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GENERIC DYNAMICS AND
MONOTONE COMPLETE G*-ALGEBRAS

DENNIS SULLIVAN, B. WEISS AND J. D. MAITLAND WRIGHT

ABSTRACT. Let R be any ergodic, countable generic equivalence relation on a

perfect Polish space X. It follows from the main theorem of §1 that, modulo a

meagre subset of X, R may be identified with the relation of orbit equivalence

ensuing from a canonical action of Z.

Answering a longstanding problem of Kaplansky, Takenouchi and Dyer

independently gave cross-product constructions of Type III AW "-factors which

were not von Neumann algebras. As a specialization of a much more general

result, obtained in §3, we show that the Dyer factor is isomorphic to the

Takenouchi factor.

Introduction. Our two main results are Theorems 1.8 and 3.4. The first result

is concerned with a countable group G acting as homeomorphisms on a complete

metric space. When there is a dense G-orbit, we show that the relation of orbit

equivalence (with respect to G) can be identified, modulo meagre sets, with that

arising from a canonical action of Z.

The other main result, is on the classification problem for AVF*-cross-products.

It follows as a corollary to Theorem 3.4 that the Takenouchi factor is isomorphic

to the Dyer factor.

The intimate relationship between classical dynamics and von Neumann algebras

is paralleled by an equally close connection between generic dynamics and monotone

complete AW* -algebras. However, the reader whose main interest is in the results

on countable groups acting on complete separable metric spaces, may safely ignore

all references to G*-algebras and all references to spaces which are not metric

spaces. He could proceed straight to §1, referring to §0 for any unfamiliar notation

or results.

Let G be a countable discrete group acting as homeomorphisms of a perfect

Polish space X (that is, X is homeomorphic to a complete separable metric space

without isolated points). This action is said to be generically ergodic if, for some

xo E X, the orbit Gxn is dense in X. Equivalently, each G-invariant Borel subset

of X is either meagre or the complement of a meagre set.

From the standpoint of topological dynamics, the action of G on X would be

studied without throwing anything away. In classical dynamics, sets which are

null with respect to some G-invariant (or quasi-invariant) measure are regarded as

negligible. In generic dynamics we investigate the action of G on X modulo meagre

sets. We prove, in Theorem 1.8, that if G acts (generically) ergodically then orbit
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equivalence on X is unique, modulo meagre sets. This is astonishingly different

from what happens in classical dynamics.

For, in classical dynamics, even when G = Z, different actions of Z give rise

to a continuum of, essentially different, orbit equivalence relations. (They can be

classified into Types Hi, IIqo and III^, with 0 < A < 1.) On the other hand, any

action of an amenable group [1] is orbit equivalent to an action of Z. But, in general,

nonamenable groups give rise to orbit equivalence relations which do not arise from

actions of Z.

Let B be the algebra of bounded Borel functions on the unit interval and M

the ideal of Borel functions / for which {x: f(x) ^ 0} is meagre. Then B/M is a

commutative Aiy*-algebra which is not a von Neumann algebra.

When G is a countable group acting freely and ergodically on B/M, there

is a corresponding monotone complete G*-algebra, the monotone cross-product

M(B/M,G). This is an AVF*-factor of Type III which is not a von Neumann

algebra [11].

The existence of AW "-factors which are not von Neumann algebras was a ques-

tion of Kaplansky which went unanswered for many years. Independently, Take-

nouchi and Dyer gave examples, see [2,11,15], which were of the form M(B/M, Gi)

and M(B/M,G2) for different abelian groups Gi and G2. By Corollary 3.5 the

Takenouchi and Dyer algebras are isomorphic. But much more is true. In startling

contrast to the situation for von Neumann algebras, we show in Theorem 3.4 that

all AW/*-factors of the form M(B/M, G) are isomorphic.

Inspired by Feldman and Moore's [4, 5] construction of groupoid von Neumann

algebras associated with measurable countable equivalence relations, we consider an

analogous construction of a groupoid AW* -algebra associated with an equivalence

relation modulo meagre sets in §2. It would be possible to go into considerable

detail, but we confine ourselves to the fragment of this theory which we need in §3.

0. Preliminaries and background information. Let X be a Polish space,

that is, a topological space which is homeomorphic to a complete separable metric

space. Let Bor(X) be the tT-field of Borel subsets of X, and let Mg(X) be the ideal

of all meagre Borel subsets of X. Then, by a theorem of Birkhoff and Ulam [13, p.

75], Bor(X)/Mg(X) is isomorphic to the complete Boolean algebra of regular open

subsets of X.

Let (Un) (n = 1,2,...) be a sequence of nonempty open sets which form a base

for the topology of X. For each n, let Vn be the interior of the closure of Un.

Clearly each regular open subset of X contains Vn, for some n.

We shall assume in all that follows, that the Polish space X is perfect, that is, has

no isolated points. This is equivalent to the Boolean algebra Bor(X)/Mg(X) being

nonatomic. It turns out that Bor(X)/Mg(X) is isomorphic to Bor(R)/Mg(R); see

[13, p. 155].
Let S be the Stone structure space of Bor(X)/Mg(X). Then S is compact and

extremally disconnected. By the remark above, there exists a sequence of nonempty

clopen subsets of S, (Kn) (n = 1,2,...), such that, given any nonempty clopen set

K C S, there exists an n such that Kn C K. This clearly implies that S has a

countable dense set, but, of course, S does not have a countable base.

