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AXIOM 3 MODULES

PAUL HILL1 AND CHARLES MEGIBBEN

ABSTRACT. By introducing the concept of a knice submodule, a refinement

of the notion of nice subgroup, we are able to formulate a version of the third

axiom of countability appropriate to the study of p-local mixed groups in the

spirit of the well-known characterization of totally projective p-groups. Our

Axiom 3 modules, in fact, form a class of Zp-modules, encompassing the totally

projectives in the torsion case, for which we prove a uniqueness theorem and

establish closure under direct summands. Indeed Axiom 3 modules turn out

to be precisely the previously classified Warfield modules. But with the added

power of the third axiom of countability characterization, we derive numerous

new results, including the resolution of a long-standing problem of Warfield

and theorems in the vein of familiar criteria due to Kulikov and Pontryagin.

1. Introduction* Let G be a p-local abelian group, that is, G is a Zp-module

where Zp is the ring of integers localized at the prime p. For any subset S of G, we

let (S) denote the submodule of G generated by S. If x E G, we write \x\ for the

height of x computed in G. We also find it convenient to write ai A a2 A • • • A an

for min{aia2,..., an}. By a height sequence we mean any sequence ä = {an}n<u

where the an's are ordinals or the symbol oo and an < an+i for all n, it being

understood that co < co. With each x E G we associate its height sequence ä where

an = \pnx\ for all n, and with each height sequence a we have the corresponding

fully invariant submodule G (ci) consisting of those x EG such that |pnx| > an for

all n < oj. That G(a) is a submodule is, of course, a consequence of the triangle

inequality \x + y\ > |x| A \y\. For our purposes it is important also to consider the

submodule G(ä~*) generated by those x E G(a) with the property that |p"x| > an

for infinitely many values of n. (To avoid clumsy special cases that would otherwise

arise from the convention co < co, we make one exception to the above definition of

G(a*), namely, if an = co for some n, we take G(ä~*) to be the torsion submodule

of G(a).) We emphasize that it is possible for an element to have a as its height

sequence, but nonetheless to lie in G(a*). Elements not having this anomalous

property will be called primitive, more precisely, we say that x is primitive of

type o~ provided Tx is the height sequence of x and x dz G(a*). Clearly primitive

elements must have infinite order. If k < oj, we let pk~a~ denote the height sequence

{ak-\-n}n<w Notice that if x E G(ä~)\G(ä~*) then there is a k < uj such that pkx is

primitive of type pkä~, in which case x itself is primitive. An elementary but useful

observation is that an element x of infinite order is primitive on G if and only if,

for each height sequence a, x E G(<5*) implies |pni| > a„ for infinitely many values
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of n. This does depend, however, on the even more elementary and important fact

that if \x[ > ao and px E Gipâ*), then x E G(o~*). It should also be observed that

the potential for an element of infinite order to fail to be primitive resides in the

fact that the height sequence of an element may have infinitely many "gaps"; in

other words, if there exists a k < oj such that an+i = an + 1 for all n > k, then

any element having ä as its height sequence is automatically primitive.

A direct sum Ai® A2® ■•• ® An of submodules of G will be called a valuated

coproduct in G provided |ai + a2 + ■ ■ ■ + an\ = |ai| A I02I A • • • A |an| whenever

o¿ E Ai for each i. An equivalent formulation is that ai + a2 + ■ ■ ■ + an E G (ä)

implies each a¿ E G(a) for arbitrary height sequences a. This, of course, is not a

new concept, but we now formulate a refinement that has heretofore not appeared

in the literature. A valuated coproduct Ai © A2 © • • • © An in G is said to be a

evaluated coproduct if, for each height sequence a, ai + a2 + ■ ■ • + an E G(ä*)

implies Oj E G{ä*) for i = 1,2,..., n. Notice that if Ai/Bi is torsion for each i,

Ai © A2 ©... © An is a valuated coproduct and Bi © B2 © • • • © Bn is a *-valuated

coproduct, then Ai © A2 © • • • © An is actually a evaluated coproduct. Indeed this

conclusion follows from the observation essentially made in the preceding paragraph

that if x E G{ä) and pkx E G(pfeä"*) for some k < ui, then x E Giä*). It is clear

that these notions generalize in the obvious manner to infinite direct sums.

To put matters in what is maybe a more familiar context for the reader, suppose

X = {xi}i£i is a decomposition basis for G; that is, G/(X) is torsion and (X) =

0¿e/(xi) is a valuated coproduct in G. Then it is generally known that each of

the X{S is primitive in G and it is readily verified that 0¿€j(x¿) is in fact a *-

valuated coproduct. It is also easy to give an example of a valuated coproduct that

fails to be *-valuated. First choose three height sequences ä, ß and 7 such that

O-n — ßn^ln for ail n, but ßn > a« for infinitely many values of n and also 7„ > an

for infinitely many n's. Then take G to be a p-local group having a decomposition

basis {a, b, c} where ä, ß and 7 are the height sequences of a, b and c, respectively.

Since x = a + b + c has the property that x — aE Giä*), the direct sum (a) ffi (x) is

certainly not *-valuated. It is routine, however, to check that (o) © (x) is a valuated

coproduct in G.

2. Knice submodules. As is well known, the third axiom of countability has

served as an important tool in developing the theory of totally projective groups.

Although partially successful attempts have been made to use the axiom in the

study of mixed groups (see especially the paper [15] by Warfield), there have re-

mained seemingly severe difficulties in adapting the axiom to groups that are not

torsion. The main stumbling block is the apparent vacuousness of Axiom 3 for

countable groups, where, for the nontorsion case, vast uncharted territory remains.

It is one of the purposes of this paper to overcome the facile conclusion that the

third axiom of countability is not directly applicable to the study of mixed groups.

Our thesis is simply that the difficulty resides not in Axiom 3 itself, but rather in

the auxiliary notion of nice subgroup. While the old concept of a nice submodule

is appropriate for torsion modules, a refinement of the concept is required before it

can be applied successfully to mixed modules. As the refined version will reduce to

the old notion of a nice submodule in the torsion setting, we shall adopt the new

term knice submodule for our generalized concept. The basic properties of knice

submodules are established in this section, and these will serve as a foundation
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for our study in subsequent sections of p-local groups satisfying the third axiom of

countability. We begin with a fundamental definition.

DEFINITION 2.1. A submodule N of G is said to be knice provided the following

two conditions are satisfied.

(1) N is nice in G, that is, pa(G/N) = (paG + N)/N for all ordinals a.

(2) If S is a finite subset of G, then there is a finite collection of primitive

elements yi,y2,...,ym and anr<w such that N © (yi) © (y2) © • • • © (ym) is a

*-valuated coproduct that contains pr(S).

The notation in (2) is not meant to exclude the possibility that the collection

of t/¿'s is vacuous; and clearly "knice" reduces to "nice" when G is torsion. We

shall refer to G as a k-module provided 0 is a knice submodule. Thus fc-modules

are to be viewed as those p-local groups having "local decomposition bases". It is

a worthwhile exercise to verify that G/N is a fc-module whenever N is knice in G.

To prove this it is helpful first to observe that if g + N E (G/N)(ä*), then there is

an r < ui such that prg + N E G(prä*) + N/N (see the beginning of the proof of

Proposition 2.7).

PROPOSITION 2.2. If N is a knice submodule of G and if N' is a finite exten-

sion of N in G, then N' is also knice in G.

PROOF. As is well known, JV' is necessarily nice in G. By an obvious induction,

we need only consider the special case where N' = (N, g) with pg E N. Given a

finite subset S of G, pick primitive elements yi,y2,- ■■ ,ym so that N © (yi ) © (y2) ©

• • • ffi (Um) is a *-valuated coproduct containing pr(S) for some r < u>. We need

only find nonzero multiples y'x, y'2,..., y'm of yi, y2,..., ym, respectively, such that

H = N' © {y'x) © (y'2) © • • • © (y'm) is a valuated coproduct. Indeed under these

circumstances we will have the y¿'s primitive, pk(S) Ç H for some k < w and the

direct decomposition of H will necessarily be a evaluated coproduct by an earlier

observation since N'/N is torsion.

