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L-P INEQUALITIES FOR STOPPING TIMES OF DIFFUSIONS1

R. DANTE DEBLASSIE

ABSTRACT. Let Xt be a solution to a stochastic differential equation. Easily

verified conditions on the coefficients of the equation give Lp inequalities for

stopping times of Xt and the maximal function. An application to Brownian

motion with radial drift is also discussed.

0. Introduction. Let B(t) be n-dimensional Brownian motion (n > 1). Denote

by Ex the expectation associated with B(t) starting at x. For any stopping time r

of B(t) let B(t)* be the maximal function of B up to time r:

B(t)* =   sup   |5(íAt)|.
0<t<oo

In Burkholder and Gundy [2] (n = 1) and Burkholder [1] (n > 2) the following

theorem was proved:

THEOREM 0.1. There are positive constants cPj„ and Gp,n such that for any

stopping time r of B(t),

Cp,nEx[r + \x\2yl2 < Ex[B(t)*[p < Cp,nEx[T + \x\2f'2.

If r is an exit time (i.e., if for some open D Ç Rn r = inf {i > 0: B(t) d¿ D}), this

result can be used to determine when Extp is finite. See Burkholder [1, Theorems

3.1-3.3 and the application after Theorem 3.3]. Mueller [4] extended Theorem 0.1

to exit times of other diffusions X(t); however, rather than X(t)*, his inequalities

involve

u(X(t))* :=   sup   |u(X(íAt))|
0<t<oo

where u is some X(i)-harmonic function (i.e., u(X(t)) is a martingale). He applies

this result to study exit times of certain diffusions from cones in R™, and his

examples show that in general Theorem 0.1 will not hold for B(t) replaced by

another diffusion X(t).

In this paper we obtain easy-to-check sufficient conditions under which Theorem

0.1 will be true. We also discuss an application to Brownian motion with radial

drift. The paper is organized as follows. In §1 we state the main results. §2 presents

some lemmas, and in §3 proofs of the main results are given. §4 is devoted to an

application to Brownian motion with radial drift.
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1. Main results. Let (fi, 7, P) be a complete probability space and {It: t > 0}

an increasing family of complete cr-subalgebras of J. Suppose X(t) is a diffusion

in Rn (i.e., continuous strong Markov process) that is 7t progressively measurable

and satisfies

(1.1) dX(t)=o(X(t))dB(t) + b(X(t))dt,        X(0) = x,

where a: R™ —> R™ ® R™ and b: Rn —> Rn are measurable and B(t) is an n-

dimensional {^}-Brownian motion starting at 0. r is a stopping time of X(t) if

{r < i} G o(Xs: s<t)foxt> 0. Define

X(t)* :=   sup   |A(iAr)|,
0<í<oo

the maximal function of X up to time t. Finally let a = oo*, where o* is the

transpose of o. Denote by Ex the expectation associated with A(0) = x.

THEOREM 1.1. Suppose n > 1 and x —> Tra(x) + 2x ■ b(x) and x —> ol}(x) are

bounded. For p > 0 there is GPi„ > 0 such that for any stopping time r of X(t)

(1.2) Ex(X*Ty<Cp<nEx[T + [x\Y2.

THEOREM 1.2.  Suppose n > 1,

(1.3) sup|Tra(x) + 2i-6(x)| V sup ^'(x)] < oo    and

(1.4) inf[Tra(x) + 2x-6(x)] > 0.
X

Then for p > 0 there are positive constants Gp,n and cPj„ such that for any stopping

time t of X(t)

(1.5) Cp,nEx[r + [x\Y2 < ExiX*Tf < Cp,nEx[r + \x\2f/2.

REMARK 1.3. (i) Notice that the case of b unbounded near 0 is not precluded

so long as x ■ b is bounded near 0.

(ii) From the proofs we may observe the following. Rather than (1.1) assume for

Yt = |At|2,

(1.6) dYt = oioj,t)dBit)+b~ioj,t)dt,        Y0 = x2,

where ô: fi x [0, oo) —> Rn <S> R and b: fi x [0, oo) —*• R are progressively measur-

able. Then Theorem 1.1 holds if we replace "x —> Tr a(x) + 2x ■ 6(2) and x —> ol3ix)

bounded" by the assumption "¿bounded, (i,w) —> oô*ioj,t)/Ytioj) bounded". The-

orem 1.2 holds if we replace (1.3) by

(1.3)' 8Up|fc(w,i)|V[|âcr*(W|i)|/|ytM|]<00
t,n

and (1.4) by

(1.4)' info(w,i) >0.

