoint. (A topos 3? is called open if the

canonical map &-* if is an open geometric morphism.) An important characteriza-

tion states that J5"-» S is open iff there is a site C for 3* in S such that (in S it

holds that) all covers in C are inhabited. We can take C to have a terminal object iff

,^r—> S is also a surjection. In particular, a space X is open (and surjective) iff it has

a presentation P (with a top-element 1) the covers of which are all inhabited.

For some proofs and more information, see Johnstone (1980), Joyal and Tierney

(1984).
f

1.3 Connected locally connected maps. A geometric morphism 3?-* S is connected

if <p* is full and faithful, cp is called locally connected (or molecular) if <p* commutes

with n-functors. J5"-» S is locally connected iff there is a site C for 3* in S, all

whose covers are inhabited and connected, and we may take C to have a terminal iff

<f> is also connected. In particular, a space X is connected and locally connected iff it

has a presentation P with a top-element 1 whose covers are inhabited and connected.

For P we can take the connected open subspaces of X, so we may without loss of

generality assume that P is closed under sups of chains. (A chain in P is a sequence

( Vx,..., Vk) of elements of P such that for each i = l,...,k - 1, there is a W,, e P

with W{< V¡, Wt < Vi+X; equivalently, since all covers in P are inhabited, Vi A Vl + X

is a surjective (open) space.) We call such a presentation P of X, with 1 g P, P

closed under sups of chains, and all covers inhabited and connected, a molecular

presentation of X
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For proofs and further information, see Barr and Paré (1980), and the appendix of

Moerdijk (1984).

The properties of being an open (surjective) map and of being a (connected)

locally connected map are closed under composition. Moreover, as is clear from the

characterizations in terms of sites, these properties are preserved by pulling back

along an arbitrary geometric morphism.

1.4 Exponentiability. A topos 3* is exponentiable if the functor J^X (-) of

Grothendieck toposes over if has a right adjoint ( - )* (in the appropriate 2-cate-

gorical sense). Any compact regular space X is exponentiable as a topos, and if Y is

any space, Yx is the topos of sheaves on the space Yx, i.e., the exponential in the

category of spaces (so there is no harm in not distinguishing the two notationally).

The construction of the exponential space Yx in if is stable; that is, if if ' -> if is a

geometric morphism, then <p*(Yx) = <p*(Y)'p°(X) as spaces in if'.

For exponentials of toposes see Johnstone and Joyal (1984); the case of spaces is

dealt with in Hyland (1981).

1.5 The unit interval. By the unit interval / we will always mean the unit interval

as defined as a locale, as a "formal space" (see e.g. Fourman and Grayson (1982)).

Thus, in any topos if, I is a compact regular space, and hence exponentiable as a

space and as a topos. Moreover, the construction of / as a formal space is stable; i.e.
<p

for a geometric morphism if  ->if', cp (Iy) = ly, (where the subscript denotes

where / is constructed; by stability, this subscript can be suppressed). (/ need not

coincide with the corresponding topological space of Dedekind cuts; in fact it does

iff this topological space is compact. Since we work over an arbitrary base topos, we

have to deal with the formal space rather than the topological space.)

1.6 Some base extensions. We will use the following three types of base extensions.

Lemma A (Joyal). Let S be a given topos over if. Then there exists a space X in if

and a geometric morphism X -» S which is connected and locally connected. Thus, if S

is itself connected locally connected, so is X.

Proof. See Johnstone (1984).

Lemma B. Let {S,-},-<=/ be a (small) family of inhabited objects in if. Then there
y

exists an open surjection S'-> if such that each S¡ is countable in S; i.e., for each i

there is an epimorphism N -» y*(S,) in S (S may be taken to be a space).

Proof. For a single object S, this is proved in Joyal and Tierney (1982, §V.3). The

case of finite families {S1,.,.,S„} then follows, since open surjections are stable

under composition and pullback. Finally, for the general case, one uses that open

surjections are stable under filtered inverse limits (see Moerdijk (1984)).

Axioms of choice are generally not available in a topos. However, the following

lemma says that we can apply an axiom of dependent choices in the context of

toposes, provided we allow for a change of base.
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Lemma C. Let S be an object of if, and let T be an inhabited tree of finite sequences

from S, "all whose branches are infinite":

(i) < > e T,
(ii) m < v and us.T=>v^T(u4:v means that u extends v),

(iii) uG 7=s]seS«*i£ T ( * for concatenation).
y

Then there exists an open surjection S-> if such that T has a branch in S; i.e., there is

a function N -» y*(S) in S such that (in S it holds that) V n g N(a(0),.. .,<*(«))

G y*(T).