If H is not already a valuated coproduct with y[ = yi for each i, then reordering

the y¿'s if necessary we can find an element

u = g + x + tiyi + t2y2 +-h tnyn

where x E N, 1 < n < m, U ^ 0 for each i and such that |u| > |*i2/i[ A [t2y2[ A • ■ ■ A

|in2/n|- Now take y\ = pUyi for i = 1,2,..., n and y'{ = yi if n < i < m. To prove

that H = N' © (i/y © (y^) © • • • © (y'm) is a valuated coproduct it clearly suffices to

argue that if

w = g + z + siy'x + s2y'2 H-+ smy'm

with z E N, then \w\ is no larger than 8 = [si^ | A 1522/2! A • • • A |smj/{„|. From the

fact that N © (yi) ffi • ■ • © (ym) is a valuated coproduct, it follows that |ti> — u\ is

bounded above both by |iiyi| A \t2y2\ A • • • A \tnyn\ and by 8. The first of these

bounds yields \w — u\ < \u\. But this inequality and the second bound allow us to

conclude that |tu| < 8, as desired.

Before generalizing for kniceness other familiar properties of niceness, we require

a couple of preliminary lemmas. The first one states a condition under which a cyclic

extension of a nice submodule is again nice.
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LEMMA 2.3. Let N and N' be submodules of G with N'/N cyclic and N nice

in G. If for each g EG there is a submodule A and a k < w such that N' ffi A is a

valuated coproduct containing pkg, then N' is a nice submodule of G.

PROOF. As is well known, we need only show that N'/N is nice in G/N. Now

notice that N'/N ffi (A + N)/N is a valuated coproduct in G/N since, as we shall

see, \x + a + N\ < \x + N\ for all x E N' and a E A. Indeed, since N is nice in G,

|x + a + /V| = |x + a + 2r| for some z E N and then \x + N\ > \x + z\ > \x + z\ A |a| =

\x + z + a\ = \x + a + N\ because x + z E N' and N' ffi A is a valuated coproduct.

From what we have just observed, it suffices to consider the case where N = 0 and

N' = (x).
Recall now that it is enough to argue that the coset g + (x) contains an element

proper with respect to (x) (that is, an element y in g + (x) with \y\ a maximum).

First write pkg = tx + a where t E Zp and a E A. Replacing g by another element

in the coset g + (x), we may assume that either (i) pk\t or (ii) t = 0. Supposing

that g is not itself proper with respect to (x), there must exist an i < uj such

that \g\ = \plx[. Let n = k + i. We claim that if g' E g + (x) and |ff| < \g'\, then
Iff'I < |pnz|. Once this claim is established, it will follow that the elements in g + (x)

can attain only finitely many heights and hence one of them must be proper with

respect to (x). Suppose then that g' E g+ (x) and \g\ < \g'[. Write g' = g + sx and

observe that \sx\ = ]g' — g[ = \g\ = \plx\. Consequently, s = pV where pfs'. In

case (i),

Iff'l < |pV| = \pkg-tx + (t + pns')x\ = \a\/\\(t + pns')x\ < |Pfc*l < |pnz|;

while in case (ii),

Iff'l < IpVI = \pkg + pns'x\ = \pkg\ A |pns'x| < |pnx|.

LEMMA 2.4. Suppose both N ffi (x) and H = A/ ffi (j/i) ffi (y2) ffi • • • ffi (ym) are
^-valuated coproducts in G where x and all the yi's are primitive. If x E H, then

there is ak < oj and a reindexing of the yi's such that N ffi (pkx) ffi (y2) ffi • • • ffi (ym)

is a *-valuated coproduct containing a nonzero multiple of yi.

PROOF. Let a be the height sequence of x and write x = j/o + hyi + t2y2 +

■ ■ ■ + tmym where j/o G AT. Since N © (yi) ffi (y2) © • ■ • © (ym) is a valuated

coproduct, tiyi E G(ä) for i = 1,2,...,m. But since x dz G(ä*) and N © (x)

is a *-valuated coproduct, we may assume that tiyi £ G(ä*). Therefore there

is a k < oj such that pktiyi is a primitive element of type pkä. That the direct

sum N © (pkx) ffi (y2) © • • • © (ym) is then necessarily a *-valuated coproduct is a

consequence of the following sublemma: If A ffi (y) is a evaluated coproduct with

y primitive and if x = a + y where a E A and x has the same height sequence

as y, then A © (x) is also a *-valuated coproduct. To prove this, first suppose

that a' + plx E G(ß ) where a' E A and ß is an arbitrary height sequence. Then

(a' + pla) + ply E G(ß*) implies that ply E G(ß ) since A ffi (y) is a *-valuated

coproduct. Since ply is primitive, |pn(ply)| > ßn for infinitely many values of n

and it follows that plx E G(ß ) because p'x and ply have the same height sequence.

But then we must also have a' EG(ß ). Similarly, without using the fact that y is

primitive, we see that a' + plx E G(ß) implies that both plx and a' are in G(ß).

The preceding two lemmas lead quickly to the following noteworthy result.
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PROPOSITION 2.5. IfN' = N®(xi)®(x2}®- ■ -®(xn) is a *-valuated coproduct

with N knice in G and each of the x¿ 's primitive in G, then N' is also knice in G.

PROOF. By induction, it suffices to consider the case n = 1 and we set x = xi.

Let S be any finite subset of G and take S' = Su{x}. Since N is knice in G, we have

primitive elements yi,y2,. ■ ■ ,ym and anr<w such that N © (yx ) © (y2 ) © • • • © (ym )

is a *-valuated coproduct containing pr(S'). Applying 2.4 to prx, we see that we

may assume that there is a k < oj such that N © (pkx) ffi (y2) ffi • • • ffi (ym) is a

evaluated coproduct containing some nonzero multiple of yi. Next notice that

successive applications of the argument used in the proof of 2.2 leads to nonzero

multiples y'2,...,y'mofy2,...,ym such that N" = N ffi (x) ffi (y'2) ffi • • • ffi (y'm) is
a *-valuated coproduct. Moreover, it is evident that TV" contains pk(S) for some

sufficiently large k < oj. Thus we have shown that N ffi (x) satisfies condition (2) in

the definition of kniceness, and it remains only to prove that N ffi (x) is nice in G.

But this follows from 2.3 in view of what we have just established about N © (x).

Combining 2.5, 2.2 and the definition of kniceness, we immediately have the

following conclusion.

COROLLARY 2.6. If N is a knice submodule of G and S is a finite subset of
G, then there is a knice submodule N' containing both N and S with N'/N finitely

generated. In particular, each finite subset of a k-module is contained in a finitely

generated knice submodule.

Another crucial and familiar property of nice submodules is generalized to knice

submodules in our next result.

PROPOSITION 2.7. If N is knice in G and N'/N is knice in G/N, then N' is
knice in G.

PROOF. We begin with the preliminary observation that for each g E G there is

a k < oj and a g' E pkg + N such that N © (g1) is a evaluated coproduct, g' has

the same height sequence in G as pkg + N has in G/N and g' is primitive in G if

g + N is primitive in G/N. To see this, first note that since N is knice we have a

♦-valuated coproduct N ffi A containing pkg for some k < oj. Write pkg = z + g'

where z E N and g' E A. Clearly then N ffi (g1) is a evaluated coproduct. Since N

is nice in G, we can choose for each i < oj a z¿ E N such that

|p*+'ff + JV| = \pk+lg 4- *i\ = \plg' + (pxz + Zi)\ < |pV|

and hence the assertion about height sequences is established. Finally, suppose that

g + N happens to be primitive in G/N. Then g' + N = pkg + N is also primitive in

G/N, say, with height sequence a. It is trivial that g' E G(ä*) would imply that

g' + N E (G/N)(ä*) and hence we are forced to conclude that g' too is primitive.

