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TORSION FREE GROUPS

PAUL HILL1 AND CHARLES MEGIBBEN

ABSTRACT. In this paper we introduce the class of torsion free fc-groups and

the notion of a knice subgroup. Torsion free fc-groups form a class of groups

more extensive than the separable groups of Baer, but they enjoy many of the

same closure properties. We establish a role for knice subgroups of torsion

free groups analogous to that played by nice subgroups in the study of torsion

groups. For example, among the torsion free groups, the balanced projectives

are characterized by the fact that they satisfy the third axiom of countability

with respect to knice subgroups. Separable groups are characterized as those

torsion free fc-groups with the property that all finite rank, pure knice sub-

groups are direct summands. The introduction of these new classes of groups

and subgroups is based on a preliminary study of the interplay between primi-

tive elements and »-valuated coproducts. As a by-product of our investigation,

new proofs are obtained for many classical results on separable groups. Our

techniques lead naturally to the discovery that a balanced subgroup of a com-

pletely decomposable group is itself completely decomposable provided the

corresponding quotient is a separable group of cardinality not exceeding Ni;

that is, separable groups of cardinality Ni have balanced projective dimension

< 1-

1. Introduction. In this paper, we examine the fundamental concepts underly-

ing the theory of torsion free abelian groups. This is done in the spirit of the seminal

work of Baer [1] and involves a reappraisal of some of the most basic notions in the

light of new ideas introduced in our recent third axiom of countability characteriza-

tion of p-local Warfield groups in [8]. Indeed the present paper should be viewed in

the context of our ongoing study of isotype subgroups of simply presented groups

initiated in [7]. In particular, we generalize Baer's notion of a primitive element

which, when coupled with our concept of a *-valuated coproduct, leads not only to

new results but also to new proofs of a number of classical theorems.

Throughout this paper, G denotes an additively written torsion free abelian

group. By a height sequence we understand a sequence s = (sp)pep, indexed by

the set P of primes, where each sp is either a nonnegative integer or the symbol

oo. Height sequences are, of course, ordered pointwise and in fact form a complete

distributive lattice with the meet operation defined by s A t = (sp A ip)pgp where

SpAtp = min{sp, tp}. With each x E G, we associate its height sequence |x|, where

|x|p is the height in G of x at the prime p, that is, |x|p = n if x G pnG \ pn+1G

and |x|p = oo if x G pnG for all n < oj. Each height sequence s determines a fully
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invariant subgroup G(s) = {x G G: |x| > s}. Notice that s <t implies G(s) 2 G(t).

Recall that height sequences s and t are said to be equivalent provided (i) sp = tp

for all but finitely many p and (ii) sp = oo if and only if tp = oo. Agreeing that

oo - oo = 0, we observe that s and t are equivalent if and only if X^ep \sp ~ h\

is finite. It is, of course, clear that |x| and \y\ are equivalent if there exist nonzero

integers m and n such that mx = ny. An equivalence class of height sequences is

called a type, and the lattice relations among height sequences induce in the obvious

manner corresponding relations on the set of types. In a rank one group (i.e., a

subgroup of the additive group of rationals), all nonzero elements are of the same

type. We also find it convenient to define a multiplication of height sequences by

positive integers as follows: ns is the height sequence (tp)pep given by tp = sp+np,

where pn" is the highest power of p dividing n. Thus s and t are equivalent if and

only if there exist positive integers m and n such that ms = nt. Notice that G(ns) =

nG(s). In addition to the subgroup G(s), we shall also require the fully invariant

subgroup G(s*) generated by those x G G(s) such that |x| is not equivalent to s;

i.e., each element of G(s*) is a sum of elements x G G(s) with jy,p&p(\x\p-sp) = oo.

If t = ns, then G(t*) = nG(s*). Occasionally we shall need to consider the fully

invariant subgroup G(o) = Yls€a G(s) = \J3€a. G(s) determined by the type o, as

well as the similarly defined G(o*) = £sgCT G(s*) = [Js€l7 G(s*).

Finally, recall that a torsion free group G is said to be completely decomposable

if it decomposes into a direct sum of rank one subgroups, and that G is separable

(in the sense of Baer) if each finite subset of G can be imbedded in a finite rank

completely decomposable direct summand.

2. Primitive elements and »-valuated coproducts. Our notion of a prim-

itive element x in G is motivated by the requirement that when G is completely

decomposable, the pure subgroup (x), generated by x be a summand. Baer's re-

quirement that a primitive element x of type o satisfy |x| > |x + g| for all g E G(o*)

is, however, too stringent and is indeed not appropriate for groups which fail to

be separable. To provide insight into our more general definition of primitivity, we

consider a simple example. Suppose G = A (B B is a rank two group containing

elements a G A and b E B such that |a| = (1,1,1,...) and |6| = (0, oo, 1,...). Let

x = a + b and y = a' + b, where 2a' = a. Then both x and y have s = (0,1,1,...)

as their height sequence. But (y)t is a direct summand of G with B serving as a

complement (see 2.6 below), while the pure subgroup (x)* fails to be a summand

of G. The source of this difference between x and y resides in the fact that b is

an element of G(s*) such that x-b has greater height than x at the prime p = 2.

Agreeing to write G(s*,p) for G(s*) + G(ps) and being guided by the foregoing

example, we now formulate our version of primitivity.

DEFINITION 2.1. Let x be an element of the torsion free group G. If x ^ G(s*,p)

for each prime p and each height sequence s equivalent to |x| for which sp = |x|p

and |x|p 5¿ oo, then we say that x is primitive in G.

If (x)* is a direct summand of G, then it is trivial to verify that x is primitive.

Moreover, it is not difficult, using well-known facts about finite rank completely

decomposable groups, to give an ad hoc proof that (x), is a summand provided x

is primitive in the completely decomposable group G. But this latter observation

arises quite naturally in the general developments to follow (see 2.9 below). Notice

that 0 is primitive, as is any x with |x|p = oo for all primes p.   A simple and
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frequently useful observation about primitive elements is the following:   If x is

primitive in G and if x G G(s*,p), then either $3p6p(|x|p - sP) = oo or x G G(ps).

LEMMA 2.2. Let x EG and suppose n is a nonzero integer. Then x is primitive

in G if and only if nx is primitive in G.

PROOF. That nx being primitive implies the same for x is a consequence of the

fact that G(t*,p) = nG(s*,p) if t = ns. Conversely, assume that x is primitive and

observe that it suffices to consider the case where n is a prime. Assume by way of

contradiction that nx E G(s*,p), where s is equivalent to |nx| and sp = \nx\p ^ oo.

If n = p, then |nx|p = |x|p + 1 and there is a height sequence t such that pt = s

and tp = \x\p. In this case, nx = px E G(s*,p) = pG(t*,p) and x G G(t*,p),

contradicting the primitivity of x. Suppose, however, that nj^p and choose integers

/ and m such that 1 = Ip + mn. Clearly there is a height sequence t equivalent to

s such that t < \x\, t < s and tp = sp = \nx[p = [x\p. Then x = Ipx + mnx is in

G(pt) + G(s*,p) Ç G(t*,p), once again contradicting the fact that x is primitive.

