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ALGEBRAIC RELATIONS AMONG SOLUTIONS
OF LINEAR DIFFERENTIAL EQUATIONS

MICHAEL F. SINGER

ABSTRACT. Using power series methods, Harris and Sibuya [3, 4] recently

showed that if A: is an ordinary differential field of characteristic zero and

y 5¿ 0 is an element of a differential extension of fc such that y and l/y satisfy

linear differential equations with coefficients in fc, then y'¡y is algebraic over

fc. Using differential galois theory, we generalize this and characterize those

polynomial relations among solutions of linear differential equations that force

these solutions to have algebraic logarithmic derivatives. We also show that if

/ is an algebraic function of genus > 1 and if y and f(y) or y and e¡ v satisfy

linear differential equations, then y is an algebraic function.

1. Introduction. In [3, 4], Harris and Sibuya proved the followng:

PROPOSITION l. Let fc be an ordinary differential field of characteristic 0 and

let Li(Y) and L2(Y) be nonzero homogeneous linear differential polynomials with

coefficients in fc. Let K be a differential extension of k and yi and y2 nonzero

elements of K such that £1(2/1) = L2iy2) = 0.

(a) If yiy2 = 1, then y'x/yi = —y'2/y2 is algebraic over fc.

(b) If yi = y™ for some positive integer m such that the order of Lx < m, then

y'i/yi = my'2/y2 is algebraic over fc.

In [12], Sperber, using some elementary commutative algebra, gave these results

a uniform treatment that allowed for the following generalization:

PROPOSITION 2. Let fc be an ordinary differential field of characteristic 0 and

let Li(Y), i = l,...,n, be nonzero homogeneous linear differential polynomials

with coefficients in fc. Let K be a differential extension of fc and yi, i = 1,... , n,

nonzero elements of K such that L%iyi) = 0 for i = 1,... ,n. If yx = ym2 ■ ■ ■ y™",

for positive integers m2,...,mn and the order of Li < min{m2,... ,rnn}, then

y'i/yi is algebraic over k for each i= 1,..., n.

Proposition 1(a) is obtained by letting n = 3, m2 = m^ = 1 and yi = 1.

Proposition 1(b) is obtained by letting n = 2 and m2 = m. Sperber's techniques

also allow him to handle solutions of certain nonlinear diferential equations.

In this paper we prove results that imply

PROPOSITION 3. Let fc C K be ordinary differential fields of characteristic 0
with the constants ofK (¿.e., the set ofc E K such that c' = 0) algebraic over fc. For

i = 1,2,3, let yi be a nonzero element of K and Li(Y) be a nonzero homogeneous
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linear differential polynomial with coefficients in k such that £¿(y¿) = 0. Assume

2/1 = 2/22/31 for some positive integer m. if the order of Li(Y) < m, then "¡f^/yz is

algebraic over fc.

We can deduce Proposition 2 from Proposition 3 only under the additional as-

sumption that the constants of K are algebraic over fc. This annoying assumption

is forced on us by our techniques (differential galois theory) but does not interfere

with the applications that the authors of [3, 4 and 12] had in mind. To deduce

Proposition 2 with this added assumption, let yi = (y™2 • ■ • y^f1 )y™n • Since each

y, satisfies a linear differential equation over fc, y™2 • • • y^Tf ' will also satisfy a lin-

ear differential equation over fc. By assumption, yi satisfies a homogeneous linear

differential equation, over fc, of order < min{m2,. -., mn} < mn. Proposition 3 im-

plies that y'r/yr is algebraic over fc. Regrouping, the other y¿ are handled similarly.

Note that if we remove the assumption that the order of LX(Y) < min{m2,..., mn}

in Proposition 2, Proposition 3 allows us to still conclude that y'i/yi is algebraic

over fc for each i > 2 such that the order of Li < m¿.

Proposition 3 is a consequence of a more general result proved in §3. In that

section we also prove results that imply the results mentioned in the abstract. In §2

we prove a group theoretic result that is the technical heart of this paper. We wish

to thank E. Kolchin, W. Lichtenstein, A. Magid and S. Sperber for many helpful

comments and W. Harris, Y. Sibuya and S. Sperber for giving us preprints of their

papers.