Turning now to the proof that N' is knice, let S be any finite subset of G. By

the kniceness of N'/N in G/N, we can pick primitive elements yi+N,...,ym + N

such that N'/N ®(yi + N)®(y2 + N)®---® (ym + N) is a evaluated coproduct in

G/N which contains pr((S, N)/N) for some r < oj. But by increasing r if necessary,

our preliminary observation shows that there is no loss in generality in assuming

that each yi is a primitive element in G having the same height sequence as yi+N.

Obviously then N' © (yx) ffi (y2) © • • • © (ym) is a direct sum containing pr(S) and
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it remains to argue that this direct sum is in fact a *-valuated coproduct in G.

Suppose then that

y + hyi + t2y2 H-+ tmym E G(ä*)

for some height sequence ä and some y E N'. Since N'/N ffi (yi + N) ffi (y2 + N) ffi

• • -®(ym + N) is a *-valuated coproduct, we at least have Uyi + N E (G/N)(ä*) for

each i. By primitivity, \pnUyi + N[ > an for infinitely many values of n. Thus the

equality of height sequences allows us to conclude that each of txyi, t2y2,..., tmym

and y lie in G(ä*). Since the analogous conclusion when ä* is replaced by ä follows

similarly without resort to primitivity, we see that N' © (yx) ffi (y2) ffi • • • ffi (ym) is

a *-valuated coproduct. It follows that N' is indeed knice in G since it is certainly

nice by a well-known property of nice submodules.

Because of 2.5 and the very definition of kniceness, it is evident that the following

is a central question in dealing with knice submodules: If N is a knice submodule

of G and if x is a primitive element, then under what further conditions can we be

assured that N ffi (x) is a *-valuated coproduct in G? Our next proposition contains

what is apparently the strongest statement that can be made in response to this

question.

PROPOSITION 2.8. Let N be a knice submodule of G and suppose x EG has

height sequence ä.  Then the following two conditions are equivalent.

(a) For each i <oj,pixdzN + G(pla*).

(b) x is primitive and there is a k < oj such that N ffi (pkx) is a *-valuated

coproduct.

PROOF. Assume that (b) holds. Then (a) must be satisfied for all i > k since

otherwise the primitivity of plx would be contradicted. Since the failure of (a) for

some i implies its failure for all subsequent integers, we see that (b) implies (a).

Suppose conversely that (a) is satisfied. By the preliminary observation in the

proof of 2.7, we at least know that there is some k < oj and some z E N such

that N ffi (pfcx + z) is a *-valuated coproduct and |pfc+nx + pnz| = |pfe+nx + N[ >

Ipfc+n^j _ ak+n for aii n < oj. If this inequality were strict for infinitely many

values of n, then (a) would be contradicted for i = k. Thus, replacing k by a larger

integer if necessary, we may assume that pkx + z is primitive of type pkä. But then

the sublemma in the proof of 2.4 shows that N ffi (pfcx) is a *-valuated coproduct.

Moreover, x is primitive since (a) yields x dz G(ä*).

COROLLARY 2.9. Suppose N ffi (x) is a * -valuated coproduct in G where N is

knice and x is primitive of type ä. Ify Ex + G(ä*), then y is primitive and there

is a k < oj such that N ffi (pky) is a *-valuated coproduct.

The embarrassing k in 2.8 and 2.9 cannot be omitted. For example, let ä and ß

be the sequences defined by an = 2n for all n, ßo = 0 and ßn = n + 1 for n > 1.

Take G to be any p-local group having a decomposition basis {x, b} where x and

b have height sequence ä and ß, respectively. Then obviously N = (b) is a knice

submodule and N ffi (x) is a evaluated coproduct. Since p(6 + x) E p2G, there

is a g E G such that z = b + x — pg has order p and height zero. In particular,

z E G(a*) and y = x-zEx + G(a~*). But N ffi (y) is not a valuated coproduct

since |6 + y[ > 1.

Our final result in this section will have a very important application in §3.
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THEOREM 2.10.   A summand of a k-module is itself a k-module.

PROOF. Suppose G = A@B is a /c-module and let S be a finite subset of A. We

need to find primitive elements ai,a2,...,am in A such that (oi ) ffi (02 ) ffi • • • ffi (am )

is a evaluated coproduct containing pr{S) for some r < oj. We consider first the

special case where S consists of but a single element x of infinite order. Since

G is a fc-module, we at least can write pr x = xi + x2 + ■ ■ ■ + xm fox some r <

oj where xi,X2,...,xm are primitive in G and (xi) ffi (x2) ffi ••• ffi (xm) is a *-

valuated coproduct. Moreover, we can do this with m a minimum. Under these

circumstances the x¿'s satisfy the following crucial condition: If i ^ j, then |pnx¿| >

|pnXj| for infinitely many values of n. To understand why this condition must hold,

assume to the contrary that there is some k < oj such that |pfc+nXi| < |pfe+nX2| for

all n. Then it is easy to see that y = Xi + x2 is a primitive element (because pky

has the same height sequence as pkxi and (xi) ffi (x2) is a *-valuated coproduct),

and since (y) ffi (X3) ffi • • • ffi (xm) is a *-valuated coproduct, we have contradicted

the minimality of m.

With the x¿'s as above, we write Xi = a¿ + 6¿ where a¿ E A and 6¿ E B for

i = 1,2,...,m. By 2.5, we have a evaluated coproduct (xi) ffi • • ■ © (xm) © Y

containing each prai for some fixed r < oj. Thus we have m equations

m

pTOi = ^CijXj +yi

j=l

where the Cf/'s are in Zp and the t/¿'s are in Y. Then obviously

|prx¿| < |pra¿| < \cüXi\,

and hence pr|c¿¿ for each i. Moreover, we claim that pr+1|cj, whenever i ^ j.

Indeed if this were not so, then we would have

[pr+nxj\ > \pnCijXj\ > \pr+nai\ > [pr+nXi\

for all n, contrary to the crucial property of the x¿'s noted above. It now follows

that pr+1-fcü since

m

pr(xi + x2 + • • • + xm) = pr(ai +a2 +-h am) = Y^cijxj + ^Vi

i,j i=l

implies that pr = Cu + ^Z,-^,- Cji- It is then clear that prXi,prai and c¿¿x¿ all have,

for a given i, the same height sequence. Furthermore, replacing each x¿ by prx¿,

we may as well suppose that a¿ has the same height sequence as x¿ and that each

cu is a unit in Zp. With this change in notation, we can now argue as desired that

the o¿'s are primitive and that (ai) © (02) © • • • ffi (am) is a *-valuated coproduct.

To establish primitivity, let ä denote the height sequence of a¿ and assume by way

of contradiction that a¿ E Giä*). But then, since (xi) ffi (X2) ffi ■ • • ffi (xm) ffi Y

is a *-valuated coproduct, c¿¿x¿ E Giä*) and this contradicts the fact that x¿ is

primitive. Next notice that the sublemma cited in the proof of 2.4 at least allows

us to conclude that (01) ffi (X2) ffi • ■ • ffi (xm) ffi F is a *-valuated coproduct. Then

if we replace xi by ai and repeat the whole argument above, we can conclude that

a2 = cx2 + w where c is a unit in Zp and w is in (ai) ffi (X3) ffi • • • ffi (xm) © Y.

Applying the sublemma again, we see that (ax) ffi (a2) ffi (X3) ffi • • • ffi (xm) ffi Y
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is a evaluated coproduct. Continuing in this manner, we finally conclude that

(ai) ffi (a2) ffi • • • ffi (am) ffi F is a evaluated coproduct.