Theorem 1.2 excludes cases when x ■ b can take on sufficiently negative values

(near 0) such that (1.4) fails to hold. But if b is nice enough, it is still possible to

obtain (1.5): Let

(1.7) \lix) < \2ix) < ■ ■ ■ < Xnix)

be the eigenvalues of a(x). We have the following theorem.
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THEOREM 1.4.  Letn>2. Assume

(1.8) Txa + 2x ■ b is bounded;

(1.9) for anyR>0 there is p(R) > 0 with (a(x)£, t¡) > p(i?)|c!|2 if \x\ <
R and £ G Rn (here (■,■) is the usual Euclidean inner product)

where p(-) is decreasing;

(1.10) a13 are bounded;

(1.11) (l + |x|) YLi \bi\ < e(\x\) where e(-) is bounded on [0, oo) ande(r)^

0 as r —> oo;

(1.12) A„_!(x)>7>0.

Then for p > 0 there are positive constants cPi„ and GPj„ such that for any stopping

time t of X(t), (1.5) holds.

REMARK 1.5. If (1.12) is replaced by

(1.13) infTra(x)>0
X

and for some 0 < R < S,

inf [Tra(x) + 2x-6(x)]|x|2/(a(zKz) > 1,

inf  [Txa(x) + 2x-b(x)][x[2/(a(x)x,x) > 1,
ss(o)c

then (1.5) still holds and we may take n > 1.   (Here Bß(0) = {x E R":|x| <
R}.)   a

Theorems 1.2 and 1.4 may be combined in several ways. For example, the next

result requires that the conditions of Theorem 1.2 be satisfied near the origin and

the conditions of Theorem 1.4 be satisfied away from the origin, with overlap.

THEOREM 1.6.   Letn>2. Suppose for some 0 < r < s

1.15) sup|Tra + 2x-&| < oo;
X

1.16) inf Tra + 2x-6>0;
B,(0)

1.17) sup \oij\ < oo;
B,(0)

1.18) sup  |a,J'| < oo;
Br (oy

1.19) for any R > r there is p(R) > 0 with (a(x)£, £) > p(iü)|£|2 if
r < \x\ < R and £ G R"; here p(-) is decreasing;



768 R. D. DeBLASSIE

(1.20) (1 + |x|) ^ \bi\ < e(\x[) for |x| > r where e(-) is bounded on [r, oo)

and e(8) —» 0 as 8 —» oo;

(1.21) for\x\>r,    \n-i(x) > i > 0;

/or some Rq > 0

,((W1v Tra(x)+ 2x-o-(a(x)x,x)|x|  2 ^ ,     c/l  ..     ...

(L22) (a(x)x,x)lx|-2 ^1 + ¿(|Z|)    í/|x|>ño'

where 8(-) is continuous and

(1.23) H \ exp ( - H ^ du] dt < oo.
JRo   t {     JRo      U J

Then for p > 0 i/iere are positive constants cPi„ and Gp,„ such that for any stopping

time t of X(t), (1.5) holds.

REMARK 1.7. (i) Condition (1.22) may be regarded as a "nonrecurrence" con-

dition (cf. Friedman [3, Theorem 9.1.1]).

(ii) Clearly other combinations of Theorems 1.2 and 1.4 (and their modifications

as discussed in Remarks 1.3 and 1.5) are possible as long as the nonrecurrence

condition (1.22) is in effect. Their proofs are minor modifications of the proof of

Theorem 1.6.

(iii) (1.23) holds for 8(s) = c or 8(s) = c/s or 8(s) = d/logs for c> 0, b > 1.

2. Some lemmas.

LEMMA 2.1.   Suppose

Ci := sup | Tr a(x) + 2x • b(x)[ V sup [oij(x)\ < oo.
x iJ,x

Then for a > 0, T > 0

(2.1) PX(X(T)* >a)< a'2(2CiT + |x|2),

Í |pl )
(2.2) Px(X(T)*>a)<C(p)lJ2\x\2p~2JTJ+ TP\a~2p>        P^2'

where [■] is the greatest integer function.

PROOF. Define n(t) = \X(t)[2 + Cit, t > 0. By Itô's formula

dnt = 2Xt ■ o(Xt) dBt + [2Xt ■ b(Xt) + Txa(Xt) + d] dt

and so for s < t

Ex[(vt - VsWs] = EX   f (2XU ■ b(Xu) + Txa(Xu) + Ci)du\Js
J s

>0,
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by choice of Ci. Hence (r¡t, 7t)t>o is a submartingale, and it is easy to see that

(2.3) Ex(nt - no) < 2Cit.

Next, by an inequality of Doob,

PX(X(T)* >a)< Px(n(T)* > a2) < a~2Exr,(T)

(see e.g. Stroock-Varadhan [5, p. 21, Theorem 1.2.3])

<a-2(2GiT+|x|2)    (by (2.3))

which gives (2.1).