Let 6 be a bijection of X onto X. We shall call 9 a pseudo-homeomorphism of

X if 6 is a Borel bijection of X onto X such that 6[E] is meagre if, and only if, E
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is meagre. Clearly all homeomorphisms are pseudo-homeomorphisms, but simple

examples show that Borel bijections need not be pseudo-homeomorphisms.

When 9 is a pseudo-homeomorphism of X, then there exists a dense G^-subset

Xo such that the restriction of 6 to Xo is a homeomorphism of Xo onto Xo. This

follows by applying a theorem of Kuratowski [9, p. 400] to 9 and f?_1.

Let R be an equivalence relation on a Polish space Y; we identify R with its

graph. When R is a Borel subset of Y x Y and each equivalence class is countable,

then R is said to be a countable standard equivalence relation. For any A contained

in Y the saturation of A (by R) is the set

R[A] = {y E y ¡there exists x E A such that xRy}.

When R is a countable standard equivalence relation such that, for each meagre

set M C Y, its saturation R[M] is also meagre, we shall call R a countable generic

equivalence relation.

PROPOSITION 0.1. Let R be a countable generic equivalence relation on a Pol-

ish space Y. Then there exists a countable group, T, of pseudo-homeomorphisms of

Y such that

R - {(x, 7x) : x E Y and 7 E T}.

Furthermore, there exists a dense Gs-set Yo C Y and a countable group, G, of

homeomorphisms ofYo such that R[Yo] = Yo and

R n (Vb x *o) = {(x, ix) : x E Y0 and 7 E G}.

PROOF. Since R is a countable standard equivalence relation, there exists, by

Theorem 1 of [3], a countable group, T, of Borel bijections of Y such that R =

{(x, 71) : x E Y and 7 6 T}.

Let M be any meagre subset of Y. Then R[M] is meagre. So, for each 7 € T,

Tf[M] and 7-1[M] are meagre. So T is a group of pseudo-homeomorphisms. It

follows from the properties of pseudo-homeomorphisms and the countability of T,

that there exists a T-invariant, dense, G s -subset Yo C Y such that each Y in T

restricts to a homeomorphism of Yo onto itself. Let G be the countable group of

such restrictions.

It follows from the above proposition that the study of countable generic equiva-

lence relations reduces to the study of countable groups of homeomorphisms. In the

next section we shall investigate the latter but, of course, the main result, Theorem

1.8, applies to ergodic generic equivalence relations.

For any topological space T, let B(T) be the G*-algebra of all bounded (complex-

valued) Borel functions on T, M(T) the ideal of all / in B(T) for which {t E

T: f(t) t¿ 0} is meagre and let C(T) be the algebra of all bounded continuous

functions on T. Then, whenever X is a Polish space with no isolated points,

B(X)/M(X) « C(S).

Following [16] we shall call C(S) the Dixmier algebra and will sometimes denote it

by D. We remark that B(S)/M(S) is, again, C(S). The selfadjoint part of C(S)
is a complete vector lattice. By the Baire Category Theorem the natural map j

from G(X) into B(X)/M(X) p¿ C(S) is an injection. It is elementary, but useful,

to observe that j[G(X)] is order-dense in C(S); that is, each selfadjoint b in C(S)
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is the supremum of {j(a) : j(a) < b and a E C(X)}. In particular, this implies that

if two »-automorphisms of C(S) coincide on j[C(X)], then they are identical.

Let 9 be a pseudo-homeomorphism of X. Then / —► / o 9 is a *-automorphism

of B(X) which maps M(X) onto M(X). This induces a *-automorphism of

B(X)/M(X) « C(S)

which, in turn, induces a homeomorphism 9 of S.

Conversely, by a theorem of Maharam and Stone [10] (see [14] for a noncom-

mutative generalization) every »-automorphism of C(S) arises in this way from a

pseudo-homeomorphism of X.

1. Discrete group actions. Throughout this section X is either a perfect

Polish space or S, the Stone structure space of Bor(R)/Mg(R), or a dense G¿-

subset of S.

LEMMA 1.1. Let G be a countable group of homeomorphisms of X. Then the

following conditions are equivalent:

(1) Each G-invariant Borel subset of X is meagre or comeagre.

(2) Each G-invariant open subset of X is either empty or dense.

(3) There exists a G-invariant, dense Gs-subset of X,Y, such that {gy: g EG}

is dense for each y E Y.
(A) There exists an xq in X such that Gxq is a dense orbit.

PROOF. It is clear that (1) implies (2).

There exists a sequence of nonempty open sets (Un) (n = 1,2,...) such that each

nonempty open set in X contains some Un-

We now assume (2) and deduce (3). For each n, the set \Jg€G g[Un] is G-invariant,

nonempty, and open. So it is dense in X.

Let Y be the dense, Gs-set f)^Li U9eG 9[Un\. Let y E Y. Let V be any nonempty
open subset of X. For some n, Un C V. For some g E G, gy E Un- Hence, Gy is a

dense orbit in X; that is, (2) implies (3).
It is clear that (3) implies (4). We shall now show that (4) implies (2). Let U

be any nonempty, G-invariant open subset of X. Then, by (4), go^o £ U for some

go E G. Since U is G-invariant, it follows that Gxo C U, and so U is dense in X.

It remains to show that (2) implies (1).