To finish the proof, we pass to the case where S consists of more than a single

element, say, S = S' U {x} where x ^ S'. By induction, we may assume that

N = (ai) ffi (02) ffi • • • ffi (dm) is a *-valuated coproduct containing pr(S') where

the a,'s are primitive elements contained in the summand A. Then N is knice in G

and A/N is a summand of the fc-module G/N. By the argument given above, we

may as well assume that pr(x + N) is contained in (am+i + N) ffi • • • ffi (an + N)

where this direct sum is a evaluated coproduct in G/N with the a¿ + A/'s primitive

elements contained in A/N for i = m +1,..., n. But, as in the proof of Proposition

2.7, we can assume that these a¿'s are actually primitive elements of G and prove

that N ffi (am+i) ffi ■ • • ffi (an) is also a *-valuated coproduct. This completes the

proof.

REMARK. The foregoing proof also works under the weaker hypothesis that A is

isotype in G and for each finite subset S of G there exists anr<w and a submodule

B such that A ffi B is a valuated coproduct containing pr{S).

3. The third axiom of countability. We call a p-local group G an Axiom 3

module provided G satisfies the third axiom of countability with respect to knice

submodules. Specifically, this means that there exists a family C of knice submod-

ules of G that satisfies the following three conditions:

(0) OeC.
(1) C is closed with respect to the group union of an arbitrary number of modules.

(2) If A E C and S is a countable subset of G, then there exists B E C such that

B/A is countable and B D (A, S).
Since knice reduces to nice for torsion modules, the torsion Axiom 3 modules

are just the p-groups satisfying the third axiom of countability with respect to

nice subgroups. In other words, the torsion Axiom 3 modules are precisely the

totally projective p-groups (see [3]) and hence are classified by their Ulm-Kaplansky

invariants. The main result of this section is the classification of Axiom 3 modules

via their Ulm-Kaplansky and Warfield invariants. But first we present a deceptively

simple proof that Axiom 3 modules are closed under direct summands.

THEOREM 3.1. A direct summand of an Axiom 3 module is itself an Axiom 3

module.

PROOF. Suppose G = H ffi K and that C is a family of knice submodules of G

satisfying conditions (0), (1), and (2) above. Let C consist of all submodules A of

H for which there exists an N E C with N = A ffi (N f) K). It is well documented

(see the proof of 81.5 in [1]) that C also satisfies the conditions (0), (1), and (2),

and that the members of C are at least nice in H. We shall, of course, show that

the members of C axe actually knice in H.

Suppose A E C and N = A ffi (N n K) E C. Let h E H. Then, by the
preliminary observation in the proof of 2.7, there is an r < oj and a z E N such that

N ffi (prh + z) is a evaluated coproduct in G. Write 2 = 0 + 6 where a E A and

b E K. We claim that A ffi (hJ) is a evaluated coproduct in H where h' = prh + a.

Indeed iîa' + th' E H(ä) where a' G A and i £ Zp, then (a'-tb) + t(prh + z) E G(ä)

and consequently a' - tb E G(ä) = H(ä) ffi K(a). Thus a' E H(ä), and, likewise,

th' E H(ä). Since the same reasoning is valid when ä is replaced by a*, our claim
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is established. But A is nice in H and hence just as in the proof of 2.7, we see that

h' has the same height sequence in H as prh + A has in H/A and also that h! is

primitive in H provided h + Ais primitive in H/A. Now let S be any finite subset

of H. By Theorem 2.10, H/A = H + N/N is a fc-module and therefore there is a

♦-valuated coproduct A'/A = (hi + A) ffi (h2 + A) ffi • • • ffi (hm + A) in H/A which
contains pr((S,A)/A) for some r < w and where each hi + A is primitive in H/A.

Because of the observations made above, there is no loss in generality in assuming

that the /i¿'s themselves are primitive. Then, once again as in the proof of 2.7, it

follows that A' = A ffi (hi) ffi (h2) ffi • • ■ ffi (hm) is a *-valuated coproduct. Since A'
contains pr(S), we conclude that A is knice in //. Thus, the theorem is proved.

Recall that two height sequences ä and ß are said to be equivalent if there

exist nonnegative integers k and I such that pkä = plß. We shall let ë de-

note an arbitrary equivalence class of height sequences. It is easily verified that

G(ä)/G(ä*) = G(ß)/G(ß ) if ä and ß are equivalent. Notice furthermore that

G(ä)/G(ä*) is p-bounded if an ^ co for each n; while G(ä)/G(ä*) is isomorphic

to the torsion free part of the maximal divisible submodule of G if an = co for

some n. Whichever is the case, it makes sense to define the ë- Warfield invariant

of G to be the cardinal number wo(e) — dimG(a)/G(o~*) where a G ë. The Ulm-

Kaplansky invariants of G are, of course, given by /g(c) = dimpirG[p]/p<T+1G[p]

for all ordinals o and /g(oo) = dimp°°G[p]. The main theorem of this section can

now be formulated as follows.

THEOREM 3.2. Two Axiom 3 modules are isomorphic if and only if they have

the same Ulm-Kaplansky invariants and the same Warfield invariants.

The corresponding theorem for torsion Axiom 3 modules requires in its proof

the notion of relative Ulm-Kaplansky invariants and is usually derived from a more

general result. We shall also follow this approach by introducing relative Warfield

invariants and formulating an analogous generalization of Theorem 3.2. If A is

a submodule of G, we set A(co) = A fl p°°G[p] and, for any ordinal a, A(o) =

(A-r-pCT+1G) flpCTG[p]. Then the oth Ulm-Kaplansky invariant of G relative to A is

defined as the cardinal number /g(<t, A) = dimpaG[p]/A(o). Notice that /g(<t, 0) =

/g(ct) for each a. No such simple definition of the relative Warfield invariants is

available and direct limits appear to be indispensable to their discussion.

First observe that an equivalence class ë of height sequences becomes a directed

set if we define ä < ß to mean that ß = pkä for some k < oj. Since multiplication

by pk yields a homomorphism G(ä) —► G(ß) if ß = pkä, we obtain thusly a direct

system of submodules of G indexed by ë. In the spirit of our definition of the

A(<t)'s, we set As = (A + G(ä*)) D G(ä) whenever A is a submodule of G and ä is

a height sequence. Since the p-power homomorphism G(ä) —► G(ß) maps A= into

An, there is an induced direct system of quotient modules G(ä)/Aä- We then set

Wo(ë,A) = limG(ä)/Aä where the limit is taken over the a's in ë, and we define

the ëth Warfield invariant of G relative to A as the cardinal number wg (ë, A) =

dimWcte, A). Obviously, wc(ë) = wo(ë, O). As an immediate paraphrase of 2.8,

we have the following basic fact.

PROPOSITION 3.3. Let A be a knice submodule of G and suppose x has height
sequence ä E ë.   Then x is primitive and A ffi (pkx) is a *-valuated coproduct for
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some k < oj if and only if x has nonzero image under the canonical map G(a) —*

WG(ê,A).

If A and B are submodules of G with AC B, then we let [B/A]ë — lim B=/Aä

where once again the limit is taken over the a's in ë. By the exactness of direct

limits, we have the important induced short exact sequence

0 -* [B/A]s -» WG(e, A) -> Wg(b, B) -» 0.

Similarly, if N Ç A Ç B, we also have a short exact sequence

0 -* [A/Nh - [B/N]= -» [B/A]= -. 0.

By another familiar property of direct limits, if A is the union of an ascending

sequence {An}n<w of submodules of G containing N, then [A/N]= = \Jn<lÀl[An/N]ê

under the appropriate identification of the [An/./V]ê's as submodules of [A/./V]ê. In

computing [B/A]=, it is often helpful to note that

Bs/As =(A + (Bn G(ä)))/(A + (Bn G(ä*)))

by the Zassenhaus lemma. For example, if B = A ffi (x) is a evaluated coproduct,

then it follows that B=/A= = (x)C\G(ä)/(x)r\G(ä*). Using this latter isomorphism,

one readily establishes the following fact: If B = A© (x) is a *-valuated coproduct,

where x is a primitive element of type ä, then [B/A\= = 0 if and only if ä dz ë.