2. Group theory. Our main result in this section is a generalization of the

following theorem of Rosenlicht [10, 7]: Let G be a connected linear algebraic

group and yi,y2 regular functions on G such that yiy2 = 1. Then yi and y2 are

constant multiples of characters. Theorem 1, below, characterizes those polynomials

P(Yi,... ,Yn) such that if yi,..., yn are regular functions on a connected linear

algebraic group and P(yi,...,yn) = 0, then each y¿, i = l,...,n, must be a

constant multiple of a character (e.g., P(Yi,Y2) = YiY2 — 1).

Let fc be an algebraically closed field of characteristic zero and G a connected

linear algebraic group defined over fc. We denote by fc(G) (resp. fc[G]) the field of

rational functions on G (resp. the ring of regular functions on G). If g is a fc-point

of G, we denote by pg (resp. Xg) the regular map defined by pg(h) = hg for h in G

(resp. \g(h) = <7-1/i). pg and \g induce automorphisms of fc(G) which we denote by

p* and A*. Note that p* and A* restrict to automorphisms of k[G]. For y G fc(G),

we let kyG denote the fc-span of {p*y\g a fc-point of G}. It is well known [1, p. 106]

that for y G fc(G), kyG has finite dimension if and only if y G fc[G].

Let (Ai,..., Nn) be an n-tuple of positive integers and S a subset of {1,..., n}.

Let i be a set of polynomials in fc[Yi,..., Yn]. We say that i has property (A) (resp.

(A')) for (Ni,...,Nn) with respect to S if:

For any connected linear fc-group G and any yi,...,yn in fc(G) -

{0} such that the dimension of kyf < N for i = l,...,n, if
P(yi,... ,yn) = 0 for all P in I, then for each i in S, yi is a

fc-multiple of a character of G (resp. y¿ is in fc).

For example, Rosenlicht's theorem implies that for r = 2, Ni and A2 arbitrary

and S = {1,2}, the singleton {Y1Y2 -1} has property (A) for (ATi, N2) with respect
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to S. Theorem 1 below implies that {Yi - Y2Y3m} has property (A) for (m, N2, A3)

with respect to {3}, where m, A2 and A3 are arbitrary positive integers. Theorem

1 also shows that if the zero set of I in fc™ is a curve of genus > 1, then, for

Ai, ...,Nn arbitrary positive integers and S = {1,..., n}, I has property (A') for

(Ni,..., Nn) with respect to S.

We wish to give algebraic criteria for properties (A) and (A'). Theorem 1 says

that the following are such criteria: Let (Ai,... ,Nn), S and i be as shown. We

say that I has property (B) (resp. (B')) for (Ni,..., Nn) with respect to S if.

For any iti,... ,un in k[t,i_1] (t transcendental over fc) with each

Ui having at most A¿ nonzero terms, if P(ui,..., un) = 0, then for

each i in S, u¿ is a monomial in fc[í,í_1] (resp. u¿ is in fc).

For example, let n = 2, S = {1,2}, and Ai and A2 arbitrary positive integers.

The singleton I = {YiY2 - 1} has property (B) for (Ni,N2) with respect to {1,2}.

This follows from the fact that the only invertible elements of k[t, i_1] are monomi-

als. If we let n, Ai,..., An be arbitrary positive integers and S = {1,..., n} and let

i be a set of polynomials in fc{Yi,..., Yn} such that the zero set of I in kn is a curve

of genus > 1, then I has property (B') for (Ai,..., An) with respect to S. This

follows from the stronger fact that if Ui,...,un are in fc(i) and P(ui,... ,un) =0

for all P in i, then ui,..., un are in fc.

A less trivial example is given by the following. Let n = 3 and let m be a positive

integer. Let I = {Yi - Y2Y^}. We claim that I has property (B) for (m,N2,N3)

with respect to {3}, where A2 and A3 are arbitrary positive integers. To see this,

we must show that if u\,u2,u3 are elements of fc[í,í_1] such that ui - u2um = 0

and ui has at most m nonzero terms, then uz is a monomial. It suffices to show,

given u2, U3 in k[t, i_1] with U3 having more than one nonzero term, that u2um has

more than m nonzero terms. We may assume that u2 and U3 are in k[t]. If t¿3 has

more than one nonzero term, then U3 = 0 has a nonzero root. In this case u2um

has a nonzero root of multiplicity at least m. Therefore, it is enough to show that

for v E k[t], if v has a nonzero root of multiplicity > n then v has more than n

nonzero terms. This will be proved by induction on the degree of v. If the degree

of v is one, the conclusion is obvious. If the degree of v is bigger than 1, we may

assume v(0) ^ 0. Applying the induction hypothesis to dv/dt and noting that v

has one more nonzero term than dv/dt, we reach the desired conclusion.