LEMMA 2.3. If x is primitive in G with s = \x\, then each element of the coset

x + G(s*) is primitive with s as its height sequence.

PROOF. Let y = x + z, where z E G(s*). Assume by way of contradiction that

y E G(t*,p), where t is equivalent to [y[ and tp = [y[p ^ oo. Notice that |y| >

|x| A |z| > s and hence tp > sp. Then x = y - z E G(t*,p) + G(s*) C G((s At)*,p).

But this contradicts the fact that x is primitive since s A t is equivalent to |x| and

sp A tp = sp = \x\p. Finally, observe that \y[p > |x|p ^ oo for some prime p would

also contradict the primitivity of x.

Having settled on our definition of primitive element, the next problem we wish to

consider is the formulation of a suitably general condition relating two independent

primitive elements so that the pure subgroup generated by them will be a summand

when the containing group is completely decomposable. As Baer [1] observed, using

his notion of primitivity, there is no real difficulty if the elements are of different

types. The case when the primitive elements are of the same type, however, seems

not to have been dealt with successfully in the literature.

Consider the direct sum A = (xi) ffi (22), wriere xx and x2 are independent

primitive elements in G. If there is any hope for B = (xi), ffi (X2)* to be a direct

summand of G, then we must have |nixi + n2X2| = |niXi| A |n2X2| for all integers

ni and n2. This observation leads naturally to the following definition. A direct

sum Ai © A2 of independent subgroups of G is said to be a valuated coproduct in

G if \ai +a2[ = \ai\ A |<i2| for all ai E A and a2 E A2. An equivalent formulation is

that ax +a2 E G(s) implies ai,a2 E G(s) for all height sequences s. This definition

generalizes in the obvious manner to arbitrary direct sums 0¿6/ A¿ of independent

subgroups of G. If ¿?¿/A¿ is torsion for all i, then 0i6/ Bi is a valuated coproduct

in G if and only if ®¿e/ A¿ is. Indeed this follows from the fact that G is torsion

free and G(ns) = nG(s) for all n and s. Another easy but important observation

is the fact that the valuated coproduct 0¿G/ A, is pure in G if each A¿ is a pure

subgroup of G. The requirement that A = (xi) ffi (x2) be a valuated coproduct

in G does not suffice, however, to make B = (xi)» ffi (x2)« a direct summand of

the completely decomposable group G. To understand why this is so, we consider

another example.
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Let G = Ai ffi A2 ffi A3 be a rank three completely decomposable group containing

elements xi G Ai, X2 G A2 and X3 G A3 such that |xi| = (0,0,0,...), |x2| =

(00,0,0,...) and |x3| = (0,00,0,...). Then y = xi + x2 + X3 is a primitive element

by Lemma 2.3 with [y\ = |xi|, and A = (xi) ffi (y) is readily seen to be a valuated

coproduct in G. Nonetheless, the pure subgroup B = (xi)„ ffi (j/)» fails to be a

direct summand of G. Indeed, well-known and easily proved facts about summands

of completely decomposable groups forbid G having a direct summand isomorphic

to B. A more intrinsic insight into the failure of B to be a summand of G is gained

from the observation that y—xi = X2+X3 G G(s*), where s = \y\ = |xi| and neither

y nor xi is in G(s*). Employing the subgroups G(s*,p) again, we show that the

defect observed in the preceding example can be overcome by the introduction of

a notion more stringent than that of a valuated coproduct.

DEFINITION 2.4. Let A = 0¿e/ A¿ be a valuated coproduct in G and represent

each a G A as a sum a = Yliei a¿i where a¿ G A¿ for all i. If for each prime p and

each height sequence s it is the case that a E G(s*) implies a¿ G G(s*) for all i and

also a G G(s*,p) implies a¿ G G(s*,p) for all i, then we say that A = 0ie/ A¿ is a

evaluated coproduct.

Observe that in the special case of a valuated coproduct A = Ax @ A2, where

A2 = (x) with x primitive in G, one needs only verify the latter of the two conditions

to establish that A = Ai ffi A2 is a *-valuated coproduct. Once again, if Bi/Ai is

torsion for all i, the direct sum 0¿e/ Bi is a *-valuated coproduct in G if and only

if 0¿ej Ai is a *-valuated coproduct in G. The notion of a *-valuated coproduct

provides us with precisely the right tool to resolve the question of when the pure

subgroup generated by two independent primitive elements is a summand of the

completely decomposable group containing them. To see that this is so, however,

requires a series of lemmas.

LEMMA 2.5. If N (B (x) is a *-valuated coproduct in G with x primitive and if
y = x + z, where z E N and \y[ = |x|, then y is primitive and N®(y) is a *-valuated

coproduct in G.

PROOF. First observe that Affi(x) being a *-valuated coproduct forces y = x + z

to be primitive since y E G(s*,p) implies x G G(s*,p), where \y\ = |x|. To show that

N ffi (y) is at least a valuated coproduct, it is enough to verify that |u; + ny[ < [ny[

whenever w G N. But |u; + ny[ = \w + nz\ A |nx| < |nx| = \ny\. It remains

to argue that w + ny E G(s*,p) implies ny E G(s*,p) whenever w G N. Since

w+ny = (w+nz)+nx, we have nx G G(s*,p). But nx is primitive and hence either

J2pep(\nx\p — sp) = 00 or |nx|p > sp. Because \y\ = |x|, the first possibility implies

ny E G(s*) and the second implies ny E G(ps). In either case, ny E G(s*,p).

COROLLARY 2.6. If G = (x), ® K, where |x| = s, and if y = x + z with
z E G(s*), then G = (t/>, ffi K.

PROOF. Notice that N = (x) ffi K is a *-valuated coproduct with G/N torsion.

Since x = y-z is primitive with z G G(s*) Ç K, |x| = [y\ and therefore N = (y)®K

is a valuated coproduct by 2.5. Since (y)t ffi K is a pure subgroup of G, the desired

conclusion follows.

The next technical lemma is crucial to all that follows.
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LEMMA 2.7. Suppose N = (xi) ffi (x2) ffi • • • ffi (xn) is a *-valuated coproduct

in G, where xi,x2,...,xn are all primitive elements of the same type. Then every

element of N is primitive in G. Moreover, if yi = xi + x2 + ■ ■ ■ + xn, then there

exist elements y2,..., yn in N such that N = (yi) ffi (y2) ffi • • • ffi (yn) is a *-valuated

coproduct in G.

PROOF. A straightforward induction reduces the proof to the case n = 2. By

Lemma 2.2, the first assertion will follow once we show that yi = xi + x2 is

primitive. Assume by way of contradiction that yi G G(s*,p), where s is equivalent

to |yi| = |xi| A |x2| and sp = [yi\p ^ oo. We may suppose without loss of generality

that |xi|p < |x2|p. But then the fact that N = (xi)®(x2) is a *-valuated coproduct

with |xi| and |x2| equivalent implies that xi G G(s*,p), where sp = |xi|p and s is

equivalent to |xi|. This, however, contradicts the hypothesis that xi is primitive.