Now for (2.2). Let p > 2. Let

M-Jf       *<0.'
Then by Itô's formula and optional stopping with on := inf{t > 0: \Xt\ > n}

/•tA<r„ r

ExVÏA«n = \x\2p + EXJ hpr/r'{2X, ■ b(Xa) + Txa(Xa) + Ci}

^p{p-l)vr\<Xa)Xa,Xa)]
+

Vs

■n- U„P-l(n(YAY     YA~\
ds

Jo    L l^«l

< |x|2p + C(p) f E^p-1 ds     (since <C^ß- <Txa<Ci).
Jo V \x\ )

So by Fatou's lemma,

(2.4) Exrft < |x|2*> + C(p) f E^-1 ds.
Jo

Forp = 2(by(2.3)),

En2 < |x|4 + G(2) I Exn3ds < |x|4 + G(2)|x|2i + C(2)Gti2 < oo.
Jo

Iterating (2.4) gives Exn\ < oo for p = 2,3,... and in fact

Exrft < C(q, r)   ¿ |x|2^V + f t ■ ■ ■ t '* Exrftyr dtr ■ ■ ■ dtx
j=0 Jo Jo Jo

for q > 2, 2 < r < [q]. Setting r = [q] and observing

Exr,t[q] < (ExVt)q-[q] < C(q)[t«~W + |.j|*-»M]    (by (2.3)),

we see

(2.5) M<G(9)|¿|*|2«-2V + t4.
J=o

Since q > 2, (ng, Jt)t>o is a nonnegative submartingale. Hence

PX(X(T)* >a)< Px((v(TY)* > a2") < a~2"Exn(Ty,

which combined with (2.5) yields (2.2).    D
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LEMMA 2.2.   Suppose C2 := infz[Tra(x) + 2x • b(x)] > 0.  Then for |x| < a

(2.7) PX(X(T)* <a)< 4a2/(TC2).

PROOF. Let (p(x) = Cy1(a2 - |x|2). Then

(28) ^=Ç»*W3^+2X>'<
= -2G2"1[Tra(x) + 2x • b(x)] < -2.

Letting o := inî{t > 0: |X(i)| > 2a} and using Itô's formula, optional stopping,

and (2.8):

Ex(j)(X(o A t)) - (¡>(x) < -Ex(o A t).

Thus

Ex(o Ai) < C^E^X^ A i)|2 < 4q2/G2,

and so by monotone convergence

(2.9) Exo < 4a2/C2.

Finally, for |x| < a

Px(X(T)*<a)<Px(o>T)<4a2/(C2T)   by (2.9).    D

REMARK 2.3. Replace (1.1) by (1.6). If we replace the conditions on Tra and

Txa + 2x ■ b in Lemma 2.1 by "o and (t,oj) —> àà*(oj,t)/Yt(oj) bounded" then the

conclusion still holds. If the condition on Tra + 2x • b in Lemma 2.2 is replaced by

"inf b > 0" then the lemma remains true. The proof of Lemma 2.1 goes through with

minor modifications. For Lemma 2.2 use (¡>(y) = Cy1(a2 — y) (where C2 = info),

^ = àà*(oj,t)^+2b(oj,t)^,

and Itô's formula with Y(t).

The next lemma is due to Burkholder [1].

LEMMA 2.4. Let f and g be nonnegative measurable functions on a probability

space. Given p > 0 suppose there exist ß > 1, 8 > 0, a > 0 such that

P(g > ß\, f < 8X) <(ß + cx)-pP(g >X),       X> 0.

Then

Egp < ßp8-p(l - ßp[ß + a]-")-^/".

The next lemma is essentially due to Friedman [3].

LEMMA 2.5. Suppose n>2 and (1.8)-(1.12) hold. Then for some n E (-1,0),
for any e > 0

(2.10) Ex f [b(X(s))\ ds<Ci + G5(i(1+?))/2 + |x|1+") + eCe(t1/2 + |x|),
Jo

where Ce is independent of e.

REMARK 2.6. (i) Friedman gets

Ex\f b(X(s))ds
lio

o(í(l+r,)/2) + 0(íl/2)
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(see his Lemmas 2.2 and 2.3 on pp. 175-176), but his proof actually gives (2.10).

(ii) If (1.12) is replaced by (1.13) and (1.14), then we may take n > 1 in Lemma

2.5 with (2.10) still being true. With minor modification, Friedman's proof still

works.

LEMMA 2.7.   Under (1.9), (1.10) and (1.11), for |x| < a

(2.11) PX(X(T)* <a)< [Aa2/TC^a)]1'2 exp{TC8(a)}

where

(2.12) G7(a) = nA   inf   Tra    and   Cs(a) = \   sup (a-1 b,b).
B2a(0) B2a(0)

PROOF. By enlarging (fi, 7t) we can construct a continuous process £(i) on fi

such that for |x| < a with

n = inf{i>0:c(i)^ß2a(0)},

m      Hi1* m

£(•) is an Itô process with respect to ô(-), o(-) on (fi, %,PX) (written £(•) ~

l(à(-),b(-)) on (fi, 7t,Px)—see Stroock-Varadhan [5, §4.3]) with £(i) = X(t) for
t < n (see Theorem A.l of appendix). Hence

(2.14) PX(X(T)* <a) = Px(i(T)* <a).