Let E be a nonmeagre G-invariant Borel subset of X. By the Baire Property,

there exists a nonempty open set U and a meagre set Mo such that

E = (U\M0)U(Mo\U).

Now Mo is contained in a G-invariant, meagre FCT-set Mi. Since (2) implies (3),

there exists a G-invariant, dense G0-set, Y, such that Y C X\MX and each G-orbit

in Y is dense in X.

We observe that E ("I Y = U D Y. Then, in the relative topology of V, U n Y is

a G-invariant open set. Since each G-orbit in Y is dense in Y, it follows from the

equivalence of (2) and (3) that U D Y is dense in Y. Hence U is dense in X. So E

is the complement of a meagre subset of X.

DEFINITION. The action of a countable group, G, of homeomorphisms of X is

said to be (generically) ergodic if each G-invariant open subset of X is either empty

or meagre.
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COROLLARY 1.2. Let G and X be as above. Let Z be a G-invariant, dense,

Gf-subset of X. Then the action of G on X is ergodic if, and only if, the action of

G on Z is ergodic.

PROOF. Suppose G acts ergodically on X. Then there is a dense G^-subset Y,

where Y is G-invariant, such that Gy is dense in X for each y E Y. Then Y n Z is

a dense G s -subset of Z such that, for each y E Y D Z, Gy is a dense orbit in Z. So

G acts ergodically on Z. The converse is clear.

COROLLARY 1.3. Let G be a countable group of pseudo-homeomorphisms of

X. Suppose that each G-invariant Borel subset of X is either meagre or comeagre.

Let Y be a G-invariant, dense G s-subset of X such that each g in G restricts to a

homeomorphism of Y onto Y. Then the action of G on Y is ergodic.

When G is a countable group of pseudo-homeomorphisms of X, such that every

G-invariant Borel set is either meagre or comeagre, the action of G is said to be

(generically) ergodic.

LEMMA 1.4. Let G be a countable group of homeomorphisms of X. Then there

exists a G-invariant, dense, Gg-subset Y such that, for each g EG, the set

F(g) = {yEY:g(y) = y}

is clopen in the relative topology ofY.

PROOF. Let F*(g) be the closed set {x E X: g(x) = x}. Let F°(g) be the

interior of F*(g). Let Mx be the meagre Fo-set \JgeG(F*(g) \ F(g)). Let M2 be

the saturation of Mi by G; that is,

M2 = U g[Mi].
geG

Let Y = X \ M2. Then, for each g,

F(g) = F*(g)nY = F°(g)nY.

So F(g) is both closed and open in the relative topology of Y.

The following notion is important for some applications to G*-algebras. Let G

be a group of homeomorphism acting on X. Let h be a pseudo-homeomorphisms of

X onto itself. Then h is said to be G- decomposable over X if there exists a sequence

of pairwise disjoint clopen sets (Kj) (j = 1,2,...) and a sequence (gn) (n = 1,2,...)

in G such that |J Kj is dense in X and, for each x E Kj, h(x) = gj(x). If (J Kj is

the whole of X, then we say that h is strongly G-decomposable over X. When this

occurs, h must be a homeomorphism.

Let G and F be countable groups of homeomorphisms of X. If each 7 E T is

strongly G-decomposable over X and each g E G is strongly T-decomposable over

X, we say that the G and T actions are strongly equivalent. Clearly when G and T

axe strongly equivalent, Graph G = Graph T; that is, G and T are orbit equivalent.

It is convenient to introduce a weaker notion of equivalence which is appli-

cable when G and T act on different spaces. Let G be a countable group of

pseudo-homeomorphisms acting on Xi, and let T be a countable group of pseudo-

homeomorphisms acting on X2. We shall say that the G-action on Xi is equivalent

to the T-action on X2 when the following conditions are satisfied. There exists a
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dense G^-subset Yj C Xj (j = 1,2), and there is a homeomorphism 7t from Y"i onto

Y2. For each g EG, the restriction of g to Y\ is a homeomorphism of Yj. onto itself.

For each 7 E V, the restriction of 7 to Y2 is a homeomorphism of Y2 onto itself.

Further, the action of G on Y2 given by {7rg7r_1 : g E G} is strongly equivalent to

the action of T on Y2.

LEMMA 1.5. Let G and V be countable groups of homeomorphisms of X. Let

each 7 E T be strongly G-decomposable over X. For each g EG, let {x E X: g(x) =

x} be a clopen set.

Let A be a countable dense subset of X, which is G-invariant and V-invariant,

and such that A x A C Graph G and A x A C Graph T.
Then there exists a dense G'0 -set Y, with A C Y c X, which is G-invariant and

r -invariant and such that G and T are strongly equivalent on Y.

PROOF. Let g be any element of G. Fix x0 E A. Then

(x0,gx0) E A x A C GraphT.

So, for some 71 E T, g(xo) = 7i(xo). Since 71 is strongly G-decomposable over X,

there exists a clopen neighbourhood of xo, Ko, and go E G such that go(x) = 71 (x)

for all x E Kq. Since g~1go(xo) = xo, there is a clopen neighbourhood of xo, Äi C

Ko, such that g(x) = go(x) = 71 (x) for all x E Ki. Since A is countable we can

find a sequence of pairwise disjoint clopen sets (Kn) (n = 1,2,...) and a sequence

(in) (n = 1,2,...) in T such that

g(x) = 7„(x)    for all x E Kn

and A C Ur Kn-
Let O g be the dense open set Ui° Kn- Let Yo be the dense Gg-set f)g&G Og. Let

Y be the intersection of

{p[Yo] : p is in the group generated by G and T}.