Since |xi| and |x2| are equivalent, the sets Ai = {p G P: |xi|p < |x2|p ^ 00}

and A2 = {p G P: |x2|p < |xi|p =¿ 00} are finite. Therefore there are relatively

prime integers m and n such that |mxi|p = |x2|p for all p G Ai and |nx2|p = |xi|p

for all p G A2. In fact, we may make such a choice with m divisible only by primes

in Ai and n divisible only by primes in A2. Now select integers k and / such that

1 = km + In and let y2 = -kmxi + lnx2. If p G Ai, then |yi|p = |xi|p and

[y2\p = |fcmxi|p A |Znx2|P = |&X2|P A |/x2|p = |x2|p

since k and / are relatively prime. Similarly, if p G A2, then \yi[p = [x2\p and

|y2|p = |xi|p; while if p ^ Ai U A2, the four elements xi,x2,yi and y2 all have

the same height at p. Since the matrix of the transformation between the y y s and

x¿'s is unimodular, we have N = (yi) ffi (y2). We shall first show that this direct

sum is at least a valuated coproduct. We need to argue that [niyi + n2y2\p equals

l^iyilp A [n2y2[p for all integers ni,n2 and all primes p. Of course, we need only

verify this equality under the assumption that |niyi|p = |n2?/2|p- Moreover, since G

is torsion free, common p-power factors can be canceled and hence we may assume

that at least one of the integers ni or n2 is prime to p. But since |yi|p < \y2\p for

p G Ai U A2 and |t/i|p = [y2\p for p G" Ai U A2, we see that p|ni if p G Ai U A2 and
that both m and n2 may be taken to be prime to p when p ^ Ai U A2. Now observe

that for any p we have \nxyx +n2y2\p = |miXi|pA |m2X2|p, where mi = ni —kmn2,

m2 = ni + lnn2 and m2 - mi = n2. If p G Ai, |nixi|p = \niyi\p = \n2y2\p =

\y2\p = \x2[p and thus the same power of p divides m as divides m; that is, at least

that power of p divides mi and consequently p does not divide m2. Therefore, for

pE Ai,
|w2x2|p = [n2y2\p = |nij/i|p < |rnixi|p.

For p G A2, a similar analysis shows that

|mixi|p = |n2y2|p = |^i2/i|P < |ra2x2|p.

On the other hand, if p ^ Ai U A2, the equation m2 - m\ = n2 insures that p

divides at most one of the integers mi and m2, and consequently in this case we

also have |miXi|p A |m2X2|p = \niyi\p A \n2y2\p.

Finally, it remains to explain why N = (yi) ® (y2) is actually a »-valuated

coproduct. Suppose that 0 / y = nit/i + n2y2 G G(s*,p) and recall that y is

necessarily primitive. Then either y has type strictly greater than that determined

by s or else y E G(ps).  Since N = (yi) ® (y2) is a valuated coproduct, the first



740 PAUL HILL AND CHARLES MEGIBBEN

possibility forces both niyi and n2y2 to be in G(s*), while the second implies that

both are in G(ps).

We now have all the ingredients required to establish the following important

exchange property.

THEOREM 2.8. Suppose N = (xi ) ffi (x2) ffi ■ • • ffi (xm) is a *-valuated coproduct

in G where each of the x¿'s is primitive. Ifyi^O is a primitive element contained

in N, then there exist primitive elements y2,... ,ym such that N' = (yx) ffi (y2) ffi

• ■ • ffi (i/m) is a *-valuated coproduct with N/N' finite.

PROOF. Write yi = nixi +n2x2 -\-hnmxm and observe that there is no loss

of generality in assuming that each n¿ is nonzero. But then passing immediately

to the »-valuated coproduct N' = (niXi) ffi (n2x2) ffi • • • ffi (nmxm), we may further

assume that t/i — xi +x2-\-hxm. Notice then that we have \yi\ < |x¿| for each

i, and therefore we can rearrange that x¿'s so that x{,...,Xk have the same type as

yi and the remaining x¿'s are of strictly larger types. Now write yx = y + g where

y = xi -I-\-Xk and g is the sum of the remaining x,'s. Next we make the crucial

observation that the primitivity of t/i implies that |t/i| = |y|. By Lemma 2.7, there

are primitive elements y2,...,yk such that N = (y) ffi (y2) ffi • • • ffi (yk) ffi (xt+i) ffi

■ ■ ■ ffi (xm). Finally, an application of Lemma 2.5 allows us to replace y by yi.

COROLLARY 2.9. If x is a primitive element in the separable group G, then

(x), is a direct summand of G.

PROOF. By separability, x is contained in a direct summand A = AiffiA2®- • -ffi

Am, where each A» is a rank one subgroup of G. Thus we will have x contained

in a »-valuated coproduct N = (xi) ffi (x2) ffi • • • ffi (xm), where xt G A¿ for each

i and A/N is torsion. But then Theorem 2.8 yields a »-valuated coproduct N' =

(x) ffi (y2) ffi ■ • ■ ffi (ym), where N/N' is finite. Since B = (x)* © (y2)* ffi • • • ffi (ym)*

is pure in G and A/N' is torsion, B = A and (x) * is a summand of G.

COROLLARY 2.10 (BAER [1]). A finite rank summand of a separable group

is completely decomposable.

PROOF. Suppose G = A ffi K is separable and A has finite rank. The proof

is by induction on the rank of A. Choose 0 ^ x G A to be of maximal type o

in A. By 2.9 and the implicit induction hypothesis, it suffices to show that x is

primitive. Now if s G o and g G G(s*), the choice of x implies that g E K. But

then |x - g\p = |x|p A \g\p < |x|p for ail primes p and hence x is primitive.

Because of their frequent occurrence in the remainder of this paper, we introduce

the term free * -valuated subgroup to refer to any subgroup F of G that can be

represented as a »-valuated coproduct G = ®í^i(xí), where the x¿'s are nonzero

primitive elements of G. Under these circumstances, we shall say that the x¿'s form

a set of free generators of F.

THEOREM 2.11. If F and N are free *-valuated subgroups ofG, where N has

finite rank and N Ç F, then there is a *-valuated coproduct F' = N ffi M, where

F/F' is finite and M is also a free * -valuated subgroup of G.

PROOF. Suppose we have N = (t/i) ffi • • • ffi (ym), where the y^'s form a set

of free generators of N. Proceeding by induction, we may assume that we have a

»-valuated coproduct Fx = (yx) ffi • • • ffi (yn-i) ffi Mi, where F/Fx is finite and Mx
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is a free »-valuated subgroup of G. Then some nonzero multiple y'n of yn is in i<\.

Let s = \y'n\. Now we can write y[ + ■ • ■ + y'n-i + y'n = y + g where the y"s are

multiples of the j/¿'s, g G Mx fl G(s*) and y is a primitive element in Mx having

the same type as y'n. Since i/n is primitive and (yi) ffi • ■ • ffi (yn) is a »-valuated

coproduct, it follows that \y\ = \]/n\. Then, just as in the proof of 2.8, we have

a »-valuated coproduct M[ = (y) ffi M, where Mx/M[ is finite and M is a free

»-valuated subgroup containing g. Using Lemma 2.5, we conclude that we have a

»-valuated coproduct F[ = (yi) ffi • • • ffi (yn-i) ffi (y'n) ffi M with F/F[ finite. Since

yn has finite order modulo (y'n), we still have a »-valuated coproduct when (y'n) is

replaced by (yn), yielding thereby the desired F'.