The main result of this section is

THEOREM l. Let fc, (Ai,...,An), S and I be as above, I has property (A)

(resp. (A')) for (Ni,... ,Nn) with respect to S if and only if I has property (B)

(resp. (B1)) for (Ni,..., Nn) with respect to S.

To prove this, we need the following elementary lemmas. Lemma 1 shows that

our property (B) implies Sperber's property of being ( Ai -1,..., An - l)-polynomial

free [12, p. 7].

LEMMA 1. Let fc, (Ni,...,Nr), S and I be as above. If I has property (B)

for (Ai,..., Nr) with respect to S, then I has the following property: ifui,... ,un

are elements of k[t], (t transcendental over fc) with the degree of Ui < A¿ — 1 for

i = 1..., n and P(ui,..., un) = 0 for all P in I, then for each i in S, Ui G fc.
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PROOF. Let ui,...,un be in k[t] with the degree of each u¿ < A¿ - 1 for

i = 1,..., r and P(ui,..., un) = 0 for all P in I. Since i has property (B) and

k[t] C k[t, i_1], we have for each i in S,Ui = a¿ími with ai E k and m¿ a nonegative

integer. Replacing t by t + 1, we have P(ai(i + l)mi,...,an(t + l)m") = 0 for all

P in I. By property (B), we have for each i E S, a¿(í + l)mi must be a monomial,

so m¿ = 0 and Ui= ai E fc.

In the following two lemmas, Ga will denote the additive group fc and Gm the

multiplicative group fc-{0}. Note that if t is transcendental over fc, we may identify

k[Ga] with k[t] and fc[Gm] with k[,t,t~l).

LEMMA 2. Lei fc 6e on algebraically closed field of characteristic 0 and A a

positive integer. If u G fc[Ga] = fc[i], i/ien i/ie dimension of kuGa is at most N if

and only if the degree of u, as a polynomial in t, is at most A — 1.

PROOF. Note that for c G fc = Ga and u(t) G k[Ga] = k[t], p*(u) = u(t + c).
This implies that the vector space of all polynomials of degree < A -1 is left stable

by p* for c G Ga. Therefore if u E k[Ga] is a polynomial of degree at most A - 1,

the dimension of fcyGa < A.

Conversely, assume that the dimension of fcnGa < A. We define a derivation D

on fc(i) by letting Dt = 1 and Dc = 0 for all c E k. Note that for any c E k, p*
commutes with D. Let m,... ,um be a basis for kuGa and let

L(y) = Wr(y, ui,..., um)/ Wx(ux ,...,um),

where Wr denotes the Wronskian determinant. The coefficients of L(y) are left

fixed by p* for c G fc, so these coefficients lie in fc. Let L(y) = y(m) +am_iy(m_1' +

• • • + Oij/W, with a¿ ^ 0. For v G k[t], if L(v) = 0 then the degree of v is at most

i — l<m—1<N— 1. Since L(v) = 0 for all v G kuGa, we have that the degree

of u is at most A - 1.

LEMMA 3. Let k be an algebraically closed field of characteristic 0 and N a

positive integer. If u E k[Gm] = fc[í,í_1], then the dimension of kuGm is at most

N if and only if u contains at most N nonzero terms.

PROOF. Note that for c G fc - {0} = Gm and u(t) E k[Gm] = fc[M-1], P*(u) =
u(tc). A similar argument to that appearing in the proof of Lemma 2 shows that

if u has at most A nonzero terms, then the dimension of kuGm is at most A.

Conversely, assume that the dimension of fcnGm is at most A. Define a derivation

D on fc(i) by letting Dt = t and Dc = 0 for all c in fc. D commutes with p* for

all c G fc - {0}. Let ui,...,um be the basis of fcnGm and let L(y) be defined

as in the proof of Lemma 2. We again see that L(y) has coefficients in fc. If

L(y) = y(m) + am-iy(m-V + ■ ■ ■ + aoy, let p(y) = ym + a^iy"1"1 + • • '■ + (*>. If

u = aitmi +-h aatm', where the m¿ are distinct integers and the a¿ are nonzero

elements of fc, then L(u) = p(mi)aiimi + • ■ ■ + p(ms)astms. Since L(u) = 0, we

have that p(m,i) =0 fox i = 1,... ,r. Therefore r < m < A.