We now formulate the generalization of 3.2 that we intend to prove.

THEOREM 3.4. Let N and N' be knice submodules of G and G', respectively,

such that both G/N and G'/N' are Axiom 3 modules. If fG(o, N) = fG>(o, N') for
all o and wG(e, N) = wG> (ë, N') for alle, then every height preserving isomorphism

■K-.N —> N' extends to an isomorphism of G onto G'.

We now assume that the hypotheses of 3.4 hold and introduce further notation

to aid in its proof. First off, we fix for each ë an isomorphism rjë of Wq (ë, N)

onto WGi(e~, N'). Also for each ordinal o we fix direct decompositions p"G[p] =

Sa © pa+1G[p] and p"G'[p] = Sa ffi pa+1G'[p]. If A is a submodule of G, we let

Sa(A) = {x E SCT: |x+a| > o for some a E A}. We define Sá(A') in the same manner

if A' is a submodule of G'. It is trivial that S,j(A) = p"G[p]/A(o). Moreover, any

height preserving isomorphism d):A—> A' between submodules A and A' of G and

G', respectively, induces an isomorphism S„(A) = S^A') (see [2, Proposition 56]).

Thus the hypotheses of 3.4 imply that there exist isomorphisms pa:Sa —» S'a such

that Po-(Sa(N)) = S'a(N') for all ordinals o. The same holds for o = co if we agree

that Soo = P°°G[p] and Soo(N) = NnSoo- Note finally that if each pa maps Sa(A)

onto SL(A% then fG(o,A) = fG>(o,A') for all a.
The most important step in proving 3.4 is establishing the following technical

lemma.

LEMMA 3.5. Suppose 4>:A —> A' is a height preserving isomorphism between

knice submodules A and A' of G and G', respectively, such that <j> extends n: N —> N'

and assume further that

(i) each n= induces an isomorphism of [A/N]= onto [A'/N']=,

(ii) fG(o,A) = fG,(o,A') for alio.
Then, for any finite subset F of G, <f> extends to a height preserving isomorphism

ib:B —> B' between knice submodules B and B' of G and G', respectively, where
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F Ç B and both B/A and B'/A' are finitely generated. Moreover, conditions (i)

and (ii) hold for B and B', and the equations B(o) — A(o) and B'(o) = A'(o) are

satisfied for all but countably many ordinals o.

PROOF. First, assuming that i\j exists, we show that (ii) holds for B and B'.

The crucial observation here is that B(o)/A(o) is finite since it is p-bounded and

isomorphic to a submodule of a homomorphic image of the finitely generated module

B/A. Precisely,

B(o)/A(o) a (B(o) + (A + p°+1G))/(A + p°+1G)

C(B + p"+1G)/(A + pa+1G) = B/(A + (Bn pa+1G)).

Since we are given that paG[p]/A(o) = p"G'[p]/A'(o), the desired conclusion

will follow from the finiteness of B(o)/A(o) once we show that B(o)/A(o) =

B'(o)/A'(o). This latter fact, however, is a consequence of the existence of the

height preserving isomorphism ip: B —► B'. Indeed, by a familiar argument, %p in-

duces an isomorphism of B(o)/p°+1G[p] = Sa(B) onto B'(o)/pa+1G'[p] = S'a(B')

which carries A(o)/pa+1G[p] onto A'(o)/prT+1G'[p]. Next we explain why B(o) =

A(o) for all but countably many er's, and similarly for B'(o) = A'(o). The point is

that, because of the niceness of A in G, it is routine to show that if B(o) / A(o),

then B/A must contain an element of height exactly o (as computed in G/A). But

since B/A is countable, B(o) ^ A(o) for at most countably many it's.

We now address ourself to the construction of the desired rp: B —> B' with (i)

satisfied for B and B'. As is implicit in the statement of 2.6, there is a finite set

of primitive elements yi,y2,... ,ym such that C = A ffi (yi) ffi (y2) ffi • • • ffi (ym) is

a *-valuated coproduct and some finite extension B of G contains F. From this

observation together with Propositions 2.2 and 2.5, it is evident that we need only

establish the existence of ip: B —> B' under the special circumstances where either

(I) B = (A, x) with x proper with respect to A and px E A; or

(II) B = A ffi (x) is a evaluated coproduct and x is primitive of type ä.

In case (I) holds, the construction of a height preserving isomorphism <f>:B —* B'

extending d> is well known (see, e.g., [1, Lemma 77.1]). Moreover, (i) is vacuously

satisfied because [B/N]= = [A/N]= for all ë. Indeed it is obvious that [B/A]= = 0
whenever B/A is torsion.

Let us assume then that (II) holds and let 8(x) be the canonical image of x in

WG(e~, N) where a G ë. Then 8(x) ^ 0 since, in fact, the image of x in WG(e~, A)

is nontrivial by 3.3. Then there is an x' E G'(ä) having rje8(x) as its image in

WGi (ë, N'). But, as a trivial diagram chase using (i) shows, the canonical projection

of x' in WGi (ë, A') is also nonzero. Therefore, by 3.3 again, there is a k < oj such

that both A ffi (pkx) and A' ffi (pkx') axe *-valuated coproducts and pkx and pkx'

are primitive elements of type pkä. In view of what we have seen holds in case

(I), there is no loss of generality in assuming that k = 0. Clearly then we can

extend 4> to a height preserving isomorphism vb of B = A ffi (x) onto B' = A' ffi (x')

by mapping x to x'. It is further evident from our choice of B' that r¡= induces

an isomorphism of [B/N]= onto [B'/N']=. Finally, since by an earlier observation

[B/A]j = 0 for f ^ ë, we see that (i) is satisfied for B and B'.

As we noted just prior to 3.5, (ii) is implied by the stronger condition

(hi) for each o, p„ maps S „(A) onto S^(A').
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The real advantage to (iii) is that it, like (i), is inductive, whereas (ii) is not.

Unfortunately, because an element of infinite order may have infinitely many gaps

in its height sequence, even if A and A' satisfy (iii) in Lemma 3.5, one cannot

conclude that B and B' also satisfy this condition. Nonetheless, it is an easy but

important consequence of the final assertion in 3.5 that, assuming (iii) for A and

A', there at least exist submodules D and D' of G and G', respectively, such that

both D/B and D'/B' are countable and, for each o,

SUB') Ç pa(S„(D))   and   S„(B) Ç pl1^/)')).

We are now ready to complete the proof of Theorem 3.4. In addition to the

notation already introduced, we let C and C be families of knice submodules of

G/N and G'/N', respectively, such that each satisfies (0), (1), and (2). We consider

the collection 8 of all triples (A, A', </>) satisfying the following conditions:

(a) A/N E C and A'/N' E C;
(b) (¡>:A —► A' is a height-preserving isomorphism between A and A' which

extends 7r: JV —► N';

(c) A and A' satisfy conditions (i) and (iii).

By Proposition 2.7, A and A' are necessarily knice in G and G', respectively. To

finish the proof of 3.4, it suffices to argue that if (A,A',(p) is in O with A ^ G,
then there is a (C, C', ç) in 0 such that C properly contains A and f extends 4>.

The idea, of course, is to exploit the third axiom of countability in order to realize

such a (C,C ,c) as the supremum of an ascending sequence of height preserving

isomorphisms tpn'.Bn -* B'n where the latter satisfy the conditions in Lemma 3.5

relative to the map <p: A —► A'. Since the inductive property (i) holds for each

Bn and B'n the construction of such an isomorphism Ç:C —> C' satisfying all the

requisite properties except possibly for (iii) can be accomplished by exactly the

same sort of back-and-forth, interlacing argument (see the proof of Lemma 62 in

[2]) used to establish the corresponding result for torsion Axiom 3 modules. But

the defect in satisfying (iii) is countable in nature and using the observation made

at the close of the preceding paragraph, one easily loops another interlacing into

this argument so as to insure that C and C' actually satisfy (iii).