Let fi = G([0, oo),Rn) be the space of continuous functions from [0, oo) into

Rn. For oj E fi and t > 0 let x(t, oj) = oj(t). Give fi the topology induced by

uniform convergence on compact subsets of [0, oo). Let M be the Borel rr-algebra

of subsets of the resulting topological space. Define u-algebras Mt Ç M for t > 0

by Mt :=o(x(s):0< s < t).

Letting

r} = inf{í>0:x(í)^52a(0)},

gw _ / a(x(t)),        t < fj,
(2.15) a[t)-\l, t>fj,

UÁ - Í hix(t)),        t < fj,

(J"\0, t>fj,

we see that for |x| < a, £(■) induces measures Px on (fi, M) such that Px = PxOt^"1

and x(-) ~ I(ä(-), b(-)) on (fi, Mt, Px). Since à, o, and (ä_16,6) are bounded, by the
Cameron-Martin-Girsanov Formula (Stroock-Varadhan [5, p. 153, Lemma 6.4.1])

there is a probability measure P'x on (fi, M) such that x(-) ~ i(ä(-), 0) on (fi, Mt,Px)

and for |x| < a

(2.16) Px(x(T)* <a) = Epi [&{T)I(x{T)' < a)]



772 R. D. DeBLASSIE

where

(2.17) Rl(T) = exp j /  (ä'^u), dxu) -II  (à'^u), b(u)) du 1

and

(2.18)

Notice

(2.19)

ElJ*(RP»(T)) = l    foranyp>0.

Ep'*[R~h(T)]2 = E p' R2b(T)expj j  {â-%u),i{u))du\

< £p*[iü26(T)exp{2G8(a)T}]    (by (2.15) and (2.12))

= exp{2G8(a)T}    (by (2.18)).

Note that under (1.9), G8 < oo. If

[) ~\I for t > rj,

then ä = ¿rcr* and since x(-) ~ i(a(),0) on (fi, P'x), by Theorem 4.5.1 in Stroock-

Varadhan [5, p. 108] there is a Brownian motion ß on (fi, 7, P'x) such that

rt

xt -x = /   ö(u)dßu.
Jo

By (2.15) and (1.9), inf Tro = C7(a) > 0, so by the proof of Lemma 2.2

(2.20) Px(x(T)* <a)< 4o2/[G7(a)T],        |x| < a.

Then for |x| < a

PX(X(T)* <a) = Px{t(T)* < a)    by (2.14)

= Px(x(T)*<a)

< {Ep^[Ri(T)]2}1l2{P^(x(T)* < a)}1'2    by (2.16)

< [4a2/TG7(a)]1/2exp(G8(a)T)    by (2.19) and (2.20)

as desired.    D

REMARK 2.8. Clearly G7(-) is decreasing and G8(-) is increasing.

LEMMA 2.9.   Under (1.9)-(1.12) for |x| < a

Ac?
x I     SUp

\0<t<T
X + f °{X,)

Jo
dB, <a    <

Tl

PROOF. Let Zt = x + JoO-(Xs) dBs. Then by Itô's formula,

d\Zt\2 = 2Zt ■ o(Xt)dBt + Tra(Xt)dt.

By (1.12) Tra(Xt) > -y > 0, so by Remark 2.3 (with Yt = \Zt[2),

Px I   sup
\0<t<T

x + f°(Xs)
Jo

dB,
Aa2

I = PX(Z*T <a)<—.    D
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3. Proofs of the main results.

PROOF OF THEOREM 1.1. We use Burkholder's method of reduction of con-

sideration to exit times from balls [1]. By Lemma 2.4 it suffices to show that for

p > 0 there are ß > 1, 8 > 0, a > 0 such that

(3.1)       PX(X*T > ßX, [r + \x[2Y'2 < SX) <(ß + a)-pPx(X*T > A),        A > 0.

Consider any 8 E (0,1) and a > 0. It is harmless to assume |x| < 8X < X. Let

Gi = sup | Tra(x) + 2x • b(x)\ V sup \oij(x)\.
l,],X

Define p := inf{i > 0: \X(t A i)| > A}. Then since {|X(p)| = A} on {p < co} =

{X*>X},ife = 82X2-\x[2

LHS(3.1) = Px (p < oo, r < e,  sup  \X(t)\ > ßX )
V U<t<T /

= ExI(p(oj) < oo)PxMM (r < e - p(oj), sup  |X(i)| > ßX)
\ 0<t<T /

(Strong Markov Property)

< EXI(X*T > X)PXAul)(X(62X2)* > ßX)   (e < 82X2)

(ß-2X-2(2Ci82X2 + X2)   ifp<2,

(3.2)
< px(x; >x)-{

C(p)
[p]

Y,x2p~2i(82x2y +82pX2p

3=0

ß~2pX~2p,    p > 2,

(by Lemma 2.1)

< PX(X*T > X) ■
(2Ci82 + l)/ß2,       p<2,

^C(p,8)/ß2p, p>2,

<(ß + a)-pPx(X*T>X)

if ß is large enough.    D

PROOF OF THEOREM 1.2. By Theorem 1.1 the right-hand inequality holds.
For the left-hand inequality, by Lemma 2.4 we need only show that for p > 0 there

are ß > 1, a > 0 and 8 > 0 with

(3.3) Px([t + [x\2Y'2 > ßX, X(t)* < SX) < (/î + ^-PP^tr + lx]2]1/2 > A), A > 0.