COROLLARY 2.12. If N is a finite rank, free * -valuated subgroup of the sepa-

rable group G, then the pure closure of N is a direct summand of G.

PROOF. Let N = (yx) ® ■ ■ ■ ® (yn), where the y¿'s are free generators of N. Since

G is separable, N is contained in a direct summand A = Ax ffi • • • ffi Am of G, where

each Ai is a rank one subgroup. Each A¿ is locally cyclic and therefore we have

nonzero x¿'s in the corresponding A¿'s such that F = (xi) ffi • • • ffi (xn) contains N.

By 2.11, we have a »-valuated coproduct F' = N ffi M, where F/F' is finite. Thus

A is the pure closure of F' and we clearly have a direct decomposition A = B®C,

where B and C are, respectively, the pure closures of N and M in G.

COROLLARY 2.13 (BAER [1]). Any finite rank, pure subgroup of a homoge-

neous separable group is a direct summand.

PROOF. Let A be a nonzero finite rank pure subgroup of the homogeneous

separable group G and let A be a free subgroup of A with A/N torsion. As in

the proof of 2.12, N is contained in a finite rank, free »-valuated subgroup F of

G. Now notice that Lemma 2.7 implies that all the elements of N are primitive in

G. By Theorem 2.8, we have »-valuated coproduct F' = (yi) ffi • • • ffi (yn), where

F/F' is finite, the y¿'s are primitive in G and yi is a nonzero element of N. A

straightforward induction then leads to a free »-valuated subgroup N' of G with

N/N' finite. Since A is the pure closure of N', the desired conclusion follows from

2.12.

3. fc-groups. In this section, we study a class of torsion free groups more

general than the separable groups. We call G a k-group if each finite subset can be

imbedded in a finite rank, free »-valuated subgroup.

EXAMPLE 3.1. A ¿-group need not be separable. Let K = ZH° and take H to be

the corresponding direct sum of No copies of Z. Then for any prime p, G = H+pK

is an Ni-free group that is not separable (see p. 114 of [4]). On the other hand,

G is a fc-group since it is Ni-free. Indeed, any finite subset is imbeddable in a

finite rank, pure free subgroup F = (x\) ffi (x2) ffi • • • ffi (x„). As F is pure, this

direct decomposition is a valuated coproduct. Furthermore G(s*) = 0 for all height

sequences s since G is homogeneous of type (0,0,..., 0,...). Consequently, each Xi

is primitive and F = (xi) ffi (x2) ffi • • • ffi (xn) is a »-valuated coproduct in G.

Example 3.1 notwithstanding, we can prove the following result.

PROPOSITION 3.2. A finite rank summand of a k-group is completely decom-
posable.
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PROOF. Let A be a finite rank summand of the fc-group G. Then there is a

finitely generated subgroup F of A with A/F torsion. Since G is a fc-group, F

is contained in a free »-valuated subgroup N of G. The pure closure B of the

subgroup A is a completely decomposable group containing A. But then A is a

direct summand of B and therefore A is completely decomposable by 2.10.

Separable groups have received much attention in the literature. The following

result provides a useful characterization of these groups.

THEOREM 3.3. G is separable if and only if G is a k-group with the prop-
erty that the pure closure of each finite rank, free » -valuated subgroup is a direct

summand.

PROOF. Since separable groups are obviously fc-groups, the proposition is an

immediate consequence of 2.12 and 3.2.

Like separable groups, countable fc-groups are completely decomposable. But

the proof of this fact requires the following lemma.

LEMMA 3.4. Let N be a finite rank, free *-valuated subgroup of the k-group

G and suppose S is a finite subset of G. Then there exists a finite collection of

primitive elements yi,y2,-..,ym such that N' = N ffi (yi) ffi (y2) ffi • ■ • ffi (ym) is a

*-valuated coproduct in G with (S,N')/N' finite.

PROOF. Let xi, x2,..., xn be free generators of N and take S' = 5u{xi,x2,...,

xn}. Since G is a fc-group, we can select a finite rank, free »-valuated subgroup F

containing S". Then N Ç F and, by Theorem 2.11, we have a »-valuated coproduct

N' = N ffi (yi) ffi (y2) ffi • • • ffi (ym), where the y¿'s are primitive and F/N' is finite.

Since S Ç F, the proof is complete.

THEOREM 3.5.  A countable k-group is completely decomposable.

PROOF. Suppose xi, x2,..., x„,... is an enumeration of the elements of G and

let Xn = {xi : i < n} for each n < oj. Using 3.4, we define inductively an ascending

sequence {Sn}, where each Sn is a finite set of primitive elements serving as a free

basis of a free »-valuated subgroup Fn with (Xn, Fn)/Fn finite. Then F = \Jn<u Fn

is a free »-valuated subgroup of G with G/F torsion. Thus G is the pure closure

of F and therefore G is completely decomposable.

We next want to show that the class of fc-groups is closed under the operation

of taking direct summands. Our proof of this fact requires a technical lemma,

which also turns out to be useful later. The statement of this lemma, however,

requires a couple of preliminary definitions. If H ffi K is a »-valuated coproduct in

G and if F is a subgroup of G, then we say that F splits along H and K provided

F = (F n H) ffi (F n K) and we say that F is quasi-splitting along H and K if

F/(F nH)®(FC\K) is torsion.

LEMMA 3.6. Suppose H ffi K is a *-valuated coproduct in G and let F be a

free *-valuated subgroup that is quasi-splitting along H and K. If the finite rank,

free * -valuated subgroup A is contained in F, then there is a * -valuated coproduct

F' = A® B ffi C, where F/F' is torsion, B has finite rank and C splits along H

and K.

PROOF. The proof is by induction on the rank of A and we impose the further

hypothesis that B be a free »-valuated subgroup having a set of free generators each
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of which has the same type as one of the members of a fixed set of free generators

of A. The proof also requires the following sublemma: If N is quasi-splitting along

H and K and if N' = M ffi L is a »-valuated coproduct, where N/N' is torsion and

M splits along H and K, then there exists a »-valuated coproduct N" = M ffi L',

where N/N" is torsion and L' also splits along H and K. Indeed we need only take

N" = N' n H + N' fl K and V = Hi ffi Ku where Hi = H n [(M n K) ffi L] and
Ä"i = irn[(MnF)ei].

Suppose A = Aiffi(x) is a »-valuated coproduct where x is a primitive element of

maximal type in A. By our induction hypothesis, we have a »-valuated coproduct

Fi = Ai ffi Bi ffi Gi, where F/Fi is torsion, Bi satisfies the appropriate conditions

and Gi splits along H and K. Notice that F being quasi-splitting along H and K

is essential here even in the case Ai = 0. Then some nonzero multiple x' of x lies

in F\ and we write x' = a + b + ci + c2, where a E Ax, b G Bi, Ci G Gi fl if and

c2 G GiflÄ". Let s = \x'\. Since |x'| < |o|, either a = 0 or else a has maximal type in

Ai. Thus Lemma 2.7 implies that a and x' —a = b + Ci+c2 are primitive elements.