Proof. We introduce a generic branch in the standard way: consider T as a poset

and make it into a presentation of a space X by equipping it with the covering

system generated by{w*i|sG5} covers u, for each «eT.T has a top-element (i),

and all covers are inhabited (iii), so if we take S to be the topos of sheaves on X,

S' -* if is an open surjection.

2. Proof of the theorem.

2.1 Reduction to the case of spaces. As a first remark, let us point out that it

suffices to prove the theorem stated in the introduction for the special case that S is

the topos of sheaves on a space. Indeed, if S is a connected locally connected topos,

there exists a connected locally connected map X -> S, where X is a connected

locally connected space (1.6, Lemma A). If the theorem is true for spaces, X' -*

X X X is an open surjection. Since ArxA,-»¡í>x<í>isan open surjection, it then

follows from Proposition V.1.2 of Joyal and Tierney (1984) that S' -» SxS must

be one, provided we can show X' -> S' is a surjection.

X'     -»     XXX

I I
SxS>/

To this end, let us recall the construction of the map X -» S from Lemma A of 1.6

in more detail (Johnstone (1984)). In case S is the inhabited object classification

if\U\, X -> if\U\ is the classifier for a partial enumeration of this generic inhabited

object U of if \U\.\n other words, given a geometric morphism J^-» if\U\, there is

a 1-1 correspondence between maps &-* X over if\U\ and partial enumerations of

f*(U) in &, i.e., diagrams in 3* of the form

S     -     f*(u)
i
N

Write Xu for this specific space X (identified with the corresponding topos of

sheaves), with a connected locally connected map Xa -» if [£/].

For a general Grothendieck topos S, there always is a spatial geometric morphism

S-*Sf[U], and the cover X -> S of 1.6, Lemma A, is simply constructed as the
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pullback

X     -        Xv

I 1

S     -»     if\U\

Claim. X' ^ S' is a stable surjection.

Proof. It suffices to show that (Xv)' -*6f[U]' is a stable surjection. We will
P a

indeed prove that for any base extension 3?'->if and ^^>if[U]' there is an open

<7 ß

surjection Jf^ 3? and a lifting 3?-* (Xy)' with

# 4   (¿)7

i?        i
3? A ^ttV]7

commutative.

By working "inside 3?", we may assume <S = if (p = id). So / -> if\U\, and this

is just an inhabited sheaf .4 on / in y, by definition of if\U\. So the set of rational
ß

intervals V with 3 a G .4(F) cover /. A lifting / -» Xj of a corresponds to a partial

enumeration of A in sheaves on /. To get this partial enumeration, we may extend

the base (this is q): let if' -» if be an extension in which {Vn }„ is the set of rational

intervals in / such that A(Vn) is inhabited, and in which there are enumerations
e„

N -» A(Vn). (Such an open surjection if'-^if exists by Lemma B of 1.6.)

Now work in if': let A(N X N) denote the constant sheaf on / (inside if'). Let

T c A(N X N) be the subsheaf generated by (n, m) g T(V„), all n, m g N. Then
b

there is a map T -» A of sheaves on / whose component over Vn is defined as

bK: T(V„)-+A(V„),    bK(n,m) = en(m).

(b is a well-defined map of sheaves, since the F„ cover /, i.e., generate / as a space.)

b is an enumeration of A in Sh(/) and Te N in Sh(/) (up to coding N -* N X N),

so b corresponds to a geometric morphism ß such that

9" x I     t        x.,
u

I I

if XI      A     if[U]

commutes. This proves the claim and completes 2.1.

Remark (added in proof). It was recently discovered that if J^"-» S is any

connected, locally connected map of toposes, then 3f,-*S1 is a stable surjection;

cf. Moerdijk (1985). The proof of this result, however, is much more complicated

than (and completely different from) the particular case treated in the preceding

claim.
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We will first prove a slightly weaker version of the theorem, namely

2.2 Proposition. Let X be a connected locally connected space. Then X' -» X X X

is a stable surjection.

As said in the introduction, our strategy will be to extend the base topos if

sufficiently so as to be able to perform a classical argument (in 2.5 below) somewhat

similar to Menger (1929), Moore (1932) (see also Engelking (1977, exercise 6.3.11)).