Let ß > 1 and a > 0.   Choose 8 E (0,1) small enough so A82/C2(ß2 - 1) <

(ß + a)~p where C2 = infx Tra + 2x-o > 0. We may assume |x| < 8X (< A). Define

e = A2 - |x|2 and 6 = ß2X2 - |x|2. Then

(3.4)

LHS(3.3) = Px(t > 0, X*T < 8X) <Px(t> e, sup \X(t)\ < 8x)
V £<t<0 /

= ExI(t > e)I(X£ < 6X)PXc (X*e_£ < 8X)    (Strong Markov Property)

<PI(r>e)4¿2A2/G2(fi-e)

(by Lemma 2.2 where C2 = inf[Tra(x) + 2x • 6(x)] > 0)
X

= [A82/C2(ß2 - l)]Px(r >e)<(ß + aypPx(r > e)

by choice of 8.   D
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The proof of Remark 1.3(h) follows from the preceding proof and Remark 2.3.

PROOF OF THEOREM 1.4. By (1.8) and (1.10), the hypotheses of Theorem
1.1 hold, so by that theorem the right-hand inequality in (1.5) holds.

For the left-hand inequality in (1.5), by Lemma 2.4 it suffices to find ß > 1,

8 > 0, a > 0 for which (3.3) holds. As in the proof of Theorem 1.2 we may assume

|x| < 8X < X. Then if s = X2 - |x|2 and 6 = ß2X2 - |x|2 as there, (3.4) continues

to hold:

(3.5) LHS(3.3) < ExI(t > s)I(X£ < 8X)PXe (X*_£ < SX).

Now for \y\ < SX, if 1 > Si > 0

Py(X*e_£ < SX) = Py(   sup    \y+ f o(Xs) dBa + f b(Xa) ds
\o<t<e—eI      io io

<8X

(3.6)
<   Py   ( SUP

\o<t<e-e

y I        SUP
\O<t<0-£

11    /•*
Árioff

11 r*

(Xa)dBa\ <8 + 8!

)ds >8i+ P

= (T) + ®,    say.

By Lemma 2.9 (using 6 - s = (ß2 - 1)A2)

(3.7) ® < 4(0 + ¿1)2A2/P2 - 1)A27] = A(8 + 8i)2/[(ß2 - 1)7].

Next, by Lemma 2.5, for some n E (—1,0), for any &2 > 0

®<{ßiX)-lEvf    E[b(Xs)\ds
Jo

< (¿iA)-x{G4 + C5[(ß2 - l)A2]d+")/2 + Gs^A)^"

(3-8) +¿2C6((/32-l)1/2A + ¿A)}

= 8y1{c4x-1 + c5[(ß2 - 1)(1+")/2 + ¿1+"]A"

SiCe^-iy^+S]}

For ß > 1, a> 0 choose 8 < 1, ¿i < 1 so

RHS(3.7)<i(/3 + a)-p.

Then for these values of 8, a, ß, Si choose ¿^ > 0 and Ai > 0 such that

RHS(3.8) < \(ß + a)'p   for A > Ai

(this is possible since n < 0). Then for these values of S, a, ß, Si, by (3.5)-(3.8)

(3.9) LHS(3.3)<(/3 + a)-pPx(r>e),        A>AX.

In fact, it is easy to see from (3.7) and (3.8) that (3.9) continues to hold if 8 is

made smaller.
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By Lemma 2.7, Remark 2.8, and (3.5), for A < Ai (since 8 < 1)

LHS(3.3) < Px(t > e){A82/[(ß2 - l)G7(6A)]}exp{(/?2 - 1)A2G8(¿A)}

< {A82/[(ß2 - l)C7(Xi)]}exp{(ß2 - 1)X2C8(Xi)}Px(t > e)

< (ß + a)~pPx(T > s)   for 8 small enough.

In any event, we have that (3.3) holds.    D

COROLLARY.   Under the hypotheses of Theorem 1.4, given a > 0 we may choose

8' > 0 independent of X such that

Py(xk(e-e) ^ mSX) <a   for 8 < 8', \y\ < mSX,

where k and m > 0.

PROOF. This is immediate from the proof of Theorem 1.4.   D

PROOF OF REMARK 1.5. By Remark 2.6(h), the proof of Theorem 1.4 is still
valid.    D

PROOF OF THEOREM 1.6. As in the proof of Theorems 1.2 and 1.4 it suffices
to show that for some ß > 1, a > 0, 8 >0 (3.3) holds. Notice (3.4) still holds:

LHS(3.3) < ExI(t > e)I(X£ < 6X)PXc(X*e_£ < ¿X)

(where e = X2 - |x|2 and 6 = ß2X2 - |x|2).  Thus it suffices to show that given

ß > 1, a > 0 there is 8 > 0 for which

(3.10) P»(-Xfl-e < SX) <(ß + a)~p   when \y\ < SX.