Then Y is a dense G0-set containing A. Also G and T are strongly equivalent on

Y.
The following technical lemma is crucial.

LEMMA 1.6. Let G be a countable group of homeomorphisms acting ergodically

on X, and let X be totally disconnected. Let A = {tn : n = 0,1,2,...} be a dense

orbit of G. Let A and B be nonempty, disjoint clopen subsets of X. Let o € An A

and b E B n A. Then there exists a G-invariant, dense Gs-set Y, with A C Y,

and a homeomorphism h from Y onto Y, with the following properties. First h

interchanges A f) Y and B n Y and h is constant ony\(AUB). Secondly, h(a) — b

and h = h_1. Thirdly, h is strongly G-decomposable over Y.

PROOF. Since a and b are in the same orbit, A, gia = b, for some gi E G. Let

Ai be a clopen neighbourhood of a, with Ai a proper subset of A and ffi[Ai] a

proper subset of B. Let Bi = gi[Ai].
Since X has no isolated points, A D A and B n A are countably infinite. We

enumerate these sets. Let a2 be the first term in the enumeration of A n A which

is not in Ai. Let b2 be the first term in the enumeration of B f) A which is not

in B\. Then g2a2 = b2 for some g2 E G. Let A2 be a clopen neighbourhood

of 02 such that A2 is a proper subset of A \ Ai and g2 [A2] is a proper subset
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of B \ Bi. Let B2 = ¡72^2]- Proceeding inductively (or more precisely, using

the axiom of dependent choice) we generate pairwise disjoint sequences of clopen

sets (Aj) (j = 1,2,...) and (Bj) (j = 1,2,...), where A n A C \JT Aj' c a and
AnßC Ui° Bj C B, together with a sequence (gn) (n = 1,2,...) in G such that

jn[j4n] = Bn for each n. Let F be the G-saturation of (AUß)\ Ui°(^« u^n) and

let Y = X \ F.
For x E An n Y let h(x) = gn(x).

For x € 5„ n Y let /i(x) = g~1(x).

For x G Y \ (A U 5) let h(x) = x.
Then h has all the required properties.

The next lemma is cumbersome to state, but the essential idea is straightforward.

We are manufacturing a copy of the dyadic group 0 Z2 from the action of G and

at the same time splitting T into dyadic pieces.

LEMMA 1.7. Let T be a totally disconnected, perfect Polish space. Let G be a

countable group of homeomorphisms acting ergodically on T. Let A = {to, ti,...} be

a dense orbit. Let (Sk) (k = 1,2,...) be a monotone decreasing sequence of clopen

neighbourhoods of to such that tn £ Sn for any n. Then the following statements

hold.
(1) There exists a monotone decreasing sequence of G-invariant, G s-sets, (Tn) (n

= 1,2,...), where A C Tn for each n.

(2) There is a sequence (hn) (n= 1,2,...), where each hn is a homeomorphism

of Tn onto Tn and hn = /i"1. For 1 < k < n the functions hk[Tn are mutually

commutative. Each hn is strongly G-decomposable over Tn.

(3) For each positive integer n, there exists a family of pairwise disjoint, clopen

subsets ofTn,

{Kn(ai,a2,...,an):(ai,a2,...,an) E {0,1}"},

whose union is Tn.

(4)
Kn(aua2,...,an) nTn+1 = Kn+1(ax,a2,...,0)

UKn+1(ai,a2,...,an,l).

(5) Ä"n(0) C Sn n Tn and t0 E Kn(0).

(6) Let a E {0,1}™. Then the homeomorphism hxxh22 ■ ■ ■ h"n acting on Tn

interchanges Kn(0) with Kn(a).

(7) For each n,

{to,h,...,tn}c K1 h?■ • • fcS-(to): aE {0, 1}"}.

PROOF. We proceed inductively. Lemma 1.6 gives the first step.

Let A = Si and B = T\Si. So to E A and ti E B. By the preceding lemma,
there exists a dense Gg-set Ti C T such that A c Ti and a homeomorphism hx

from Ti onto Ti which is strongly G-decomposable over Ti, interchanges AnTi and

BC\Ti and maps t0 to tv Also hi = hy1. Let K1^) = AnTi and K*(l) = BnTi.
Let us now suppose that we have constructed (Ti,... ,Tn) and [hi,...,hn) and

the families {Kk(a) : a E {0, l}k} for k = 1,2,..., n. We wish to make the (n+ l)th

step of this inductive construction.

For some a E {0,1}", tn+i E Kn(au a2,..., an). Let c = h^hÇ' ■ ■ ■ fc£-(í„+i).
Then c E Kn(0). If c ^ i0, let b = c. If c = t0, let b be any element of Kn(0) D A
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other than io- Let A be a clopen subset of Ä"n(0) D Sn+i such that tn S A and

b<¿ A. LetB = Kn(0,...,0)\A.
We apply Lemma 1.6 to AliB. Let Y be a G-invariant, G¿-subset of Tn, with A C

Y, and h a homeomorphism of Y onto Y, as in Lemma 1.6. In particular, h(to) = b,

h interchanges A n Y and B (~1 Y, h = h'1 and h is strongly G-decomposable over

Y.
Let Tn+i = Tn n Y.
Let Kn+1(0) = A n Tn+i and ifn+1(0,0,... ,0,1) = B n Tn+i. For each a E

{0,1}" we define

Kn+1 (a, 0) = fc?1 • ■ • /£« [Kn+1 (0)]

and
Kn+1(a, 1) = /i?1 • • • /i£»[ifn+1(0,0,...,0,1)].