To this end, we first introduce a generic pair of points (in 2.3), and then we force

some countability conditions (in 2.4).

2.3 77ie generic pair of points. Let X be a given connected locally connected space

in Sf. Let 3F= Sh(X X X) ^if and write Y = p*(X). Y is a connected locally

connected space in 3*, and p is an open surjection (in fact p is connected locally

connected). In 3*, there is a generic pair of points

(y0,yx):l^YxY = p*(XxX),

corresponding to the projections. A simple diagram argument shows that to prove

that  X' -» X X X is a stable surjection in if, it now suffices to find an open
q f

surjection 3?'—> 3* such that in 3? there is a map of spaces / -» q*(Y) with

/(0) = x0, f(l) = xx (I is the formal unit interval in 3?).

2.4 Countability conditions. Let P be the presentation by connected opens of Y in

J5", so P is a molecular presentation as in 1.3. For each W g P, let (W^W) : / g Iw)

be the family of covers of W in P. Adjoining surjective functions N -> Iw to S (for
_      r

each IF g P) as in 1.6, Lemma B, we find an open surjection J5"' -» 3* such that in

&', Z = r*(Y) has a molecular presentation in which for each element the family of

" basic" covers of this element is countable.

Similarly, we can adjoin surjections N -» {U g P|^0 g U} and N -> (17 g P\yx

g U). So in 3f', the points y0, yx of r*[Y) each have a countable neighbourhood

base consisting of elements of the molecular presentation.

So in y, we now have the following data: a connected locally connected space Z

and two points z0, zx of Z, with a molecular presentation P of Z such that

(i) for all W G P, (<&„(W) : n g N) enumerates the covers of W in P,

(ii) (A/„(Z0): n G N) enumerates the elements of P which contain z0,

(ii) ( Nn( zx) : n g N) enumerates the elements of P which contain zx.

2.5 Proof of Proposition 2.2. After these preparations, we can now construct an

extension 3? -* 3?' such that in 3? there actually is a path / -* s*(Z) from z0 to zx

(s will be an open surjection). We work in 3*' with the data as in 2.4.

A chain from z0 to zx is a chain (Vx,...,Vk) of elements of P (see 1.3) such that

z0 g Vx   and   zx G Vk.   Consider   the   tree   T  of   pairs   of   finite   sequences

{{V?.VRmuw (Pm)<«<«)> where the W"•••• VHm)) are chains from z0 to

zx, and the p"': {!,...,k(m + 1)} -> {1,..., k(m)} are functions such that

(a) y </ ~ pm(j) < p-(j'), and F/"+1 < VpU);

(b) for each m' < m and each j < k(m), V™ is contained in an element of

*m(Vjr*. .. op--.,,-,), for each n < m;
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(c) V{" is contained in Nn(z0) for each n < m, and Vkmm) is contained in N„(zx)

for each n < m;

(d) Given / s£ k(m), suppose pm(j) = i for / = j0, j0 + 1,..., /0 + fc.

Then Fy/"+1 < V,mx (unless y0 = 0, i.e., i = 0), and V£?¿ < Fß, (unless ;ô + k

= k(m + 1), i.e., i = k(m)).

It follows from the molecularity of P that any such pair of finite sequences

satisfying (a)-(d) can be extended to a longer one. Explicitly: suppose we are given

((yy.nTm))m<n.(Pm)m<«) as above. Cover each Vf (j = 1,..., k(n)) by a

common refinement Wj of the covers #„+i(Fp!?'.... ¿y-i*/))* aw'< ai. Choose a

If0 3 z0 in P such that If0 < some element of ^, and IF0 < Nn + X(z0). Similarly

choose a Wk(n + X) 3 z, such that Wk(n+l) < some element of i^k(n) and H^(n+1) <

tfB+i(*i)-

Now for each / < k(n), some W¡ g #^ must have positive intersection with some

Wj+lGirj+l (i.e. 3Í/GP 1/<W$ and U< WJ+l). Now let Fi"""1 = W0,

Vy + \...,Vyyxl = If, be a chain in Wx, and let Vk"+1 be an element of P with

Vy+l < Wx and Vkn + l < lf2 (so in particular F¿" + 1 < F," and Vk" + 1 < F2", for

condition (d)). Let p"(/') = 1 for 1 « i; < k. Now define the next bit Vknyxl,..., Vfö,1

in a similar way: let F^1 = Vkn+\ let F^1 = W2, Vknyj,...,Vkny,l_x = W2 be a

chain from IF, to IF, in tT2, and let F//++/ be an element of P with Vyy,1 < IF2 and

Vyy¡ < IF3. Let P"(i) = 2 for /c < / < A- + /; etc., until F^V^ Wk(n+X) 3 zx.