Let s and r be as in the hypotheses of the theorem. Define

o0 = inf{t > 0: [Xt [ > 28X},    r0 = 0,

m = inf{t > tï_i:Xt i B26X(0)\Br(0)},        i > 1,

Ti = inf{t > oí: [Xt[ > s},        i > 1.

Under condition (1.22) there exists an integrable function /(•) such that if

roo

(3.11) F(v)= /    e~I{u)du,
J V

then for |x| > r

F(r)Px (\X(oi)\ = r) + F(28X)Px([X(oi)\ = 28X) < F(\x\)

(see Friedman [3, proof of his Theorem 9.1.1]). Hence for |x| = s,

(3 12) Px[a° > ai) = Px^X{<ri)] = r) - F^IF^

= F(s)/F(r) :=: £ < 1,        |x| = s.

Let ß > 1 and a > 0. Choose N such that

oo .

(3.13) YI e~3<kß+<*rp.
i=N+l

Extend ff\n,(o), a[Br(oy, 0Ib,(o); b\BT(o)c by ^> ff5 b, b, resp., to all of Rn so that

â = ôà* and b satisfy the hypotheses of Theorem 1.2 and a = o o* and b satisfy
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the hypotheses of Theorem 1.4. Denote by X(-) and X(-) the processes governed

by (à, 6) and (a, b) resp. Define <7n, ôo, ¿r¿, o i, f¿, ?¿ analogous to oo, oí, tí.

If SX > s then by the proof of Theorem 1.2, for \y[ < SX

Py(X*g_£ < SX) = Py(X*e_£ < SX) <(ß + a)~p

for 8 small enough. Thus in this case (3.10) holds.

Thus we may assume SX > s. If [z\ <r then

Pz(n >k) = Pz(h >k)< Pz(X(k)* < s)

< Pz(X(k)* < 28X) < C82X2/k

by Lemma 2.2, where C is independent of k, 8, X.

Throughout the rest of this proof, C will be a constant independent of 8 and A

which might change from line to line.

For |z| < SX there is S'(k,u) such that

Pz(oi > k(ß2 - 1)X2) < Pz(öi > k(ß2 - 1)X2) < Pz(öo > k(ß2 - 1)X2)

(3.15) < Pz(X(k(ß2 - 1)X2)* < 28X)

< u   whenever 8 < S'(k, u) (k and u > 0)

(this is by the corollary after the proof of Theorem 1.4).

By the Strong Markov Property, for i > 2, [y[ < SX,

Py(O0 > Oi-i) = EyI(o0 > Ti-2)EX{T._3)J(oo > 0"i)

< iPy(o0 > Oi-2)    (by (3.12))

(3.16)

< e-2Py(oo > oi) < e~2.

Two applications of the Strong Markov Property give for i > 2, \y\ < 8X, and

k = m(ß2 - 1)A2

Py(o0 >Oi>k)= Eyl(oo > Ti-i){I(Ti-i  < k/2) + I(Ti-X  > k/2)}

■ Ex{Ti_l{w))J(oo >oi> k- tí-i(oj))

< EyJ(o0 > ír¿-i)(£;x(rj_1)i(o-o >o-i> k/2))

+ EyI(o0 > ct¿_i)í(t¿_i > k/2)

< uPy(o0 > Oi-i) + EyJ(o0 > o-i_i){i(o-,_i < k/A) + I(oí-i > k/A)}

■ Ex{(Tt_liuj))I(Ti > k/2 - oí-i(oj))

for 8 < S'(m/2,u) (by (3.15) since s < SX)

< uC~2 + Eyl(o0 > Oi-^Ex^^I^i > k/A) + EyJ(o0 > ox-i > k/A)

(by (3.16))

(3 17) - UC~2 + C^~H2lm(ß2 - 1)) + EyI(oo > ffi-! > k/A)

( ■   ' fox8<8'(m/2,u).

(by (3.14)-(3.16) and choice of k).
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Now another application of (3.16) to this yields

(3.18)     Py(o0>ol>m(ß2-l)X2)<uC-2 + CC~2S2/m + C~2,       » > 2,

for 8 < 8'(m/2,u), [y[ < SX. Notice also by (3.17) and iteration

Py(o0 >oí> m(ß2 - 1)X2) <u + C82+ Py(oo >*i-i> m(ß2 - l)A2/4)

(3.19)
< • • • < (i - 1)« + C(m)82 + Py(o0 >oi> m(ß - l^2^1"1)

for S < mini<j<i-i ¿'(m/43', u).