We define /in+i as follows. Let

/ln+1(x) = /lr---^"^r---^"W

for x € Ä"n(ai,a2, • •. ,an). Then it is straightforward to verify that hn+i com-

mutes with hj for 1 < j < n and has all the other required properties. This

completes the (n + l)th step of the construction.

We remark that since we may replace each Tn by flr^i ^n> which is again a dense

Go-set, we may use the preceding lemma with the additional assumption that each

Tn = Ti.
We shall identify the Cantor set G with the compact group n^2- The natural

action of 0 Z2 on J] Z2 is defined by (h, x) —» x + h. Let T be the group of

homeomorphisms of fj Z2 arising in this way from 0 Z2.

THEOREM 1.8. Let T be a perfect Polish space, and let G be a countable group

of homeomorphisms acting ergodically on T. Then the G-action on T is equivalent

to the r -action on the Cantor set.

PROOF. Since T has a countable base and G is countable, we can find a G-

invariant, dense G¿-subset, which is totally disconnected. Since G¿-subsets of Polish

spaces are Polish, it follows from Lemmas 1.4 and 1.1 that we may suppose, without

loss of generality, that T is totally disconnected, Gt is a dense orbit for each t E T

and {t ET: g(t) = t} is a clopen set for each g EG.

Let p be a complete metric for T.

Fix t0 ET and let A = Gt0- Let (hn) (n = 1,2,...) and {Kn(a) : a E {0,1}"}
(n = 1,2,...) be constructed as in Lemma 1.7, where we may suppose that T = Tn

for all n. We also demand that each Sn is contained in a sphere of radius 1/n

centred on io-

By construction
00

{¿o}=nKn®
n=l

and lim^oodiametert/G^O)) = 0. For each a E {0, l}m, hf1 h%2 ■ ■ ■ fegT is a

homeomorphism. So

00

{^•••^(io)}^  fl *">!,.-.,am,0,0,...,0)
n=m
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and, if xn E Kn(ai,..., am,0,0,..., 0) for n > m + 1 then

lim xn = hï1h?---h„?(to).
n—»co

We now define a map n from T into the Cantor set. Let (ai,a2,...) be any

infinite sequence of zeros and ones.

For x E D^°=i Kn(au a2, ■ ■ ■, ctn) let 7r(x) be (ai,a2, ■ ■ ■)■ From the definition

of the topology of the Cantor set it is clear that n is continuous. By Lemma 1.7,

and because each hn is strongly G-decomposable over T, the orbit A coincides with

{/i?1 • • • h„r(to) : a E {0, l}m; m =1,2,...}.

It follows from the preceding paragraph that the restriction of 7r to A is a bijection

onto 0Z2, that is, those sequences which take only finitely many nonzero values.

Let (dn) (n = 1,2,...) be a sequence in A and d E A such that lim ir(dn) = ir(d).

We shall show that limdn = d.

Let 7r(d) = (ai, a2,..., am, 0,0,...). From the definition of the topology of the

Cantor set, given any q there exists an N such that, for all n > TV, dn is in the set

Kq(ai,a2,...,am,0,0,...,0).

So h^h%2 ■ ■ ■ h%»(dn) is in K"(0) for n>N. Since Ä"«(0) is contained in a sphere of

radius l/q centred on io, it follows that limn_oo h^h22 ■ ■ ■ /i^f*(dn) exists and is io-

Since h"1^2 ■ ■ ■ h^" is an idempotent homeomorphism it follows that linin-n» dn

exists and is h*lh22 ■ ■ ■ h^(to). That is, limn-.,» dn = d. Thus the restriction of

7T to A is a homeomorphism onto 0 Z2, regarded as a dense subset of f] Z2.

By Lavrentiev's Theorem [9, p. 429, Chapter II] there exists a dense G^-set Y

such that A C Y C T and 7r|Y is a homeomorphism onto a dense G^-subset of

Q Z2. We may suppose that Y is invariant under the action of G and of the group

generated by (hn) (n = 1,2,...). The theorem now follows by applying Lemma 1.5.

COROLLARY 1.9. Let Gj be a countable group for j = 1 and j = 2. Let aj be

a representation of Gj in the group of all homeomorphisms of S. Let otj[Gj] act

ergodically on S.
Then ai[Gi] is equivalent to a2[G2]. There exists a dense Gs-subset of S,So,

and there exists a homeomorphism of S, d>, such that

{(s,af(s)): gEGi and s E S0} = {(s,4>a2(f)~1(s)): hE G2andsES0}-

PROOF. Let X be any perfect Polish space. Then B(X)/M(X) « C(S). As

remarked in §0, the results of Maharam and Stone [10] show that each homeo-

morphism of S is induced by a pseudo-homeomorphism of X. For each pseudo-

homeomorphism 9 of X, let 9 be the unique homeomorphism of S which is induced

by 9. Then, by [10] or see [14, Corollary 2.6], we can find a homomorphism ßj of

Gj into the group of pseudo-homeomorphisms of X such that ßj(g) = a9- for each

g E Gj.
By Theorem 1.8, /?i[Gi] is equivalent to ß2[G2]- So there exists a pseudo-

homeomorphism of X,7, such that, for every g in Gi, ßi(g) is decomposable with

respect to {7/?2 W7_1 : h E G2}.