In the study of totally projective p-groups, Griffith [2] introduced a weaker ver-

sion of the third axiom of countability in which condition (1) is replaced by

(1') C is closed with respect to ascending unions.

It is clear that this weaker form suffices in the proof of Theorem 3.2, but it is easily

seen to be inadequate for resolving the summand problem (Theorem 3.1). On the

other hand, as the proof of Theorem 4.2 illustrates, it is very advantageous to know

that Axiom 3 modules are also characterized by this weaker version of the third

axiom of countability for knice submodules. Therefore, to close this section with

the following theorem is to provide something of more than passing interest.

THEOREM 3.6. // there is a family C of knice submodules of the p-local group

G satisfying (0), (1') and (2), then G is an Axiom 3 module.

PROOF. The key to the proof is the observation that G is the union of a smooth

chain of submodules {Na}a<p where N0 = 0 and, for each a, Na+i = (Na,xa)

with either

(a) pxQ G Na and xQ is proper with respect to Na ; or
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(b) xa has infinite order modulo Na and Na+i = Na ffi (xa) is a valuated

coproduct.

The existence of the Na a is a consequence of yet another observation, namely, if

Ae C and S is a countable subset of G, then there is a B E C with B/A countable,

(A, S) Ç B and such that B contains a countable set Y of primitive elements with

B/(A, Y) torsion and A ffi (0y6F(y)) a *-valuated coproduct for any finite subset

F of Y. Indeed such a B is easily constructed using (2), Proposition 2.5 and (1').

Then the JVa's arise by intercalculating between such A's and ß's in C, using the

argument in the proof of 2.2 to insure that the coproduct in (b) is *-valuated. In

fact, this can all be accomplished with the A/Q's knice in G and Na E C wherever

a is a limit.

Given the iVQ's and xQ's as above, the proof proceeds along lines similar to those

for the analogous result in [5] for torsion modules. It is clear that G is generated

by the xa's and, in fact, Nß = (xa)a<ß for all ß < p. With each nonzero g G G, we

associate the ordinal 8(g) = min{a:g G Na+i}- By induction on 8(g), we conclude

that each nonzero g has a unique representation

(*) ff = tlXa(l) + t2Xa(2) H-h tkXa(k)

where a(l) < a(2) < • • • < a(k), each í¿ ^ 0 and 0 < í¿ < p provided xau) satisfies

(a). Notice that a(k) = 8(g) in this representation. Because of conditions (a) and

(b), we can also prove, by induction on 8(g) again, that

(**) Iffl = \tixa(i)\ A |Í2XQ(2)| A • • • A |ifcXa(fe)|

where, of course, the í¿'s and a(¿)'s are as in (*). Now let X = {xa:pxa £ Na} and

observe that yet another induction shows that G/(X) is torsion. It is clear from

(*) and (**) that (X) is a valuated coproduct of the cyclic submodules (xa) as xa

ranges over X. Hence X is a decomposition basis of G.

As in [5], we call a subset T of p "closed" provided that whenever a E T all

the a(i)'s in the representation (*) of g = pxa also lie in T. Equivalently, T is

"closed" if and only if each nonzero g in Nt = (xa)a£T has the property that all

the a(z)'s occurring in (*) lie in T. We conclude the proof by arguing that the

family C = {Nt'- T is "closed" in p} consists of knice submodules and satisfies (0),

(1), and (2). But (0) follows from the trivial fact that the empty set is "closed",

(1) from the observation that J2ieI N^ = Nt where T = \JieITi, and (2) from

the obvious fact that each countable subset of p can be enlarged to a countable

"closed" subset. It is also easy to see that the A/r's are nice submodules of G

since each coset x + Nt contains an element of maximal height, namely, because

of (**) that unique g E x + Nt such that in the representation (*) none of the

a(¿)'s are in T. Since G/(X) is torsion, the remaining requirement for kniceness

will be satisfied once we show that Nt ffi (xai ) ffi (xQ2 )©•••© (xQn ) is a *-valuated

coproduct whenever the xQi 's are distinct elements of X with a¿ dl T. Notice that

this direct sum is at least a valuated coproduct by (**). On the other hand, if

Xt = {xa E X:aE T}, then (XT) © (xai) © (xQ2) © • • • © (xa„) is a evaluated

coproduct by an earlier observation about decomposition bases. Finally, we can

conclude that Nt ffi (xai) ffi (xa2) ffi • • • ffi (xaJ) is a evaluated coproduct since

Nt/{Xt) is obviously torsion because T is "closed".

COROLLARY 3.7.   An Axiom 3 module possesses a decomposition basis.
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4. Warfield modules. We follow [8] in calling a p-local group G a Warfield

module provided G contains a decomposition basis X such that (X) is a nice sub-

module and G/(X) is a totally projective p-group. Since Warfield modules are

also classified in terms of their Ulm-Kaplansky invariants and Warfield invariants,

it should come as no great surprise that our Axiom 3 modules are precisely the

Warfield modules. What is perhaps unexpected though is that the equivalence of

these two classes of Zp-modules is a byproduct of the proof of Theorem 3.6. We

do, however, require a characterization, due to J. Moore [12], of Warfield modules

which is proved fairly directly from the above definition. A submodule N of G

is said to be quasi-sequentially nice provided it is nice in G and for each g E G

there is a k < oj such that pkg + N contains an element g1 having the same height

sequence as pkg + N. When N is nice in G, this latter condition is easily seen to

be equivalent to N ffi (pkg + z) being a valuated coproduct for some z E N. Moore

shows that a p-local group G is a Warfield module if and only if G is the union of

a smooth chain {Na}a<p of quasi-sequentially nice submodules with Nq = 0 and

Na+i/Na cyclic for each a.

THEOREM 4.1. A p-local group is an Axiom 3 module if and only if it is a

Warfield module.

PROOF. First suppose G is a Warfield module and hence is the union of a

smooth chain {Na}a<u of quasi-sequentially nice submodules with Ao = 0 and

each Na+i/Na cyclic. Then by the characterization of quasi-sequential niceness in

terms of valuated coproducts noted above, we can, when necessary, intercalculate

between the AQ's so that the refined chain satisfies conditions (a) and (b) in the

proof of Theorem 3.6. But then, as that proof shows, G has a family C of knice

submodules satisfying (0), (1), (2). Conversely, let us assume that G is an Axiom 3

module. Then we can construct A/a's as in the proof of Theorem 3.6 and, as noted

there, the iVa's can be taken to be knice in G. But, as we saw in the proof of 2.7,

knice submodules are quasi-sequentially nice. Thus, G satisfies Moore's criterion

and is therefore a Warfield module.

As quasi-sequentially nice submodules have entered into the study of Warfield

modules not only in [12] but also in [8], it seems appropriate to comment on how

this concept compares with kniceness. That it is a strictly weaker notion is clear

since 0 is always a quasi-sequentially nice submodule of G, but is not knice unless

G is a fc-module. But taking away this trivial example, we can ask whether a

quasi-sequentially nice submodule of a fc-module, or even a Warfield module, is

necessarily knice. Actually no contrary example exists until we consider /c-modules

of rank at least three. Suppose, however, that we define sequences ä, ß and 7 by

the rules
{an = ßn = 2n and 7„ = 2n + 1 if n = 0 (mod3),

ßn — -yn = 2n and an = 2n + 1 if n = 1 (mod3),

an = In = 2n and ßn = 2n + 1   if n = 2 (mod3).

Then take G to be a countable p-local group having a decomposition basis {a, b, c}

where a, b, and c have ä, ß, and 7, respectively, as their height sequences. Let

x = a + b + c. Although it is not altogether obvious, (x) is quasi-sequentially nice in

G but not knice. Lest the reader then think that Theorem 11 in [8] has a hypothesis

genuinely weaker than our Theorem 3.4, we hasten to point out that it is easy to
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show that if N is quasi-sequentially nice in G with G/N a fc-module, then N is in

fact knice in G.