The same argument used to derive (3.17) yields for i > 2

(3 20) Py{<J° = °l> m{ß2 ~~ 1)A2) - UC~2 + C{-m^2^~2

+ Py(oo > ffi-i > m(ß2 - l)A2/4)

for 8 < S'(m/2,u) and \y[ < SX. Then using £ < 1 together with (3.18) and (3.19)
in (3.20) we get

(3.21)    Py(oo = o%> m(ß2 - 1)A2) < 2ne-3 + C^S2^3 + C~,        i > 3,

for 8 < 8'(m/2,u), \y[ < SX (by (3.18)) and

(3.22)
Py(a0 = Oi> m(ß2 - 1)A2) < iu + C(m)82 + Py(o0 >oi> m(ß2 - ljA2/^"1)

for 8 < minixjxi-i S'(m/A^,u), i > 2, and |y| < 8X (by (3.19)).

Thus we have for 8 < mini<N ¿'(1/4*-1, u) A ¿'(1/2, u) A ¿'(1, u)

Py(X*e_£ < SX) < Py(o0 > (ß2 - 1)X2)

oo

= Y,Py(°-o = <rl>(ß2-l)X2)
i=l

N

< Py(oi > (ß2 - 1)A2) + J2(iu + C62 + Pyfo >o-i>(ß- 1)X2/AN~1))
¿=2

+ ^(2n + Go2 + l)e-3
i>N

((3.22) used in £f=2, (3.21) used in £t>iV)

<u + C(u + S2) + (2u + CS2 + 1)J2 ^"3
i>N

(by(3.15))

< Cu + CS2 + (2« + CS2 + l)i(ß + a)~p

(by (3.13))

< (ß + a)~p

for u and 8 sufficiently small. Thus (3.10) holds and we are done.    D
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4. An example. Let n > 2 and suppose

dXt = dBt + LXt \Xt \~2 dt,        X0 = x,

where L G R.

Let G = Ur>o rG be a cone w^n dCnSn~1 smooth, where G is an open subset

of 5n_1. Let Lgn-i be the Laplace-Beltrami operator on S""1. Denote by Ac the

first (positive) eigenvalue of £$»-! on G fl 5n_1 with eigenfunction mc; i.e.,

mc E C(C n S"-1) n C2(C n S71'1),    LSn-imc = -Xcmc,

"^clacnS"-! — 0,        mc > 0   onGflS"1-1

and any other eigenvalue A satisfies A < Ac- Let tc be the first exit time from

C of Xt. In [4] (noting that 2L and not L is required) Mueller showed that if

n - 1 + 2L < Ac then

Extc/2 < oo & p(n + p - 2 + 2L) < Xc-

The next result eliminates the assumption that n — 1 + 2L < Ac, replacing it

with a condition independent of Ac-

THEOREM 4.1. Let C be a cone in R" (n > 2) with dC n 5n_1 smooth. If
n + 2L>0 then

Exi%j2 <oo    iff   p(n + p-2 + 2L)<Xc.

To prove this we need the following lemmas which were done for L = 0 in

Burkholder [1]. The operator governing Xt is

d2      ,¿V ._,     5í=IE£j+¿E'-
n-l

2^ax2TiV^|J'1   ^^-
t=i   *      t=i

In polar coordinates (r, Ö), where r = |x| and 6 represents x/r G S

Id2      n-l + 2L  1      J_
2dr2+ 2r        2r2 + 2r2   s"-1'

LEMMA 4.2. Suppose n + 2L > 0, Zu = 0 on C, and \x[p < u(x) on C. Then

ExTc/2 < oo for x EC.

PROOF. Fix x G G. Choose x G i?i CR¡ Ç R2 Ç • ■ Ç C where A¿ is bounded
and (J¿>i Ri — C. Let r¿, i > 1, be the corresponding exit times. Then by Itô's

formula and optional stopping, since Zu = 0

Exu(X(t/\Tj)) = u(x).

Now u is bounded on i?j+i, so dominated convergence gives

(4.1) Exu(X(Tj)) = u(x).

Hence

E\X(t0)\p<Exu(X(t3)) = u(x).

Hence by Fatou's Lemma,

(4.2) #x|*(rc)|p = Ex lim \XTn\p < u(x).
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In the proof of his Lemma 1, Mueller [4] shows

Px(X(tc)* > A) < KPx([X(rc)\ > A).

Thus by (4.2) we have

(4.3) Ex(X(tc)*)p < KEx\X(tc)\p < u(x).