By Lemma C of 1.6, there is an open surjection 3? -> J*"' such that the tree T has

an infinite branch in 3?. Replacing &' by 3?, we work within 3? with this fixed

branch which we will denote by ((V?,..., Vfim)) meN, (Pm)m^).

We now mimic this branch of chains of V,m 's by consecutive rational intervals in

/ = [0,1]. (Notational convention: the open interval (p,q) stands for [p, q) if p = 0,

and for (p, q] if q = 1.) Let p^1 = 0, ^f1 = 1. Suppose we have defined (p"\ q¡")

for 1 < / < aV(aw),

0 = nm < nm = nm < nm =   - ■ •    < nm       = 1
U        f'l    ̂  Î1 ft    ^ Î2 ^  Hk(,m) *■•

Define (py + \qy + i) for 1 < / < k(m + 1) as follows. If pm(j) = i for j = j0, j0 +

1,..., j0 + k, choose rationals rx,...,rk with pf < rx <  ■ ■ ■  < rk < q™, and let

„m+l   _   _ m _ m +1  _  « w +1  _  „ ~ m +1        _  „m+1 _  „ -,m + l  _   ., m
/'/„       "P/ .     Qj0 Pjt+l       rU--r>Hj9+k-l - Pjo + k - rk>     <lj0 + k - <li  ■

So for each aai, {[pf,qj\- j = l,...,k(m)} is a "cover" of [0,1] by consecutive

closed intervals having one point in common, and the cover for m + 1 refines the

one for m according to the function pm.

Define a function /*: P -» 0(1) by

f*(U) = V{ {pf,q?)\j <j' and Vf V • • ■ v F/' < t/}.

We claim that /* defines a continuous map of spaces / -» Z, and that /(0) = z0,

Proof of this claim:

(i) /*(!) = (p", c7°(0)) = [0,1] (by the notational convention).
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(ii) /* preserves binary meets; more precisely, since P does not have meets, if

If </*(//) and If </*(t/) then IF A If </*(F) for some F g P with F < U,

V < Ü. Indeed, suppose W = ( p;m, qf) </*(!/) because VfV---V Vf < U, and

W = (pf\ qf) < f*(U) because Fj* V • • • V F/ < Ü. Let us say am > aw, and
py < pf < qf! < pp (other cases are symmetric or trivial). By construction, qj! = q™

for some j > /, and

j/> V • • • v F* < F,m v • • • v F/! < U.

So IF A IF' = (pf,qf) < /*(F/' V • • • V Vf), and Vf V ■ • ■ V Vf g P since P
is closed under sups of chains, and moreover Vf V ■ • • V V¡m < both (7 and ¿7.

(iii) /* maps basic covers in P to sups in 0(1): Let {Ua}a be a cover of U g P,

and suppose ( pf qj!) *if*(U) because Vf V ■ ■ ■ V Vf < U. For each k, j « it <

/', we have by stability a cover {W^A} of Vk in P such that each W¡f < some Ua. Say

{If/'} = ^t„(Vkm). Let aw = max(«y,. . ., Uj,). Now consider the chain

(Vf,..., Vfm) from z0 to zr By definition, there are 1 < lk ^ l¿ < /c(aw) such that

p«» ... op*-i(j) = /c «/,</</;

(for /c = 1,..., k(m), but only /c =/,...,/' are relevant). So for /A < i < /^,

K* < some IF^ < some i7a.

Hence ( pf, qf) ^f*(Ua), and therefore

(./>?.<) V ••• V(pj,c7*)< V/*(Í4)-

Since p;" = pf and gj = qf this u/awoíí means that [pf, qf') < V„/*(t/a), but we

miss the boundary points! To make up for those, however, it suffices to note the

following consequence of condition (d): Given any V¡", there is an n' > aï such that

VJÍ.Vf < V,m and p(/) < i < p(j'), where p = p" » • •' • o p"'~l (i.e., for chains

which are sufficiently fine, we get over the boundary).

This completes the proof that / * defines a map /: / -» Z of spaces.