Moreover, since Ax ffi (x1) is a valuated coproduct and |x'| < |6 + ci + c2|, it follows

that \b + ci + c2[ = s. Even though Ci and c2 need not themselves be primitive

elements, there are, we claim, elements zi G H fl G(s*) and z2 E K n G(s*) such

that h = ci — zi and k = c2 - z2 axe primitive. As the arguments are parallel, we

provide the details only for the choice of z\. If ci G G(s*), then we need only take

zi = ci. Assume then that ci ^ G(s*). As ci is contained in the free »-valuated

subgroup F and s < [ci|, we can write ci = v + w, where w E G(s*) C\ F and v is a

primitive element having the same type as ci. Moreover, since F is quasi-splitting

along H and K, some nonzero multiple of w is expressible as a sum zi + w', where

zi E F D H and w' E F C\ K. Replacing x' by some nonzero multiple of itself if

necessary, we may assume that ci = v + zi+w' and that also zi E Fi. Notice then

that zi E G(s*) since H ® K is a »-valuated coproduct. Then h = ci - zt = v + w'

is primitive by Lemma 2.3 because |ti| = \h\ A \w'[ since h G H and w' G K.

Observe that the choice of x and the condition on Bi force FiC\G(s*) Ç Ci. Thus

from our choice of zi above, hECi and, similarly, k = c2 - z2 E Ci. By Theorem

2.11 and the fact that Gi is contained in the free »-valuated subgroup F, we have a *-

valuated coproduct C'x = (h)ffi(fc)ffiG, where Ci/C'i is torsion and Gi C\G(s*) Ç C.

By our sublemma above, we may further assume that G splits along H and K. Now

clearly F2 = Ai ffi Bi ffi (h) ffi (fc) ffi G is a »-valuated coproduct with F/F2 torsion.
Let z = x' — zi — z2 = a + b + h + k and note that 2 is a primitive element with

\z\ = s by Lemma 2.3. Also yi = b + h + k is primitive with [yi\ = [b + ci + c2\ = s

for the same reason. Since |x'| < |6|, either b = 0 or b is a primitive element in £>i

of maximal type. In either case, we have a »-valuated coproduct B'x = Bo ffi (b),

where Bi/B'x is finite and B0 is a free »-valuated subgroup of G. Consider then the

»-valuated coproduct F' = Ai ffi B0 ffi (b) ffi (h) ffi (fc) ffi G and apply Lemma 2.7 to
express F' as the »-valuated coproduct F' = Ai ®B0 ffi (yi) ffi (y2) ffi (t/3) ffiG, where

y2 and î/3 are also primitive. Lemma 2.5 allows us to replace yi by z, and since

zi,z2eC another application of Lemma 2.5 enables us to replace z by x'. Thus we

have a »-valuated coproduct F' = Ai ffi (x') ffi B ffi C, where B = Bq ® (y2) ® (yz),

F/F' is torsion and G splits along H and K. Finally, as x has finite order modulo

(x'), we may replace Ai ffi (x') by A = Ai ffi (x).

THEOREM 3.7.   A direct summand of a k-group is a k-group.
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PROOF. Suppose G = H ffi K is a fc-group and let S be a finite subset of H.

Then S Ç A for some finite rank, free »-valuated subgroup A of G. Using 3.4, we

define inductively a pair of ascending sequences {Tn}n<u; and {5„}n<u, of finite

subsets of G satisfying the following conditions:

(i) T„ is a set of free generators of a free »-valuated subgroup Fn of G with

F0 = A.

(ii) Fn Ç (Sn) and Sn = (S„ n H) U (5n n AT).
(iii) (Sn, Fn+i)/Fn+i is finite for each n.

Then F = \Jn<uFn is a free »-valuated subgroup of G, and conditions (ii) and

(iii) imply that F is quasi-splitting along H and K. Then we have a »-valuated

coproduct F' = A ffi B ffi G, where F', £? and G satisfy the conditions stated in

Lemma 3.6. Recalling the sublemma used in the proof of 3.6, we see that there

is a »-valuated coproduct F" = Ai ffi Si ffi C, where F/F" is torsion and Ai =

H fl [A ffi B ffi (C fl if)]. Notice that Ai contains 5 and that Ai is necessarily a

finite rank subgroup of G. Now let L and M be the pure closures of Ai and F,

respectively. Then M is completely decomposable and, since M is also the pure

closure of F", Lis a direct summand of M. By 2.10, L is completely decomposable

and clearly then S is contained in a direct sum (j/i) ffi (y2) ffi • ■ • ffi (ym), where

the j/j's are primitive in M and this direct sum is a »-valuated coproduct in M.

That the y¿'s are actually primitive in G and that (yi) ffi (y2) ffi • • • ffi (ym) is a *-

valuated coproduct in G follow from the crucial fact that M C\ G(s*,p) = M(s*,p)

for all height sequences s and all primes p. Indeed from the construction of M,

M = 0¿<w Mi is a »-valuated coproduct in G where each M¿ is the pure subgroup

of G generated by some primitive element x; of G. Thus M fl G(s*,p) = M(s*,p)

reduces to M¿ il G(S*,p) = Mi(s*,p) for each i, and this latter fact is an easy

consequence of the fact that M¿ is pure in G and each element of M¿ is primitive

inG.

COROLLARY 3.8 (FUCHS [2]). A direct summand of a separable group is sep-

arable.

PROOF. Suppose G = H@K is separable. Then H is a fc-group by Theorem 3.7.

Clearly H n G(s*) = H(s*) and H n G(s*,p) = H(s*,p) for all height sequences s

and all primes p. The latter observation implies that each free »-valuated subgroup

of H is a free »-valuated subgroup of G. That H is separable follows now from

Proposition 3.3.

4. Knice subgroups. In this section, we introduce a class of subgroups that

plays a role for torsion free groups analogous to that played by nice subgroups in

the study of torsion groups. Indeed, following the theme of our earlier paper [8],

we elevate to the status of a definition the property exhibited in 3.4 of finite rank,

free »-valuated subgroups of fc-groups.

DEFINITION 4.1. A subgroup N of the torsion free group G is said to be a knice

subgroup if for each finite subset S of G there exist primitive elements yi,y2,-..,ym

such that N' = N ® (yi) ® (y2) ■ ■ ■ (ym) is a »-valuated coproduct with (S, N')/N'

finite.
It is easy to see that N is knice in G if and only if its pure closure is knice in

G. If N is both pure and knice in G, then a routine argument shows that the y¿'s

can be chosen so that S ç N'. Note then that G is a fc-group if and only if 0 is
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a knice subgroup of G. That summands of fc-groups are knice is a nontrivial fact

that follows from Theorem 3.7.

PROPOSITION 4.2. IfN' = N®(xi)®(x2)®- ■ -ffi(x„) is a *-valuated coproduct

in G with N a knice subgroup of G and each x¿ primitive in G, then N' is a knice

subgroup ofG.