It should now be evident that the third axiom of countability provides not only

an attractive alternative to other treatments of Warfield modules (e.g. [8,15]), but

that it also brings about a remarkable unification in method to the study of p-

primary and p-local mixed groups. Observe that the notion of primitive element

led inevitably to the introduction of the Warfield invariants, that we have not

required the theory of valuated groups, and that we have avoided completely the

set-theoretical gymnastics with decomposition bases that have plagued the subject.

Most striking, however, is perhaps the ease with which the summand problem is

resolved when compared with [8]. But beyond these considerations, one should

recall that there are numerous results about totally projective groups (see [6, 7])

that are apparently inaccessible without resort to the third axiom of countability.

Clearly, comparable applications to Warfield modules are now available, and we

shall give several such in the remainder of this paper. As the first illustration of the

power of the Axiom 3 characterization, we resolve a long-standing problem posed

by Warfield in [14].

THEOREM 4.2. A p-local group G is an Axiom 3 module if and only if G has

a decomposition basis and satisfies the third axiom of countability with respect to

nice submodules.

PROOF. By 3.7, an Axiom 3 module satisfies the two stated conditions. Assume,

conversely, that G is a p-local group having a decomposition basis X and that C is

a family of nice submodules of G satisfying (0), (1), and (2). Our plan of attack is

to extract from C a subfamily C satisfying (0), (1'), and (2) such that the members

of C are actually knice in G, so that Theorem 3.6 will yield the desired conclusion.

But first we introduce the following bit of notation: If S is any subset of G, we let

Xs = X n S and Ys = X\Xs- Since G/(X) is torsion, a standard back-and-forth

argument using (1) and (2) shows that any countable B E C can be enlarged to an

AeC with A/B countable and such that A satisfies the further restriction

(i) A/(Xa) is torsion.

Furthermore, it is easy to see that an arbitrary sum of submodules satisfying (i)

will itself satisfy this condition. Thus, without loss in generality, we may assume

that all members A of C satisfy (i). The final step in the construction is to choose

C as that subfamily of C consisting of those A that also satisfy

(ii) A ffi (Ya) is a valuated coproduct.

Notice that A ffi (Ya) will then actually be a *-valuated coproduct since A/(Xa) is

torsion and (Xa) ffi (Ya) is a *-valuated coproduct because X is a decomposition

basis. But since G/(A ffi (Ya)) is torsion and the members of Ya are primitive, it

is clear that the members of C are knice in G. Even though C may not be closed

with respect to group unions, it certainly satisfies (1') because if A = \J Ai is an

ascending union of members of C, then Xa = \JXa{ and Ya = f]^V Therefore

it remains only to argue that C satisfies (2).

Suppose C E C and A G C with A/C countable. Although it is unlikely that
A will also satisfy (ii), the key to showing that (2) holds for C is the observation

that A suffers at most a countable defect with regard to (ii). Precisely, we claim

that Ya contains a subset Z such that A@(Z) is a valuated coproduct with Ya\Z
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countable. First note that an application of Zorn's lemma yields a maximal subset

Z of Y a such that A ffi (Z) is a valuated coproduct. It is crucial but simple to

see that if y G Ya\Z, then there is an i < oj, an a E A and a w E (Z) such that

|o + ply + w[ > \p%y\. The claim about the countability of Ya\Z will follow once

we notice that distinct y's correspond to distinct o's modulo C. Indeed suppose to

the contrary that for distinct y and y' in Ya\Z we have both

\a + ply + w\ > [p%y[    and    \a'+pJy'+ w'[ > ¡p'y^

where w, w' E (Z), a, a' E A and a — a' = c E C. It then follows that

|c + pry — p*y' + w — w'[ > [ply\ A [p'y'l-

But, since Ya Ç Yg, this contradicts the fact that Gffi (YG) is a valuated coproduct.

Since, of course, A can further be enlarged to a B E C with B/C countable and

Xa U (Ya\Z) absorbed in Xb, a sequence of applications of (1) and (2) allow us to

ascend to a C' E C with C'/C countable.

REMARK. In the preceding proof, it is only necessary that C satisfy (0), (1'),

and (2). This fact will be used without further comment in the several applications

of Theorem 4.2 to follow.

COROLLARY 4.3. Let G be a p-local group and o an arbitrary ordinal. Then G

is an Axiom 3 module if and only if both G/paG and p°G are Axiom 3 modules.

PROOF. Fundamental to the proof is the well-known fact that N is nice in G

if and only if N n p"G is nice in p"G and N + paG/paG is nice in G/paG. First

suppose that G is an Axiom 3 module with decomposition basis X and family C

of nice submodules satisfying (0), (1'), and (2). Then the families {N D ffG: N E

C} and {N + p"G/pPG:N E C} satisfy the same conditions and consist of nice

submodules ofpaG and G/p°G, respectively. By replacing, when necessary, various

elements of X by nonzero multiples of themselves (i.e., by passing to a subordinate

decomposition basis), we may assume that X = Y U Z where (Y) n paG = 0 and

Z Ç p°G. It is then routine to verify that {y+p°G: y E Y} and Z axe decomposition

bases of G/p"G and p"G, respectively. The desired conclusion about G/p"G and

p"G now follows from Theorem 4.2.

Conversely, assume that both G/p"G and p"G are Axiom 3 modules. If Z is a

decomposition basis of p"G and if F is a subset of G such that {y + p°G: y E Y}

is a decomposition basis of G/p"G, then X = Y U Z is a decomposition basis of

G. Let C and V be families of nice submodules of G/p"G and p"G, respectively,

satisfying (0), (1'), and (2). Since the family of submodules N of G such that

JV + paG/p"G E C and N n paG E V also satisfies these conditions, G is an Axiom

3 module by Theorem 4.2.

COROLLARY 4.4. If G is an Axiom 3 module of length oj and if H is a pure

submodule with G/H torsion, then H is also an Axiom 3 module.

PROOF. Let X be a decomposition basis of G and suppose C is a family of

nice submodules of G satisfying (0), (1'), and (2). Since G/H is torsion, we may

assume without loss in generality that X Ç H and hence, by purity, that X is a
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decomposition basis of H. By 4.2, it remains only to observe that C = {An//: N E

C} is a family of nice submodules of H satisfying (0), (1'), and (2). Niceness follows

from the fact that each H/N fl H is without elements of infinite height:

f{H/N n H) = jf(H + N/N) ç ff (G/N) = p"G + N/N = 0.

That C inherits (0), (1'), and (2) from C is clear since N' n H/N n H will be
countable whenever N'/N is.

Although our final corollary of Theorem 4.2 should be evident to the reader since

it involves a condition known to be equivalent to a p-local group being a Warfield

module, we nonetheless give an independent proof as we not only require the result

in the next section but also our argument appears to be more elementary than the

proofs already in the literature. Recall that G is said to be simply presented provided

it has a presentation involving relations only of the form px = y and px = 0,

and that the simply presented torsion modules are just the totally projective p-

groups. As observed in [15], a simply presented Zp-module satisfies the hypotheses

of Theorem 4.2.

COROLLARY 4.5. A p-local group is an Axiom 3 module if and only if it is

isomorphic to a summand of a simply presented Zp-module.

PROOF. As just noted above, a simply presented Zp-module is an Axiom 3

module by 4.2, and therefore so is a summand by Theorem 3.1. Conversely, assume

that G is an Axiom 3 module. Since G has a decomposition basis X, it is routine

to construct a simply presented module K having the same Warfield invariants as

G; that is, K has a decomposition basis Y such that (V) = (X) as valuated groups.

But then we can find a sufficiently large totally projective p-group T such that

the Axiom 3 module G®T has the same Ulm-Kaplansky invariants as the simply

presented module K@T. By our uniqueness Theorem 3.2, G®T = K®T.