We remark that we could replace the argument involving D in Lemma 3 with an

argument involving matrices that resemble Vandermonde matrices, yielding a proof

true in all characteristics. Lemma 2, on the other hand, is true only in characteristic

0, since if fc is a field of characteristic p ^ 0 and u is a p-polynomial (i.e., a linear

combination of terms tp', i > 0) then kuGm will have dimension at most 2.
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PROOF OF THEOREM 1. Let us first assume that I has property (B) for

(Ni,...,Nn) with respect to S. Let G be a connected linear fc-group, and let

¡/l, -.., 2/n be elements of fc(G) = {0} such that the dimension of kyf < Ni for

i = 1,... ,n. As we have noted, this implies that each y¿ G fc[G]. We also note that

we may assume that y¿(e) 7^ 0 for i = 1,..., n, where e is the identity of G. To see

this, let g G G satisfy (yi • • ■ yn)(g) ¿ 0. We then have (p*g(yi) ■ ■ ■ p*g(yn))(¿) Í 0.

p*(pi) is a fc-multiple of a character if and only if y¿ is and the hypotheses regarding

yi apply as well to p*(yi). Therefore, we may replace the y¿ by pg(yi) if need be.

In particular, we may asusme that for each i = 1,..., n, y¿, when restricted to any

subgroup of G, is not identically zero.

We shall first show that for any unipotent h in G, p*h(yi) = y i for all i in S. Let

0 = {g E G\yi(g) ^ 0 for i = 1,... ,n}. Since 0 is Zariski dense in G, it suffices

to show that for g in 0 and i in S, yi(g) = yi(gh). Let H be a subgroup of G,

isomorphic to Ga, containing h [5, p. 96] and let t¿¿ be the restriction of \*i(yi)

to H. Note that n¿ ^ 0 for i = 1,..., n. We may identify Ui with an element in

k[H] = k[t\. We furthermore have that the dimension of kuf < JV¿ fot t *= 1,..., n,

so by Lemma 2, u¿ is of degree at most A¿ - 1. Lemma 1 implies that for each i in

S, Ui is in fc. Therefore yi(g) = n¿(e) = n¿(ñ) = yi(gh).

We now note that to finish the proof, it suffices to show that for any torus T C G,

and any i in S, the restriction of y¿ to T is a nonzero fc-multiple of a character of T

and therefore never zero on T. Assuming this to be true, let g G G and let g = gsgu,

where gs and gu are the semisimple and unipotent parts of g. We then have that

Vi(g) = yi(gsgu) = yi(gs)- Since gs belongs to some torus [5, p. 124 and p. 139],

we have yi(gs) 7^ 0. Therefore y¿ is never zero on G and so is invertible in fc[G]. By

Rosenlicht's theorem, we have that y¿ is a fc-multiple of a character.

Let T = Gm x • • • x Gm be a torus and let yi, i = 1,..., n, be the restriction

of yi to T. We may identify k[T] with k[Xi,... ,XS, (Xi,...,' A3)_1] for some s,

and we shall identify the yi with elements of this latter ring. We wish to show

that for any i in S, yi is a nonzero monomial in Xi,... ,XS. If some yi, with i

in S, contains more than one nonzero term, then one of the Xi, say Xi, appears

with different exponents in at least two terms. Write yi = YI aijX{, where the Oij

are in fc[A2,..., Xs, (X2 ■ ■ ■ Xs)-1]. Let c2,... ,cs be nonzero elements of fc such

that aij(c2,..., cs) / 0 for all i and j with Oij / 0, and let u¿ = yi(t, c2,..., cs) E

k[t, t~1]. Let Ü be the first copy of Gm in T = Gm X ■ • ■ x Gm and identify fc[í, i_1]

with k[H]. By our hypotheses and Lemma 3, we have that, for each i in S, Ui is

a monomial in fc[i, t~l], violating our constructions of the n¿. Therefore, for each

i in S, yi is a monomial, and the restriction of y¿ to any torus is a fc-multiple of a

character.

Now assume that I has property (B') for (Ai,..., Nn) with respect to S and

let G and yi,..., yn be as above. We wish to show that for i in S, yi is in fc. To

do this, it is enough to show that if g is unipotent or semisimple, then pg(yi) = yi-

Since property (B') implies property (B), the first part of the above proof shows

that p*(yi) = yi for unipotent g. Since any semisimple element lies in a torus and

every torus is isomorphic to a product of copies of Gm, it suffices to show that, if

H is a copy of Gm in G, then, for i in S, yi restricted to H is constant. We identify

k[H] with k[t, i_1] and identify the restriction of y¿ to H with an element yi in

fc[t,i-1]. Our hypotheses imply that the dimension of kyf < Nz for i = 1,... ,n
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and Lemma 3, together with property (B'), then imply that yi lies in fc for i in S.