PROOF. By induction, it suffices to consider the case n — 1. Assume then that

N' = N ffi (x) is a »-valuated coproduct in G with N knice and x primitive. Let

5 be a finite subset of G and take S' = S U {x}. Since N is knice in G, there is a

»-valuated coproduct F = Nffi (yi) ffi (y2) ffi ■ • • ffi (ym), where the y¿'s are primitive

and (S',F)/F is finite. In particular, some nonzero multiple x' of x is contained

in F. Thus we can write x' = z + tiyi + t2y2 + ■ ■ ■ + tmym, where z E N. Since

N ffi (x') is a »-valuated coproduct, if all the í¿y¿'s had type greater than the type

of x', the primitivity of x' would be contradicted. Then x' = z + y + g where the

primitive element y is the sum of the í¿y¿'s having the same type as x'. Observe

that x' — z = y + g is also primitive since if x' - z E G(t*,p) where t is equivalent

to |x' - z\ = \x'\ A |z| = |x'| and tp = |x' — z\p = [x'\p ^ oo, then N ffi (x') being a

»-valuated coproduct implies x' G G(t*,p) contrary to the fact that x' is primitive.

But then g E G(s*), where s = [x'[ = \x' — z\ and hence the equation x' — z = y + g

forces us to conclude that |y| = |x' — z[ = \x'[. By Lemma 2.7, x' is contained in a

»-valuated coproduct F' = N ffi (y) ffi (z2) ffi • • • ffi (zm) where F/F' is finite and, of

course, the 2¿'s are primitive. Lemma 2.5 then allows us to replace y by x' in the

representation of F' above. Finally, we note that H = Nffi (x) ffi (z2) ffi • • • ffi (zm) is

a »-valuated coproduct with (S,H)/H finite, that is, N ffi (x) is a knice subgroup

ofG.
Recall that a pure subgroup H of the torsion free group G is said to be balanced

if each coset x + H contains an element y such that |y| = \x + H\, where the height

sequences are computed in G and G/H, respectively.

THEOREM 4.3. A pure subgroup H of G is a knice subgroup if and only if H

is balanced in G and G/H is a k-group.

PROOF. First assume that H is a knice and pure subgroup of G. Then for any x

in G we can write x = z+y, where z E H and H®(y) is a valuated coproduct in G. It

follows that \x+h\ < [y\ for all h E H, that is, |x+i/| = |y| and H is balanced. Since

H is balanced in G, (G/H)(s) = G(s) + H/H and (G/H)(s*,p) = G(s*,p) + H/H
for all height sequences s and all primes p. To prove that G/H is a fc-group it is

clearly enough to show that if H © (yi) ffi • • • ffi (ym) is a »-valuated coproduct in G

with primitive y¿'s, then the y¿ + H's axe primitive and (yi + H) ffi • • • ffi (ym + H)

is a »-valuated coproduct in G/H. But these facts are easily established using the

observations above about (G/H)(s) and (G/H)(s*,p).

Conversely, assume that H is balanced in G and that G/H is a fc-group. Now

consider any »-valuated coproduct (yi + H) ffi • ■ • ffi (ym + H) in G/H, where the

yi + H's are primitive and |y¿| = |y¿ + H[ for each i. It is trivial then that the y,'s

are primitive in G, and obviously it is enough to argue that H ffi (yi) ffi • • ■ ffi (yTO)

is a »-valuated coproduct in G. Let x = h + txyx -\-\- tmym, where hE H. First

suppose x G G(s). Then, for each i, tiyi + H E (G/H)(s) and hence í¿y¿ G G(s)

since |í¿y¿| = \tiyi + H\. Thus H®(yi)®- ■ -ffi (ym) is at least a valuated coproduct.

Next suppose x G G(s*,p). Then once again for each i, txyi + H E (G/H)(s*,p).
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But since í,'y¿ + H is primitive, either í¿y¿ + H is in (G/H)(ps) of |f¿y¿ + H\ is not

equivalent to s. In either case, |í¿y¿| = |í¿y¿ + H[ implies í¿y¿ G G(s*,p).

Since the ideas involved in the proof of Theorem 3.4 can be used to show that

every countable subset of a fc-group is contained in a countable completely decom-

posable pure subgroup, the following corollary implies that pure knice subgroups

are Ni-pure.

COROLLARY 4.4. If H is a pure knice subgroup ofG and if G/H is countable,
then H is a direct summand ofG.

PROOF. As is well known, H is a summand ofG if H is balanced in G and G/H

is completely decomposable. Thus the result follows from 4.3 and 3.5.

COROLLARY 4.5. If H is balanced in G and K/H is a pure knice subgroup of

G/H, then K is a pure knice subgroup of G.

PROOF. If H is balanced in G and K/H is balanced in G/H, then K is balanced

in G. Thus Theorem 4.3 and the canonical isomorphism G/K ~ (G/H)/(K/H)

yield the desired conclusion.

COROLLARY 4.6. Let H be a pure subgroup ofG. If H is knice in G and N/H
is knice in G/H, then N is knice in G.

PROOF. It suffices to observe that the hypotheses imply that the pure closure

A" of A is a knice subgroup of G. But since K/H is the pure closure in G/H of

the knice subgroup N/H, we conclude that K is knice in G by 4.5.

Formalizing a notion that has already played a role in 3.7 and 3.8, we say that a

pure subgroup H of G is *-pure if HnG(s*) = H(s*) and H nG(s*,p) = H(s*,p)

for all height sequences s and all primes p. We have already seen that summands

are »-pure subgroups, and so are rank one pure subgroups generated by primitive

elements. Clearly the ascending union of »-pure subgroups is »-pure. Also a »-

valuated coproduct H = 0¿e/ Hi in G will be a »-pure subgroup if each Hi is

»-pure in G.

PROPOSITION 4.7.  A pure knice subgroup is *-pure.

PROOF. Suppose H is a pure knice subgroup of G and let x G H fl G(s*,p).

Then we can write x = zi + z2 + ■ ■ ■ + zn + g, where g G G(ps) and each Zi is an

element of G(s) with |2¿| not equivalent to s. Since ii is a pure knice subgroup of

G, {zi,z2,...,zn,g} is contained in a »-valuated coproduct H ffi (yi) ffi • • • ffi (ym),

where the y¿'s are primitive in G. Then we can write g = h + tiyi -I-\-tmym and,

for each i, Zi = hi + txyi -\-r-tmym where h and each hi is in H. Since [g[ < [h[

and \zi\ < \hi\ for * = 1,2,...,n, x — z% H-\- zm + g = hi + h2 -\-1- hn + h is
in H(s*,p). Likewise, if x G H fl G(s*), then clearly x G H(s*).

Exploiting Lemma 3.6 again, we shall prove that a pure knice subgroup of a

fc-group is itself a fc-group.

THEOREM 4.8. The pure knice subgroup H of G is a k-group if and only if G

is a k-group.