Let <t> = 7 so that (f> is a homeomorphism of S. Then a\ is decomposable with

respect to {^a^-1 : h E G2}. Similarly, for each h'mG2, (¡¡a^cp'1 is decomposable

with respect to {a\ : g E Gi}.
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2. The G*-algebra of an equivalence relation. Throughout this section

X is a Hausdorff topological space for which the Baire Category Theorem is true

(e.g., a G¿-subset of a compact Hausdorff space, or a complete metric space). Let

~ be an equivalence relation on X such that there exists a countable group T of

homeomorphisms of X such that x~y-»7-x = yfor some 7 er.

We shall first construct an algebra in terms of the equivalence relation ~, without

explicit mention of T, but we shall make use of the fact that ~ is generated by a

countable family of homeomorphisms. In view of the remarks following Proposition

0.1, this is a mild restriction.

For each x E X, let [x] be the equivalence class generated by x; let [X] be the

set of all equivalence classes, and let Gr be the graph of the relation ~; let l2[x]

be the Hubert space of all square-summable complex valued functions (sequences)

from [x] to C. For each y 6 [x], let 8y be the element of l2[x] such that

= {l6y^     ^0    for t¿y.

Then {8y: y E [x]} forms an orthonormal basis for l2[x] which we shall call the

canonical orthonormal basis for I2 [x].

Let

S=   ©   C(l2[x]).

Metx)

Here £(/2[x]) is the algebra of all bounded operators on l2[x]. Clearly S is a Type

I von Neumann algebra (being the direct sum of such algebras) and is a subalgebra

of the algebra of all bounded operators on the Hubert space 0rxiepn l2[x]-

The algebra S is not, in itself, of interest, but we shall identify a subalgebra of S

with an algebra of "Borel matrices" over Gr and then form a quotient of the latter

algebra.

The set Gr is the union of the pairwise disjoint sets [x] x [x]; i.e.,

Gr = |J{[z]x[x]:[x]e[X]}.

To each operator M G S we can associate, canonically, a function m: Gr —► C

as follows. We have

M=   0   M[x],
M6[jq

where M[x¡ is a bounded operator on l2[x]. So each M[xj has a unique matrix

representation ra[x¡ with respect to the canonical orthonormal basis {8y: y E [x]}

ofl2[x]. Thus

m[x](y,z) = (M[x]8z,8y)

for all y,z E [x]. Let m: Gr —► C be the function such that

m(x, y) = m[x] (x, y)    for all (x, y) E Gr.

It follows that there is a bijection between elements of S and those functions

rn: Gr —» C for which there exists a constant k such that, for each [x] 6 [X], the

restriction of m to [x] x [x] is the matrix of a bounded operator on I2 [x] of norm

less than k. For such an m let L(m) denote the corresponding element of S.
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Manipulation of matrices shows that

L(f)L(g) = L(fog),

where

fog(x,z)= J2 î{x,y)g(y,z),
ye[x]

and

_ L(f)* = L(f*y
where f*(x,y) = f(y,x), for all (x,y) E Gx.

We see that, when / is a complex valued function on Gr, L(f) is a unitary in S

if, and only if,

f*of(x,y) = fof*(x,y) = {l   Jj.JJJ
that is, if, and only if,

£ J(z-x)f(z,y) = £ f(x,z)jA%z) =
z€[x] zE[x]

Since every element of a (unital) G*-algebra is a finite linear combination of

unitaries, we see that a function / : Gr —► C corresponds to an element of S, if, and

only if, / is a finite linear combination of "unitary" functions. It follows by a slight

refinement of the Russo-Dye Theorem that such an / corresponds to an element of

the open unit ball of S if, and only if, / can be expressed in the form Yl™ -\;'uj>

where each Uj is a "unitary" function and each Xj > 0 and £)" \j < 1.

Let (7„) (n = 1,2,...) be an enumeration of T. For each n, (x,y) —» (x,^ny)

is a homeomorphism of X x X onto X x X. Since X is Hausdorff, the diagonal

A = {(x, x) : x E X} is a closed subset of X x X. Hence Gr is the union of countably

many closed subsets of X x X and so is a Borel subset of X x X.

Let M(Gr) be the space of all Borel functions /: Gr —> C such that L(f) E S.

LEMMA 2.1. {L(f): f E M(Gr)} is a C*-subalgebra of S which is sequentially
closed with respect to the weak operator-topology of S.

PROOF. Let /, g be elements of M(Gr). Since (x,y) —> (y, x) is a homeomor-

phism of X x X onto X x X we see that, since / E M(Gr), /* is also a Borel

function on Gr and hence /* E M(Gx).

For each (x, z) E Gx,

fog(x,z)= ^2 f(x,y)g(y,z).
ve[x]

Let An = {(x, ynx): x E X}. Because T is not assumed to act freely, we cannot

assume that the sets (An) (n = 1,2,...) are pairwise disjoint. So we define Dn+i =

A„+i \ An, for n > 1, and Di = Ai. Let /„ be the Borel function on Gr defined

by

fn = Xd„ f

so that fn coincides with / on Dn and vanishes outside this set. Then

oo

/ ° g(x, z) = ^2 fn(x, ynx)g(ynx, z).

n=l

1    for x = y,
0   for x ^ y.
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In order to show that / o g is a Borel fonction on Gr, it suffices to show that, for

each n, (x, z) —► fn(x,ynx) and (x,z) —► g(ynx,z) are Borel functions. This follows

from the observation that (x, z) —► (x, ynx) is continuous, being the composition of

the continuous maps (x, z) —► x and x —> (x, j/nx), and that (x, z) —► (y„x, 2) is also

continuous.