5. Pontryagin-Kulikov criteria. A submodule H of the p-local group G is

said to be isotype if p"G H H = paH for all ordinals o. Clearly, if H is isotype in

G, then G (at) n H = H(ä) for every height sequence ä. If such an H also satisfies

G(ä*)f~\H = H(ä*) for all ä, then we call it a *-isotype submodule. If G = \JieI G¿
and each finite subset of G is contained in some G¿, then we say that G is an fo-

union of the G¿'s. We can now state a result that can be construed as a common

extension of the well-known criteria of Kulikov and Pontryagin concerning direct

sums of cyclic groups.

THEOREM 5.1. If G is the f o-union of a countable family of *-isotype Axiom
3 submodules, then G itself is an Axiom 3 module.

Notice that 5.1 generalizes theorems in [4 and 6], which have in turn had signif-

icant applications in [13, 9 and 11]. Before we can prove this theorem, we require

certain concepts and results from [7]. Let H and A be submodules of the Zp-module

G. We write A\\H to indicate that the following condition holds: If (a, h) E A x H

and [a + h\ > o, then there is an a' E A f] H such that [a' + h\ > o. If for each

g EG there is a sequence of elements xn E H such that

sup{\g + h[: h E H} = sup{[g + x„|:n < oj},

then we say that H is separable in G. A fundamental fact proved in [7] is that if

H is separable in G and if S is a countable subset of G, then S is contained in
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a countable submodule A with A\\H. We are particularly interested in modules

H such that H is separable in any G in which it occurs as an isotype submodule.

Notice that a summand of a module with this property inherits the property. Also it

follows from Proposition 4 in [10] that H will enjoy this property provided H/pxH

is a direct sum of submodules of length < A for each limit ordinal A of uncountable

cofinality. But it is easily seen that simply presented modules satisfy this latter

condition, and therefore from 4.5 we conclude that an Axiom 3 module is separable

in any module in which it is isotype. We also require the following lemma, the

proof of which is routine.

LEMMA 5.2. Let A and H be submodules of G such that A\\H and A is nice

in G.

(a) IfB/A\\H + A/A, thenB\\H.
(b) If H is isotype in G, then H + A/A is isotype in G ¡A.

We are ready to prove Theorem 5.1. Assume that G is an /er-union of the

sequence {Gn}n<UJ of *-isotype Axiom 3 submodules. For each n, let X^ be

a decomposition basis of Gn.  Following the notation in the proof of 4.2, we set

X(n)  _ X(n) n g and yjn)   _ X(n)\XM for ^ subget g q{ q    Foj. ̂ ^ ^ wg

choose a family Cn of knice submodules of Gn satisfying (0), (1'), and (2). By the

proof of 4.2, we may further assume that A/(XAn') is torsion and that A © (Y¿ ')

is a valuated coproduct in Gn whenever A E Cn- We now let C consist of all

submodules N of G satisfying the following three conditions:

(i) NnGnECn for all n < oj,
(ii) A||G„ for all n < oj,

(iii) N fl (Ytf)ä Ç G(ä*) for all n < oj and all height sequences ä.

It is trivial that C satisfies (0) and (1'). It is less obvious that the members of

C are knice in G and that (2) holds for C. First we show that conditions (i) and

(ii) at least insure that N is nice in G. Given g E G, we need to find a g' E g + N

proper with respect to N. Choose n < oj with g E Gn. Since N n Gn is nice in Gn,

there is aw E Nil Gn such that g' = g + w is proper in Gn with respect to A fl G„.

We claim that g' is the desired element. Otherwise there would be a z E N such

that \g' + z\ > [g'\ and (ii) would imply the existence of a v E N fl Gn such that

|ff# + »|>Jff/ + *|>lff,|,

contradicting the fact that g' is proper with respect to A H Gn. To see that N

is actually knice in G, consider any finite subset S of G. Since G is an /cr-union

of the Gra's, there is some n < oj such that S Ç Gn. From the special choice

of Cn, we have yi,...,ym in YJf1' such that (N n G„) © (t/i) © • • • © (yn) is a *-

valuated coproduct in Gn containing pr(S) for some r < oj. Since Gn is a *-isotype

submodule of G, the y¿'s are primitive in G and it remains only to argue that

N ffi (yi) © • ■ • ffi (ym) is a *-valuated coproduct in G. It follows from (ii) that this

direct sum is at least a valuated coproduct in G. Assuming by way of contradiction

that N ffi (j/i) © ■ • • ffi (ym) fails to be a *-valuated coproduct, we have a z E N and

ay E (YJy1 ) such that z + y E G(ä*) and z d¿ G(ä*) for some height sequence 5.

But this contradicts (iii) since

z = (z + y) - y E (G(ä*) + (Y™)) H G(ö) n N = N n (Y^)*.
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Finally, we need to argue that C satisfies (2). In understanding why this is so,

it is perhaps best to isolate our thoughts on the three conditions (i), (ii) and (iii)

individually. First off, given N satisfying (i) and a countable subset S of G, it is

a standard argument exploiting the conditions (1') and (2) for the various Cn's to

run infinitely often through the sequence w and obtain a submodule N' of G such

that S Ç N', N'/N is countable and N'nGn E Cn for all n < oj. Similarly, one can

find such an N' satisfying (ii) by the same sort of argument using Lemma 5.2 and

the fact that Gn + A/A = Gn/A 0 Gn is an Axiom 3 module (and hence separable

in G/A) whenever A n Gn G Cn- But then we can find a countable extension N'

of N satisfying both (i) and (ii) by interlacing these two constructions. Given a

countable extension A of an A satisfying (i)-(iii), one easily sees that the failure

of A to satisfy (iii) can be due to at most a countable subset of each of the YA 's.

Then, just as in the proof of 4.2, this defect is overcome by ascending through a

sequence of such A's to an N' satisfying (iii). Interlacing all three constructions,

we conclude that (2) does indeed hold for C.

Generalizing a class of groups found useful in the study of p-groups, we call a

p-local group G a C\-module provided G/paG is an Axiom 3 module for each o

smaller than the limit ordinal A. In [6], the following condition is referred to as the

Kulikov-Megibben criterion:

(K-M) G is a G^-module of length A and is the ascending union of a sequence of

submodules {Hn}n<u where the heights computed in G of the elements of Hn are

bounded by some ordinal A(n) < A.

THEOREM 5.3.   A Zp-module satisfying (K-M) is an Axiom 3 module.

PROOF. Assume that G satisfies (K-M). We first dispose of the special case

where A = o + oj for some ordinal o. Under these circumstances G/p°G is an

Axiom 3 module and p°G has length w. The hypotheses imply that p°G is the

ascending union of modules of finite length and is hence torsion. But then paG is

actually a direct sum of cyclic p-groups by the classical Kulikov criterion, and G is

therefore an Axiom 3 module by 4.3.

We now assume that A ^ o + oj for all a < A. Recall that a submodule K of

G is said to be a p^-high submodule provided K is maximal in G with respect to

having trivial intersection with p^G. As is well known, if K is a p^-high submodule

of G, then K is isotype in G and, provided p is limit, G = K + paG for all a < p.

Moreover, it is a straightforward argument to show that a p^-high submodule of

G is *-isotype in G. Now for each n < oj, let p(n) = X(n) + oj < A and select a

pMnLhigh submodule Gn of G that contains //„. Since G is an ascending union

of the //n's, it is an /a-union of the *-isotype submodules Gn. By Theorem 5.1,

it suffices to show that each G„ is an Axiom 3 module. To simplify notation,

fix n and let H = Gn, o = X(n) and p = p(n) = o + oj. First observe that

H/p°H Si H + p"G/paG = G/p"G is an Axiom 3 module, and thus by 4.3 we
need only argue that A = paH is also an Axiom 3 module. But notice that A

is p^-high in B = p°G and consequently A' = A + p^B/p^B = A is pure in

B' = B/pr°B = jf(G/p^G) with B'/A' torsion. Since, however, B' is an Axiom

3 module of length oj, Corollary 4.4 implies that A = A' is indeed an Axiom 3

module.
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