PROOF. First consider the case where H is a fc-group and let S be a finite

subset of G. Since H is a pure knice subgroup of G, S is contained in a »-valuated
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coproduct H ffi (yi) ffi • • • ffi (ym), where the y¿'s are primitive in G. But then

S Ç (T) ffi (yi) ffi • • • ffi (ym) for some finite subset T of H. Since H is a fc-group,
there are primitive elements X\,...,xn in H such that (xx) ffi • • • ffi (xn) is a *-

valuated coproduct in H containing T. Then 4.7 implies that F = (xi) ffi • • • ffi

(xn) ffi (yi) ffi • • • ffi (ym) is a free »-valuated subgroup of G that contains S.

Conversely, assume that G is a fc-group. The proof that H is a fc-group will

involve an elaboration on the technique used to prove Theorem 3.7, and we shall

need to use Proposition 4.2 in exploiting the fact that H is knice in order to generate

an appropriate K with H ffi K a »-valuated coproduct in G. Once again we begin

with a finite rank, free »-valuated subgroup A of G which contains some fixed finite

subset S of H. But this time we define inductively, in addition to a pair of ascending

sequences {Tn}n<ui and {Sn}n<u> of finite subsets of G, a third sequence {Bn}n<u

of finite rank, pure knice subgroups such that the following conditions are satisfied:

(i) Tn is a set of free generators of a free »-valuated subgroup Fn of G with

Fo = A.
(ii) H ffi Bo ffi • • • ffi Bn is a »-valuated coproduct in G that contains Fn.

(iii) Fn Ç (Sn) and Sn = (Sn n H) U (Sn D (B0 ffi • • • ffi Bn)).
(iv) (Sn,Fn+i)/Fn+i is finite for each n.

Then F = {Jn<u Fn is a free »-valuated subgroup of G that is quasi-splitting along

H and K = 0„<w Bn- The proof of the theorem is now completed exactly as in

the case of Theorem 3.7.

The preceding theorem leads quickly to a generalization of the important obser-

vation of Fuchs that summands of separable groups are separable.

COROLLARY 4.9.  A pure knice subgroup of a separable group is itself separable.

PROOF. Suppose H is a pure knice subgroup of the separable group G. Since

H is »-pure in G by 4.7, each free »-valuated subgroup of H is a free »-valuated

subgroup of G. That H is separable then follows from 4.8 and 3.3.

In [9], Rangaswamy introduces the notion of a strongly balanced subgroup and

his Theorem 7 asserts that both H and G/H are separable if H is strongly balanced

in the separable group G. Thus strongly balanced subgroups of separable groups

are actually pure knice subgroups and hence 4.9 can also be viewed as a partial

generalization of Rangaswamy's theorem. Notice, however, that in the context

of separable groups, the pure knice subgroups form a more comprehensive class

than the strongly balanced subgroups. Indeed if H is a pure knice subgroup of

the separable groups G, then G/H need not necessarily be separable. This latter

observation follows from 3.1, 4.3 and the well-known fact that every torsion free

group is a homomorphic image of a completely decomposable group with balanced

kernel.

We close this section by recording some further facts about pure knice subgroups.

PROPOSITION 4.10. Let H and K be pure subgroups of the torsion free group

G with HÇK.

(i) If H is knice in K and K is knice in G, then H is knice in G.

(ii) If H is knice in G and K/H is knice in G/H, then K is knice in G.

(iii) If K is knice in G, then K/H is knice in G/H.
(iv) If H and K are both knice in G, then H is knice in K.
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PROOF. Of course, (ii) has already been proved in 4.6. To prove the transitivity

result (i), we take S to be a finite subset of G. Since we are assuming that K is

pure and knice in G, we have S contained in a »-valuated coproduct K ffi (yx) ®

(y2) ffi • • • ffi (ym), where the y¿'s are primitive in G. But then S has a corresponding

finite projection T in K, that is, S Ç (T,yi,y2,.. .,ym), where T is a finite subset

of K. But because H is assumed to be knice in K, T is contained in a »-valuated

coproduct (in K) H ffi (xi) ffi (x2) ffi • • • ffi (xn), where x/s are primitive in K. By

4.7, the Xj's are primitive in G and H ffi (xi) ffi • • • ffi (xn) ffi (yi) ffi • • • ffi (ym) is a

»-valuated coproduct in G containing S; that is, H is knice in G.

That K being knice in G implies K/H is knice in G/H is an easy consequence of

Theorem 4.3. Indeed under these circumstances, K/H is clearly balanced in G/H

and (G/H)/(K/H) ~ G/K is a fc-group. Finally, to prove (iv), we assume that

both H and K are knice in G. Then G/H is a fc-group by 4.3, and therefore (iii)

and Theorem 4.8 imply that K/H is a fc-group. Noting that H is balanced in K

since it is balanced in G by 4.3, we see that yet another application of 4.3 yields

that desired conclusion that H is knice in K.

COROLLARY 4.11. If H = A® B is a pure knice subgroup of the k-group G,

then A and B are pure knice subgroups of G.

PROOF. By Theorem 4.8, H itself is a fc-group. But as noted earlier, it is a

consequence of Theorem 3.7 that summands of fc-groups are knice subgroups. The

conclusion that A and B axe knice in G follows from 4.10(i).

5. The third axiom of countability. A torsion free group G is said to satisfy

the third axiom of countability with respect to knice subgroups provided there is a

family C of knice subgroups of G such that the following three conditions hold:

(0) 0 G C.
(1) C is closed with respect to the group union of an arbitrary number of groups.

(2) If A G C and S is a countable subset of G, then there exists a B E C such

that B/A is countable and B D (A, S).

PROPOSITION 5.1. If C is a family of knice subgroups ofG satisfying (0), (1)
and (2), then C contains a subfamily C of pure knice subgroups satisfying (0), (1)

and (2).

PROOF. By Theorem 2 of [5], there is a family P of pure subgroups of G

satisfying (0), (1) and (2). Let C = CC\P. Clearly C satisfies (0) and (1). Now
suppose Ae C and let S be a countable subset of G. Exploiting condition (2) for

C and P separately, we generate inductively a nested ascending sequence

B0 C Co Ç Bi ç d C ■ ■ ■ Ç Bn Ç Cn Ç • • ■,

where (A, S) Ç Bo, Bq/A is countable, each Cn is in P and both Cn/Bn and

Bn+i/Cn are countable for all n. Then B = \Jn<u) Bn = \Jn<ÙJ G„ is in C, (A, S) Ç

B and B/A is countable. Thus C satisfies (2), as desired.

THEOREM 5.2. If G is a torsion free group satisfying the third axiom of count-

ability with respect to knice subgroups, then any direct summand of G also satisfies

the third axiom of countability with respect to knice subgroups.

PROOF. Suppose G = H ffi K and let C be a family of knice subgroups of G

satisfying (0), (1) and (2).   By 5.1, we may assume that the members of C are
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pure and knice in G. Let C consist of all those subgroups A of H for which there

corresponds an N E C such that N = A ffi (N n K). It is a familiar fact (see, e.g.,

the proof of 81.5 in [3]) that C also satisfies (0), (1) and (2). It remains to show

that the members of C are knice in H. But this is an easy consequence of 4.3

and 3.7. Indeed suppose A E C and N = A ffi (N n K) E C. It is then a routine
argument to show that N being balanced in G implies that A is balanced in H;

while H/A is a fc-group since it is canonically isomorphic to a direct summand of

the fc-group G/N.