Let (&„) (n = 1,2,...) be a sequence in M(Gr) such that L(bn) —> L(b) in the

weak operator-topology of S. Then, for each (x,y) E Gx,

(L(bn)8x,Sy)^(L(b)8x,Sy).

Thus bn(y,x) —» 6(2/, x). So 6 is a Borel function and hence in M(Gr). This

completes the proof of the lemma.

For each / 6 M(Gr) let Ef be the function on Gr which vanishes off the diagonal

A, and such that, for all x E X,

(Ef)(x,x) = f(x,x).

Clearly E is an idempotent map from M(Gr) onto an abelian subalgebra which we

may, and shall, identify with B(X). Let J be the set of all / in M(Gr) for which

E(f o /*) vanishes off a meagre subset of X. Then it can be proved, by adapting

the methods of Feldman and Moore [4], that J is a two-sided ideal of M(Gr) which

is sequentially closed in the strong operator-topology of S. The quotient algebra

M(Gx)/J we shall call the monotone G*-algebra of (X, ~). However Lemma 2.1

will suffice for the applications in the next section. It will follow immediately from

Lemma 3.3 that J is a cr-ideal of M (Gr), where Gr is the graph of a countable

group of homeomorphisms of S.

3. The canonical monotone cross-product G*-algebra. As before, C(S)

shall be the Dixmier algebra S(R)/M(R). When G is a countable group of *-

automorphisms of C(S) which acts freely and ergodically, there is a corresponding

monotone cross-product C*-algebra, M(C(S), G). This algebra is a Type III AW*-

factor which contains the Dixmier algebra as a maximal abelian subalgebra and

hence is not a von Neumann algebra [11]. Our goal is to show that this algebra is

unique. Every free, ergodic action of a countable group on C(S) gives rise to the

same AW*-factor.

We shall begin with some remarks on the Hamana tensor product. More detailed

information can be found in [6, 7, 12].

From now on, H is a separable Hubert space and Hi an arbitrary Hilbert space.

Let us fix an orthonormal basis for H. Then, with respect to this basis, every x

in Z(Hi)®Z(H) has a unique representation as a matrix [x{j], where each Xij is

in Z(Hi). Let M be a von Neumann subalgebra of Z(Hi). Then the elements of

M®£,(H) are those elements of Z(Hi)®£.(H) represented by matrices [m¿¿] where

each niij is in M.

Let T be any set and Bnd(T) the commutative von Neumann algebra of all

bounded complex functions on T. Let T be given the discrete topology, and

let ßT be its Stone-Cech compactification. Then ßT is extremally disconnected

and Bnd(T) ss C(ßT). By Lemma 1.1 [7] Bnd(T)®C(H) can be identified with

Cw(ßT, t(H)), the space of continuous functions from ßT to C(H) equipped with

the weak operator-topology. Let F:T —> Z(H) have (norm) bounded range. Then,
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since the unit ball of Z(H) is compact in the weak-operator topology, the Stone-

Cech Theorem [8, p. 153] implies that F has a unique extension to a continuous

map F: ßT -> ¿(H). So we may identify Bnd(T)®Z(H) with the algebra of all
matrices [m,j] over Bnd(T) for which t —> [m¿j(í)] is a bounded function on T.

From now on, X is a topological space which is either Polish or homeomorphic to

a Go-subset of a compact Hausdorff space. We recall that B(X) is the commutative

algebra of bounded Borel functions on X. The product B(X)®Z(H) may be defined

as the Borel »-envelope of B(X) ®min Z(H) inside Bnd(X)®Z(H) (see [11]). The

elements of B(X)®Z(H) correspond to the matrices [bij] where each bij is in B(X)

and the map x —► ||[í>i¿(x)]|| is bounded on X.

When G is a countable group of homeomorphisms of X, then M"(B(X),G)

is defined to be the subalgebra of B(X)®(l2(G)) consisting of those elements of

the tensor product which have a matrix representation over B(X) of the form

[o-i,a] (l £ G, o E G), where o^Ti<TT(x) = a1<(7(Tx) for all x E X and all r EG.

LEMMA 3.1. Assume that each 7 S G has no fixed points in x unless 7 is

the identity. Let Gx be the graph of G. Then M (Gr) is naturally *-isomorphic to

M"(B(X),G).

PROOF. Let / € M(Gr). For each 7,0- in G let ali<7(x) = f(^x,ox). Then o7)<7

is in B(X). Also the norm of [o7jCr(x)] is uniformly bounded for x in X. Hence

[o-yi<T] is in B(X)<8)Z(l2(G)). Moreover, for all 7,<r,r in G and all x E X,

a1T,or(x) = f(irx,OTx) = alt„(Tx).

Thus [o^] is in M"(B(X),G).

Conversely, let [altC] be in M"(B(X),G). Because of our hypothesis on the

action of G, we may define a function / : Gr —► C by

f(x, tx) = oe,T(x)    for all 7 E G for all x E X.