We now show that property (A) implies property (B). To do this, let i be a set of

polynomials that do not have property (B) for (Ni,...,Nn) with respect to S. We

shall show that for the group G = Gm, there exist elements n¿ in fc[Gm] that satisfy

the hypotheses of property (A) but violate the conclusion. Since we are assuming

that I does not have property (B), there exist i¿¿ in k[t, í_1], i = 1,..., n, such that

each Ui has at most Nt nonzero terms and P(ui,... ,un) = 0 for all P in i, but

for some j in S, Uj is not a monomial. Identifying k[t,t~l] with fc[Gm], Lemma

3 implies that the dimension of kufm < Ni for i = 1,..., n. These u¿ violate the

conclusion of property (A). The proof that property (A') implies property (B') is

similar and is therefore omitted.

3. Differential algebra. Let fc be a differential field with commuting deriva-

tions A = {¿i,..., 8r}. The set of elements c in fc such that 8c = 0 for all 8 G A is

called the constants of fc. Let fc{Yi,..., Yn} be the ring of differential polynomials in

the differential indeterminants Yi,...,Yn and let fc{Yu ..., Yn}i be the set of all ho-

mogeneous linear elements of fc{Yi,..., Yn}. A differential ideal p in fc{Yi,..., Yn}

is said to be linear [6, p. 150] if it is generated by elements in fc{Yi,..., Yn}i. If p

is alinear differential ideal, the codimension of pflfc{Yi,..., Yn}i in fc{Yi,..., Y„}i

is called the linear dimension of p (this need not be finite). Note that if fc is an

ordinary differential field, a differential ideal p of fc{Y} is linear and of finite linear

dimension / if and only if there exists a homogeneous linear differential polynomial

L(y) = y^ + aiy^-1' H-+ a¿y in fc{Y} of order I such that p is the differential

ideal generated by L [6, p. 155]. We shall state and prove our results for general

differential fields and linear differential ideals, but the reader who is only interested

in ordinary differential fields and homogeneous linear differential equations, may

use this last remark to replace hypotheses such as "u is the zero of a linear differen-

tial ideal of linear dimension V with the more familiar "u satisfies a homogeneous

linear differential equation of order /".

The results of this section depend on the galois theory of linear differential equa-

tions, which we shall now review. Let fc be as above and assume that the constants

G of fc are algebraically closed. Let p be a linear differential ideal in fc{Yi,..., Yn}

of finite linear dimension /. For any differential extension field F of fc, the set of

zeros of p in Fn forms a vector space (over the constants of F) of dimension at

most I [6, p. 151]. There exists a differential extension field K of fc, having the

same field of constants as fc, such that the space of zeros of p in Kn has dimension

/ and such that K is generated over fc by these solutions [6, p. 142]. Furthermore,

this extension is unique up to isomorphism. K is referred to as the Picard-Vessiot

extension associated with p. If A is a differential extension of fc, having the same

constants as fc, that is generated over fc by zeros of p, then we can embed K in K

over fc. The group of differential automorphisms of K over fc acts on the space of

zeros of p and so can be identified with a group G of invertible matrices in GLat (C)

for some integer A. It is known that this group will be closed in the Zariski topol-

ogy [6, p. 394], and so G is a linear algebraic group defined over C whose G-points

correspond to differential automorphisms of K over fc.

There is a galois correspondence between closed subgroups of G and differential

fields F with fc C F C K. In particular, for y G K, o(y) = y for all o G G if and
only if y G fc. When fc is algebraically closed, G is connected [6, p. 402], and, using
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differential galois cohomology, one can show that we may identify K with fc(G) [6,

p. 426]. Since this identification is the key to our method, as it allows us to apply

the results of §2, we shall present an elementary proof.

LEMMA 4. Let k be an algebraically closed differential field of characteristic 0
and K a Picard- Vessiot extension of fc with galois group G.  Then:

(i) There exists an isomorphism 4> of K onto k(G) such that if o is a C-point of

G then for all y in K, <¡>(o(y)) = p*a((j>(y)).
(ii) For y in K, y is the zero of a linear differential ideal in k{Y} of finite linear

dimension if and only if (j>(y) E k[G].