Given the well-known third axiom of countability characterization of simply pre-

sented torsion groups, it should not be surprising that the class of torsion free

groups we have introduced in this section consists precisely of the simply presented

ones. This is indeed the content of our next theorem.

THEOREM 5.3. A torsion free group satisfies the third axiom of countability

with respect to knice subgroups if and only if it is completely decomposable.

PROOF. Assume first that G = 0¿e/G¿, where each G¿ is a torsion free rank

one group. For each subset J of I, let G(J) = ^2i€JGi. As a summand of the

fc-group G, each G(J) is a knice subgroup of G. If C consists of all G(J) as J

ranges over all subsets of I, then it is clear that C satisfies (0), (1) and (2).

Conversely, assume that C is a family of pure knice subgroups of G that satisfies

(0), (1) and (2). It is routine to show that G is the union of a well-ordered family

{Ha}a<p satisfying the following conditions:

(i) Ho = 0, Ha Ç Hß if a < ß and Ha = \Jß<a Hß whenever a is a limit ordinal;

(ii) For all a < p, Ha E C and Ha+i/Ha is countable.

The proof is completed by showing that, for each a, Ha+i = Ha ffi La, where

La is completely decomposable; for if this can be established, it will follow that

G = 0Q<„ La- Thus, by 3.5, 4.3 and 4.4, it is enough to prove that Ha is knice in

Ha+i for each a. But since Ha is balanced in G and HQ+i/Ha is pure in G/Ha,

it is routine to verify that Ha is balanced in Ha+i- By 4.3 it remains only to prove

that Ha+i/Ha is a fc-group. It is, however, a triviality to show that Ha+i being

a pure knice subgroup G implies that Ha+i/HQ is a pure knice subgroup of the

fc-group G/Ha- Finally, an application of 4.8 completes the proof.

Notice that 5.2 and 5.3 combine to yield the Baer-Kulikov-Kaplansky theorem

which asserts that summands of completely decomposable groups are themselves

completely decomposable. Of course, theorems insuring that certain subgroups of

completely decomposable groups are completely decomposable are difficult to come

by, and all too often such theorems involve artificial assumptions concerning the

set of types assumed by elements of the containing group. As a final application

of the ideas developed in this paper, however, we shall present a fairly general

criterion concerning subgroups of completely decomposable groups which can be

paraphrased as follows: Separable groups of cardinality at most Ni have balanced

projective dimension < 1.

THEOREM 5.4. If H is a balanced subgroup of the completely decomposable
group G and if G/H is a separable group of cardinality not exceeding Hi, then H is

completely decomposable.
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PROOF. We begin our proof with a few preliminary observations. First we

note that a separable group K of cardinality Ni is the union of a smooth well-

ordered chain {Ka}a<u11, where each Ka is a countable, separable pure subgroup

of K. Indeed beginning with a well-ordering {xQ}a<u)1 of the elements of K, we

construct the Ka's inductively in such a fashion that (a) xa G Ka+i and (b) each

finite subset S of Ka can be imbedded in a finite rank summand A of ii with

A Ç Ka- Assume that the requisite iiQ's have been constructed for all a < ß.

If ß is a limit ordinal, we let Kß = (Ja</3 ^a ano- observe that condition (b) is

inherited by Kß. One the other hand, if ß = a + 1 for some a, then we choose an

enumeration {yn}n<u of the elements of Ka and take Kß = [jn<u An, where the

A„'s form an ascending sequence of finite rank summands of K with An containing

{yo, ■ -.,yn, xa}-

Our remaining preliminary observations involve the notion of global compatibility

in the sense of [6]. If A and B axe subgroups of G, then we write A\\B to indicate

that the following condition is satisfied: If (a,b) E A x B and if s < [a + b\ for

some height sequence s, then there exists a b' E A 0 B such that s < [a + b'[. If

H is a balanced subgroup of G and if S is a countable subset of G, then there is

a countable subgroup B of G such that S C B and B\\H (see the proof of Lemma

1 in [6]). Finally, we wish to note that A n Ü will be a balanced subgroup of A

provided Ü is balanced in G and A is a pure subgroup of G with A||ü. Indeed

suppose s = [a + A fl H\, where heights are computed in A/A fl Ü, or equivalently

in G/A fl H since A is pure. But then [a + H\ > s and since H is balanced in G,

there is an h E H such that |a + /i| = |a + ü|. Recalling that A||ü, we see that

|o + h'\ > s for some h' E A fl H and it follows that A n H is balanced in A.

We shall first prove the theorem under the further restriction that |G| < Ni.

Then as the proof of 5.3 clearly indicates, it suffices to show that H is the union

of a family C of countable pure knice subgroups where C satisfies (0), (2) and the

following weakened version of (1):

(1') C is closed under the union of countable chains.

We fix a direct decomposition G = 0ie/ G¿, where each G¿ is a rank one group,

and we let G(J) = ^2i€j Gi whenever J is a subset of I. Since G/H is separable,

one of our preliminary observations tells us that G/H is the union of a family D

of countable, separable pure subgroups where D also satisfies the closure property

(1'). We shall call a subset J of K "special" provided J satisfies the following

conditions:

(i) J is countable;

(ii) G(J)\\H;
(iii) G(J) + H/H is in D.

Given the inductive nature of (ii) and our earlier observations, a standard back-

and-forth argument shows that {G(J): J is "special"} satisfies (0), (1') and (2).

Thus if we set H(J) = HnG(J), the family C = {H(J) : J is "special"} inherits the
properties (0), (1'), (2). It remains to show that the members of C are knice in H.

Initially we recognize each H(J) with J "special" as a knice subgroup of G(J) by

4.3 since, as observed in the preceding paragraph, (ii) implies that H( J) is balanced

in G(J) and (iii) implies that G(J)/H(J) ~ G(J) + H/H is a fc-group. Since the
summands G(J) of the fc-group G are knice, 4.10(i) tells us that the members of
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C are knice in G. Finally, note that 4.10(iv) then implies that the H(J)'s with J

"special" are actually knice in H.

We still have the problem of removing the cardinality restriction on G. Fortu-

nately, this difficulty can be overcome by a routine variant of Schanuel's trick. First

note that, since \G/H\ < Ni and G is completely decomposable, G/H is canonically

the image of a summand Go of G with |Gn| < Ni. Furthermore, we can choose

Go such that each element of G/H has a preimage in Go with the same height

sequence and therefore üo = H (~)Go will be balanced in Go- By the case covered

by our restricted version of the theorem, üo is completely decomposable. Since it

is routine that pullbacks of balanced exact sequences are balanced exact, we obtain

two balanced exact sequences 0 -+ Ü —> K —> Go —> 0 and 0 -> üo —► if —» G —> 0,

where K is the obvious subgroup of G ffi Go- Since G and Go are completely decom-

posable, these sequences split and we have an isomorphism H ffi Go — üo ffi G. The

Baer-Kulikov-Kaplansky theorem yields the desired conclusion that Ü is completely

decomposable.

COROLLARY 5.5. If G is a completely decomposable group of cardinality not

exceeding Ni, then every strongly balanced subgroup ofG is completely decomposable.
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