(iv) Finally, /(0) = z0, /(l) = zx: Clearly, if /(O) g U then F0m < ¿7 for some aw,

so z0 g U. Conversely, if z0 g tV then U = Nn(z0) for some ai, so V¿" ^ Í/ for

aw > a?; hence /(O) g Í7. Thus /(0) = z0 as points of Z. Similarly/(l) = Zj.

This completes the proof of Proposition 2.2. In 2.7 we will show that X' -> X X X

is in fact an opeAi surjection.

2.6 Remark. As said in the introduction, one can also give a more "algebraic"

proof, by working directly with sites (presentations). We briefly describe the sites

involved. Let A' be a connected locally connected space, with a molecular presenta-

tion P. Hyland (1981) gives a presentation for the space X'. It is not hard to see that

in the present case, it suffices to consider elements in the presentation of the form

A"-i[(/>/, Pi+i), U¡], where 0 = px < ■ ■ ■ < pn = 1 are rationals, and (Ux,..., U„) is

a chain in P (Hyland would write [(p,, pi + x) < < f*(UA] for our [(p,, pi+x), U¡]).

Let Q be a presentation of X1 with underlying poset consisting of opens of X' of

this form. Let P ® P denote the presentation of X X X obtained in the obvious way
F

from the presentation P of X. The inverse image 0(X) ® 0(X) -> 0(X') of the
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map X' -» X X X of Proposition 2.2 is induced by the functor

F
P® P-»0(A"),

F(V® If) = VJ  A [(PuPt+i), U,] g Q Ux < F, U„ < W

To show that F induces an open surjection, one would have to prove that

ff(IXl)-» 0(X') has a left inverse, left adjoint G: 0(X') ^ 0(X X X) de-

scribed in terms of presentations by

Q _> p g p

GÍA [[p,,pi+i), ul]\--ul+vm.

and that the Frobenius law G(U A F(V))= G(U) A V holds. The proof, however,

would be less intuitive, and at least as complicated, as our "geometric" proof.

2.7 Openness of the map X' -> X X X. Given the fact that X' has a presentation

Q as in 2.6, our proof of 2.2 actually shows that X' -> X X X is an open surjection.

We argue again in the geometric style, using base extensions to enable ourselves to

reason about points.

In general, a map B -* A of spaces in if (or in any topos) is open iff the image

/(F) is an open subspace of A for all F in some basis (some presentation) of B (see

Joyal and Tierney (1984)). If we allow for change of base, images can be described in

terms of points, just as in topology: if F g 0(B) and U g 0(A), then /(F) = U iff

for any geometric morphism 3? -» if and any point p g <p*(A), we have (writing F

for <p*( V), U for <p*(t/))

p g cV     «=»     there is a surjection .Pf-» 3? and a point
(*)

q G F c t//*«p*(5) such that in JT, p = /(?).

Let us consider the special case where B -> A is the map X -» X X X of Proposi-

tion 2.2. Take a basic open Í/ = A/_i[(/>„ P, + i), tVJ of X as in 2.6. We claim that

the image of U is the open subspace Ux X Un of X X X. To show the equivalence

(*), choose <&-^>if and a point p = (x0, xx) g (p#(t/,) X <p*(i/„) in 3?. Since

(<?*(//,),...,<p*(U„)) is a chain in 3?, there is an open surjection 3?0 -» 3? such that,

writing <p0 for the composite &0 -» 3?->y, there are points v, g <p*W A ^+i) =

<P*(17,) A ■Po(ty-t-i) ('= L••-,«-1)- Let j>0 = jc0, ,y„ = xj in 3?0. Since each

<Po(U:) is a connected locally connected space in 3?0, our proof of 2.2 shows that

there exists an open surjection Jf-> 3?0 such that in 3f there are paths /,:

/ -» *P*<P$(Ut) with /(0) = v„ /(l) = v,+1 (/. - 0,..., n - 1). Putting these paths

together, we obtain a map / -» \p#q>$(X) with f(i/n) = y, (/' = 0,..., n). This shows

=» of (*) for this particular case.
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The other implication «= is obvious.

This completes the proof of the theorem as stated in the introduction.

2.8 Remark. Finally, we point out that openness of the map S' -> Sx S can be

of interest, even if this map is not surjective. In fact, this generalizes the notion of

semilocal path-connectedness for topological spaces: one easily shows that for a

topological space X, the map X' -> X X X (of topological spaces, not of toposes) is

open iff X is semilocally path-connected. (We are indebted to P. T. Johnstone for

this observation.)
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