PROOF. For simplicity, we prove this only for ordinary differential fields. The

proof in general replaces the use of Wronskians below with determinants of matrices

of the form mentioned in Theorem 1 on p. 85 of [6]. We shall first show that for

y G if, y is the zero of a homogeneous linear differential equation if and only if

CyGc (the G-span of the orbit of y under the action of the G-points of G) has finite

dimension. If y satisfies a homogeneous linear differential equation L(y) = 0, then

y belongs to a G-stable finite dimensional vector space, namely the space of zeros

of L(y) = 0. Conversely, if CyGc has finite dimension, let y = yi,... ,y¡ be a basis

and let

L(Y) = Wr(Y,yi,...,yn)/Wr(yi,...,yn),

where Wr is the usual Wronskian determinant. One easily sees that the coefficients

of L(y) axe left fixed by all elements of the galois group and so lie in fc. Clearly

L(y) = 0.
From this we see that the set of elements satisfying homogeneous linear dif-

ferential equations over fc forms a differential ring. Assume K is generated (as a

differential field) by yi,..., ym, a fundamental set of solutions of some homogeneous

linear differential equation of order m. We may then write

K = k(yi,... ,ym,y'i,... ,y'm,... ,y{im~l),... ,ymn~1)).

Let S = {y G K[y'/y G fc}. Note that the elements of S satisfy homogeneous lin-

ear differential equations over fc. Since K is finitely generated over fc, we have

by Theorem 1 of [11] that 5 is a finitely generated abelian group. Let R =

k[yi,... ,ym,yx , ■ ■ ■ ,ym~ ,S]. Since 5 is finitely generated, R is a finitely

generated fc-algebra. Let V be the affine variety whose coordinate ring is R. The

action of G on R induces an action of G on V. We wish to show that G acts transi-

tively and freely on V. First of all, for v E V, we claim that the orbit of v is dense in

V. If not, there is a nonzero z E R such that z vanishes on the orbit of v. Therefore

all the elements of CzGe vanish at v. Since z E R, CzGc is finite dimensional, so let

zi,...,zrbe a basis of CzGc and I be the ideal of R generated by Zi,...,zr. I ^ R

since I has a zero in V. On the other hand, letting w = Wx(zi,..., zr), we see that

w satisfies w'/w E fc (look at the action of the galois group) and w E I (expand w

by minors). Since 1/w is also in R, we get 1 G I, a contradiction. Therefore the

orbit of any element v E V is dense in V. Since the orbits of minimal dimension are

closed [5, p. 60], we get that the orbit of any element is all of V. This proves that

G acts transitively on V. To see that G acts freely, let v E V and assume vg = v

for some g EG. Let

V = (v\°) v(0)   VW v(l) Jrn-D (m-1) )
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If we write the first m2 entries as a matrix (v- '), 1 < i < rrtj Q < j < m — 1,

then g acts as an m x m matrix by multiplication on the right of the matrix. Since

vg = v, we have (v¡3))g = (vjj)). Since 1/ Wr(yi,... ,ym) E R, det(v\3)) ¿ 0, so

g = id. Therefore, G acts freely. Let v E V be a fc-point of V. The map from G to

V given by g —► vg induces an isomorphism (f> of k[V] onto fc[G]. This extends to

the quotient fields and clearly has the properties claimed in (1).

To see (ii), we have already noted that, for u E k(G), u E k[G] if and only if

fcnG hs finite dimension. Since the G-points of G are dense in G, kuG has finite

dimension if and only if CuGc has finite dimension. We have shown above that for

y E K, y satisfies a homogeneous linear differential equation if and only if CuGc

has finite dimension, (ii) now follows from (i).

For the remainder of this section, except where otherwise noted, let fc be an alge-

braically closed differential field of characteristic 0 with derivations A = {8i,..., 8r}.

Let Ni,...,Nn be positive integers, S a subset of {1,..., n} and I a set of poly-

nomials in fc[Yi,..., Yn]. We say that I satisfies property (C) (resp. (C)) for

(Ai,..., An) with respect to S if:

For any differential extension K of fc having the same field of con-

stants as fc, yi,..., y„ G K-{0}, linear differential ideals pi,... ,pn

in fc{Y} such that y¿ is a zero of p¿ and the linear differential di-

mension of p¿ is < Ni fox i = 1,..., n, if P(yi,..., yn) — 0 for all

P in I, then 8yi/yi is in fc for i in S and 8 in A (resp. y, is in fc

for all i in S).

THEOREM 2.  Letk,(Ni,...,Nn), S and I be as above.