Notice Tri + 2x • (Lx|x|-2) = n + 2L > 0. So by Theorem 1.2

Extp/2 <Cp,nEx(X(TC)*)p<u(x)<oo.   D

LEMMA 4.3. Suppose n + 2L > 0, u E C(C), u = 0 on C, u[qc = 0, and

0 < u(x) < K(\x\p + 1) on C. Then Extc/2 = oo for xeC

PROOF. Let u be so given, but assume for some x E C, Exrcl < oo. Then by

Theorem 1.2 Ex(X(tc)*)p < oo. Letting Tj be as in the preceding proof, we see

sup   u(X(t))<K([X(TCy]p + l)-
0<t<TC

Hence by dominated convergence and (4.1)

0 < u(x) = lim u(X(rn)) = u(X(tc)) = 0,
n—»oo

contradiction. Thus ExTq    = oo for x G C.    G

Proof of Theorem 4.1. Let p(n + p - 2 + 2L) = Xc. Then

u(x) := |x|pmc(x/|x|)

(mc 1st eigenfunction as discussed above) satisfies the hypotheses of Lemma 4.3

which then tells us that Extci = oo, x G G. It follows that p(n + p — 2 + 2L) >

Xc =!> ExTc/2 = oo, x E C.

For the converse, let p(n + p - 2 + 2L) < Xc- Mueller [4, Theorem 6, p. 104]

shows that there is a positive h G C(C n S"-1) H C2(C n S^1) with

(LSn-i +p(p + n - 2 + 2L))h = 0   and    /ilacns»-1 = 1-

By the maximum principle, h > 1 on CD 5n_1. Thus u(x) := |x|pft(x/|x|) satifies

the hypotheses of Lemma 4.2 which gives that EXT(/   <oo,xEC.    D

REMARK 4.4. Theorem 4.1 remains true if the assumption dC fl S™-1 smooth

is replaced by the requirement that C fl 5n_1 satisfies an exterior cone condition

at every boundary point. The proof is similar.

Appendix.

THEOREM A.l. Suppose (1.9)—(1.11) hold. There are a probability space

(ft,~T,Px), an increasing sequence of o-algebras Tt ÇJ', a continuous progres-

sively measurable process £(•) on fi, a continuous progressively measurable process

X(-) on fi such that C(X(-)) = Z(X(-)), and for

(A.l) n = inf{t > 0: f(i) g B2a(0)},

(A.2) &M={f*^ ;<;;},   oen,



780 R. D. DeBLASSIE

and

(A.3) 6(i,w) =
b(Xt(ôj)),    t<n

0, t >n
W E fi.

ç(-) ~ i(a(-),&(■)) on (Q,7t, Px) with £(t) = X(t) for t < n.

PROOF. Let (Ü',7',P') be a probability space with an increasing sequence of

e-algebras 7/ Ç 7' and suppose ß(-) is an n-dimensional 7( Brownian motion on

(fi', 7',P'). Define fi = fi x fi', 7t = It x 7/, J = 7x 7', and Px = Pxx P'. Then
for oj = (oj, oj') E fi set

ß(t,öj) = ß(t,oj%    X(t,oj) = X(t,oj),

1/(57) = inf{í > 0:X(t,W) i B2a(0)},

and

tur^ = \x(t,öj)   if t<n(ôj),
ílt,WJ      \X{r,{J3),13) + ß[t-n{i3),T3)    ift>n(w).

Clearly X and £ are continuous and progressively measurable, £(X(-)) = £(X(-)),

X(-) and /?(•) are independent and £(i) = X(t) for t < n. So it remains to show

a-)~I(â(-),b(-))on(ÏÏ,7t,Px).

It suffices to show that for / G Cq° (Rn ) (functions on Rn which have compact

support and continuous derivatives of all orders)

/(«*))- f(Luf)(t(u))du,        i>0,
Jo

is a martingale relative to (fi,7t,Px), where

»,¿=1

(See Stroock-Varadhan [5, §4.3].)

Let A = Ai x A2 G 7S x 7'. For í > s

i=i

Er Ia/(6)-/(¿).- f(Luf)(íu)du
J s

— Ex[ ]Ia1xA2{It¡<s + Is<n<t + ít<»)}

= ® + © + (D,    say.
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Now

® = EX    f (Xv + ßt„v) - f(Xn + ßs-n) - I   \M&r, + ßu-n)

= 0   by independence of X(-) and ß(-), Fubini, and the fact

that /?(•) is Brownian motion;

du ÍAjXA2ir)<s

® = EX f(Xv + ßt-v) - f(Xn) + f(Xn) - f(Xa)

-rm^^ë™*
1,3

-f>/<*n +ßu_n)du ÍAixA2is<7)<t

= EX

+ EX

f(Xn + ßt_v) - f(Xn) - f ~2M(Xn + ßu_v)

f(X„/\t) — f(XnAs)

du ÍAiXA2is<»7<t

' lAlxA2h<n<t

0 + Ëx[]IAlxA2Ia<v<t    (as in®)

Ex[]lAlxA2{-Iri<s - h<n}

(by optional stopping since

X(-) ~ I(a(X(-)),b(X(-))) under (Ü,7t,Px))

= 0-Ex f(Xt)-f(Xs)

-/'(îE^+E*;!) <*.>*<
ÍAiXA2if<r/

= EX f(ù)-m)-Ja(LufMu) du ÍAiXA2if<í)

= -©•

Thus ® + © + © = 0 and we are done.    D
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