From the definition of M"(B(X),G), for any 7,0- in G and any x in X,

a-,,<r(x) = 0^^-1(71) = f(^x,ox).

It is now easy to see that / is in M(Gr). Matrix manipulations show that this

bijection is a *-isomorphism of M(Gr) onto M"(B(X), G).

Let A be any commutative AW*-algebra. Let G be a countable group of *-

automorphisms of A. Then A fa C(Y), where Y is compact and extremally discon-

nected. We shall abuse our notation and also regard G as a group of homeomor-

phisms of Y.

We recall that a *-automorphism, h, of A is said to be properly outer if there

does not exist a nonzero projection e in A such that the restriction of h to eA is the

identity map. The action of G on A is said to be free if every element of G, other

than the identity, is a properly outer automorphism.

We shall now suppose that the action of G on A is free.

Let 7 be any element of G other than the identity. Let F^ be the closed set

{i E Y : 7Í = t}. Since Y is extremally disconnected, the interior of F^ is clopen. It

now follows from the freeness of the action of G that the interior of F~, is empty; that

is, F7 is nowhere dense. Since G is countable, the G-saturation of (j{F1 : 7 E G and

7 is not the identity} is a meagre FCT-set. So there is a G-invariant dense G¿-subset,
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Yo, of Y, such that, whenever g EG and g is not the identity, then g has no fixed

points in Yo.

Let 7T be the quotient homomorphism from B(Y0) onto C(Y) whose kernel is

Mg(Yo). Each element of the Hamana tensor product C(Y)®Z(l2(G)) has a repre-

sentation as a matrix over C(Y). (Warning: The multiplication in C(Y)®Z(l2(G))

is not straightforward.) By Theorem 2.5 [12] there exists a canonical er-normal

♦-homomorphism n from B(Y0)®Z(l2(G)) onto C(Y)®Z(l2(G)) such that

n([<v]) = M<v)].
The monotone cross-product of C(Y) by G, M(C(Y),G), is the subalgebra of

C(Y)®Z(l2(G)) corresponding to those matrices [aan] over C(Y) which satisfy the

identities aaTnT(s) = a0^(rs) for all o, 7, r in G and all s EY.

Saitô [11] gives a very lucid account of monotone cross-products and also of

the results of Takenouchi and Dyer. He only discusses cross-products by abelian

groups, but everything extends to nonabelian groups without difficulty.

LEMMA 3.2.   The homomorphism n maps M°(B(Y0),G) onto M(C(Y),G).

This is straightforward.

The diagonal algebra of a monotone cross-product M(C(Y), G) consists of those

elements whose matrix is of the form [o^jff], where ali(r = 0 for 7 7¿ o. This is

clearly isomorphic to C(Y). Let Gr be the graph of the orbit equivalence relation

on Yo given by the action of G. Then the diagonal algebra of M (Gr) consists of

those / in M(Gr) which vanish off the diagonal of Gr. The operator E maps M(Gr)

onto its diagonal algebra. Clearly the diagonal algebra of M(Gr) may be identified

with B(Yo).

LEMMA 3.3. Let Gx be the graph of the relation of orbit equivalence given by G

acting on Yq. Then there exists a o-normal * -homomorphism p from M(Gr) onto

M(C(Y),G). The kernel of p is

J = {z E M(Gr): E(zz*) vanishes off a meagre subset of Yo}.

Furthermore, p maps the diagonal subalgebra of M(Gr) onto the diagonal algebra

ofM(C(Y),G).

PROOF. The existence and tr-normality of p follows immediately from Lemmas

3.1 and 3.2. Let Jo be the kernel of p.

Then / will be in Jo if, and only if, the function x —► X)TeG |/(x, rx)|2 vanishes

off a meagre subset of Yo. That is, / is in J if, and only if, E(f o f*) vanishes off

a meagre subset of Yo. Thus Jo = J, as required.

We come now to the main theorem.

THEOREM 3.4. Let D be the Dixmier algebra. Let Gi and G2 be countable

groups of *-automorphisms of D which both act freely and ergodically. Then there

exists an isomorphism of M(D, Gi) onto M(D, G2) which maps the diagonal algebra

of M(D,Gi) onto the diagonal algebra of M(D,G2).

We may regard Gi and G2 as groups of homeomorphisms of S. Because the

actions are free, there exists a dense G^-subset So, which is invariant under Gi and

G2, such that only the identity elements of Gi and G2 have a fixed point in So-
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Since Gi and G2 act ergodically, it follows from Corollary 1.9 that we can suppose

that there exists a *-automorphism 9 of D such that the graph of Gi acting on So

coincides with the graph of 9G29~1 acting on So- Let Gr be this graph. Since

M(D,G2) is naturally isomorphic to M(D,9G29~1) we shall suppose that 9 is the

identity. (For 0(g>id is a *-automorphism of D®Z(p2(G)) which induces the required

natural isomorphism.) Then, by Lemma 3.3, there exists an isomorphism pj from

M(Gr)/J onto M(C(S), Gj) for j = 1,2. Then p2pxx is the required isomorphism

from M(D,Gi) onto M(D,G2).

COROLLARY 3.5.   The Takenouchi factor is isomorphic to the Dyer factor.

PROOF. The Takenouchi factor is of the form M(D,Gi), where Gi is generated

by an irrational rotation of the circle. The Dyer factor is M(D, G2), where G2 is

the group of dyadic rationals acting on R modulo 1.
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