(a) i/7 has property (B) (resp. (B')) for (Ai,..., An) with respect to S, then I

has property (C) (resp. (C)) for (Ai,..., An) with respect to S.

(b) Assume fc is an algebraically closed ordinary differential field with derivation

8 and assume there exists uE fc such that 6Y — uY = 0 has no nonzero solution in

fc. If I has property (C) (resp. (C)) for (Ni,..., Nn) with respect to S, then I has

property (B) (resp. (B')) for (Nx,... ,Nn) with respect to S.

PROOF, (a) We shall show that if i has property (A) (resp. (A')) for (Ai,..., Nn)

with respect to S then I has property (C) (resp. (C)) for (Ai,..., A„) with respect

to S. Theorem 1 then allows us to conclude (a) above. Let ii be a differential ex-

tension of fc with the same field of constants G as fc. Let yi,..., yr G K — {0} and

let pi,... ,pn be linear differential ideals in fc[Y] such that y¿ is a zero of p¿, such

that the linear differential dimension of p¿ < A¿ and such that P(yi, ■ ■ ■ ,yn) — 0

for all P in I. Since K has the same field of constants as fc, we may assume that

2/1) • • • 12/n lie in a Picard-Vessiot extension F of fc. Let G be the galois group of F

over fc. Since fc is algebraically closed, G is a connected G-group and F may be

identified with fc(G). Furthermore, for any g, a G-point of G, the galois action of

g on F is given by p*. Since the linear dimension of each p¿ < Ai, we have that

the dimension of CyGc < A¿, where GG is the group of G-points of G. Since GG

is dense in G, we have that the dimension of kyf < A¿. If i has property (A') for

(Ai,..., An) with respect to S, then for each i in S, yi is in fc, so I has property

(C) for (Aj,..., An) with respect to S. If I has property (B) for (Ni,...,Nn)
with respect to S, then we can conclude that for each i in S, yi is a fc-multiple of
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a character of G. Fix some i in S and denote y, by y and p¿ by p. For any g EG,

pg(Y) = agy for some a9 in fc. We claim that for g G Gc, a9 G G. Fix some ¿

in A. Since p has finite linear dimension, there exist o;_i,... ,ao in fc such that

L(y) = ¿Oy + a;_i<$('_1)y + • • • + any = 0. Among all such equations, choose one

with I minimal. If g G GG, then L(p*y) = 0 so

0 = 8(l)(agy) + an-i8{l)(agy) + ■■■ + a0iagy)

= ag8wy + in8ag + an_iag)¿(í_1)y H-.

By minimality we have agan_i = n8ag + an-iag or 8ag = 0. In particular, this

implies that 8y/y is fixed by all elements of GG and so must lie in fc. Therefore I

has property (A) for (Ai,..., An) with respect to S.

(b) We shall show that if I does not have property (B) for (Ai,..., A„) with

respect to S, then I does not have property (C) for (Ai,..., An) with respect to S.

Let ui,..., un be nonzero elements of k[t, i_1] such that each u, has < A¿ nonzero

terms and P(ui,... ,un) = 0 for all P in I. Assume that for some i in S, Ui is not

a monomial. We extend 8 to K = k(t) (t transcendental over fc) by letting 8t = ut.

Since 8Y - uY has no solutions in fc and fc is algebraically closed, fc and K have

the same field of constants [9, p. 172]. One can easily check that an element of the

form y = YI ajtJ having at most A¿ nonzero terms satisfies a homogeneous linear

differential equation of order at most A¿. Furthermore, if 8y/y = a E fc, then y must

be a monomial. To see this, observe that 0 = 8y — ay = ^2(8aj — aj(a — ju))t3'.

If a¿ and aj axe nonzero for i ^ j, then 8v/v = u, where v = (a^a"1)1/^-'),

contradicting our assumption that 8Y - uY = 0 has no solutions in fc.

The proof that Property (C) implies property (B') is similar and is therefore

omitted.

PROPOSITION 3 (BIS). LetkcKbe differential fields of characteristic 0 with
the same field of constants and k algebraically closed. Let p be a linear differential

ideal of finite linear dimension and let (yi,y2,y3) E K3 be a zero of p. Assume that

2/1 = 2/2 2/3™ for some positive integer m. If the linear dimension of p fl fc{Yi} < m,

then 8y$/yz is in fc for all 8 E A.

PROOF. For each i, i = 1,2,3, p fl fc{Y¿} = p¿ is a linear differential ideal of

finite linear dimension. For arbitrary positive integers A2 and A3, we have seen that

i = {Yi - Y2Y^} has property (B) for (m, A2, A3) with respect to {3}. Theorem

2 gives us the desired conclusion

Proposition 3 in the introduction is just the ordinary differential versions of this

last result. One can also deduce from this partial differential versions of Proposi-

tions 1 and 2. For example, assume that fc c K are differential fields of characteris-

tic zero with the constants of K algebraic over the constants of fc. If (yi,y2) E K2

is a zero of a linear differential ideal of finite linear dimension and yiy2 = 1, then

8yi/yi is algebraic over fc for all 8 in A.

PROPOSITION 4. Let fc C K be differential fields of characteristic 0 with the
same field of constants and k algebraically closed. Let I be an ideal in k[Yi,..., Y„]

whose set of zeros in kn is a curve of genus > 1. If p C fc{ Yi,... ,Yn} is a linear

differential ideal of finite linear dimension and (yx,..., yn) E Kn is a zero of both

I and p, then for each i = 1,..., n, yi is in fc.
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PROOF. Since I defines a curve of genus > 1, if t*i,... ,un € fc(i) and

P(ui,..., un) = 0   for all P in I

then ui,... ,un are all in fc. Therefore, I has property (B') for all (Ai,..., A„) with

respect to {1,... ,n}. Since p has finite linear dimension, so does pi = p n fc{Y}

for i — 1,..., n. Therefore, Theorem 2 implies each y¿ is in fc.

For example, consider the rational functions C(x) with derivation d/dx. If f(x)

is an algebraic function of genus > 1 (e.g., f(x) = (1 - z™)1/™ with n > 3) and y

and f(y) satisfy linear differential equations over C(x), then Proposition 4 implies

that y(x) is an algebraic function.

Our techniques also allow us to deal with certain algebraic relations that involve

derivatives. If A is a set of derivations, let © be the free commutative multiplicative

semigroup generated by the elements of A. If fc C K are differential fields and

y G ii, we say y is monic over fc if ym — f(6iy,..., 9sy) = 0, where #¿ G 8 for

i—l,...,s and / a polynomial of total degree strictly less than m.

PROPOSITION 5. Let fc C K be differential fields of characteristic 0 having the

same field of constants, with fc algebraically closed. If fc G K is a zero of a linear

differential ideal in k{Y} of finite linear dimension and y is monic over fc, then

yEk.

PROOF. We may assume A is a Picard-Vessiot extension of fc with galois group

G. G is connected, and we may identify K with fc(G) and y with an element of fc[G].

Let G be the field of constants of fc. We must show that for any g E Gc, Pg(y) — 2/-

First assume that g is unipotent. g belongs to a closed subgroup H ofG isomorphic

to Ga- Let F be the fixed field of H. We shall show that y is in F. Corollary 2 of

[6, p. 427] implies that K = F(t) with 8t G F for all 8 in A. Furthermore, y G F[t].
For u E F[t], let o(u) denote the degree of u in t. For 9 E 9 we have o(6(u)) < o(u).

If o(y) > 0, then o(f(6i(y),... ,6s(y))) < m(o(y)) = o(ym). Therefore o(y) = 0;

i.e., y G F. Now assume g is semisimple. Since g lies in a torus, to show that

pg(y) = y, it is enough to show that for any subgroup H of G isomorphic to Gm,

H lies in the fixed field F of H. Again by Corollary 2 of [6, p. 427], K = F(t)
with 8t/t in F for all 8 in A. Furthermore, y G F[í,í-1]. For u G F[í,í_1], we

let oi (u) be the highest power of t occurring in u and o2 (u) be the highest power

of f_1 appearing in u. For 6 G 6 we have oi(0(u)) < oi(u) and o2(6(u)) < o2(u).

Arguing as before, we see that oi(y) = o2(y) = 0, so y G F. Since any element of

G is the product of unipotent and semisimple elements, we see that y is left fixed

by all of G. Therefore yEk.

When fc is an ordinary differential field, this result (in greater generality and

without the assumption on constants) was proved by S. Morrison [2, 8]. If u

satisfies a linear differential equation, then y = v!/u satisfies a Riccati equation, so

y is monic. Therefore if u belongs to a differential extension of fc having the same

constants as fc and u and u'/u satisfy linear differential equations over fc, then u

is algebraic over fc. More concretely, if y(x) and eJ y(x' satisfy linear differential

equations over C(x), then y is an algebraic function.
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