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AN EXTREMAL PROBLEM FOR ANALYTIC FUNCTIONS
WITH PRESCRIBED ZEROS AND rTH DERIVATIVE IN H°°

A. HORWITZ AND D. J. NEWMAN

ABSTRACT. Let (c«i,..., an) be n points in the unit disc U. Suppose g

is analytic in U, g(cu) = • • • = g(an) = 0 (multiplicities included), and

I Iff'I loo < 1- Then we prove that \g{z)\ < \<j>(z)\ for all z EU, where d>{cti) =
• ■ = <t>(an) = 0 and 4>'{z) is a Blaschke product of order n — 1. We extend

this result in a natural way to convex domains D with analytic boundary. For

D not convex we show that there is no extremal function <f>.

Notation and terminology.

U = open unit disc in the complex plane C and T = unit circle.

H(U) = set of functions analytic in U, and H(U) = functions analytic in some

neighborhood of the closed unit disc.

H°° = bounded analytic functions in U, while H?° = {/ E //([/) |/(r) E H°°}

(r a positive integer).

Il/lloo will denote sup26¡7 |/(z)| for / E H°°, or more generally supzeT |/(z)| for

/ € L°°(T).
Let a = (ai,...,an), \otj\ < 1. f(a) = 0 means f(ai) = ■■■ = f(an) = 0,

where corresponding derivatives are taken if some of the ay 's are identical.

A finite Blaschke product of order m > 0 is a function of the form

m

B(z) = c IJ * ~y     with |ay| < 1, \c\ = 1 (if m = 0, B(z) = c).
y=i *    aJz

We list some standard, easily proven properties of B(z):

(1) \B(z)\ = l   for all z ET,

(2) zB'(z)/B(z) > 0   for all z E T (m > 1).

(3) If {Bj} is a sequence of Blaschke products of order < n, then some subsequence

converges almost uniformly (uniformly on compact subsets of U) to a finite Blaschke

product B of order < n. (This follows from standard results on convergence of

sequences of rational functions [7].)

Let S be the unit ball of some Banach space of analytic functions Ç H°°. We

say that <f> E S is an extremal function for S if [g(z)[ < \<f>(z)[ for all z E U and for

all geS.

1. Introduction. In this paper we examine the following conjecture of Fisher

and Micchelli:

(*) Let a = (ai,..., an), |ay| < 1, and let r be a positive integer, r <n. Assume

that no more than r of the ay's coalesce on the unit circle.  Let <f> be a function
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700 A. HORWITZ AND D. J. NEWMAN

analytic in U with <j>(a) = 0 and <f>^ = B, a Blaschke product of order n — r.

Then if g is analytic in U with g(a) = 0 and |ff^(«)| < 1 for all z in U, we have

Iff(¿01 < M*)| for all z in U.
REMARKS. 1. Let Ba = Banach space of analytic functions vanishing at a with

norm equal to sup of the rth derivative. Then (*) states two things: First, there is

some function in Ba that is an extremal function for the unit ball of Ba; second,

such an extremal function is characterized by the condition that its rth derivative

is a Blaschke product with precisely n — r zeros.

2. Using well-known methods for the solution of extremal problems in H°° [1],

it is not hard to show that for fixed £ in U, |ff(£)| < 1^(01 for ^ 9 m *ne un'*

ball of Ba, where <f>ç is a finite Blaschke product. What makes (*) nontrivial is

showing that <f>£ does not vary with £ and that its rth derivative has precisely n-r

zeros.

3. It is not obvious that such a function <fi even exists, or whether it is unique

(up to a rotation, of course). For r = 1 it is easy to prove existence using a lemma

of Fisher and Micchelli. Uniqueness in that case will follow from our method of

proof of (*).

Our main results center on the case when r = 1, with very limited results for

r > 2. It is easy to generalize the Fisher-Micchelli conjecture to any bounded

simply connected domain D in the plane. Our first main theorem states that the

conjecture is true (r = 1) if D is convex.

THEOREM 1.1. Let D be a bounded convex domain with analytic boundary. Let

a = (oi,... ,on), ay E D, with no identical a¡ 's on dD. Suppose g is analytic in

D, g(a) = 0, and \g'(z)\ < 1 for all z E D. Then \g(z)\ < [ip(z)\ for all z E D,
where rp satisfies

(1) tf (a) - 0.
(2) ip'(z) = B(0(z)), where 6 is a conformai map of D onto U and B is a

Blaschke product of order n — 1.

It is interesting to examine a simple direct proof of Theorem 1.1 for the case

n = 1. In that case i¡i(z) = z — a, and g(z) = f* g'(v)dv, and thus [g(z)[ < \z — a\

since \g'(z)\ < 1 on D, where the path of integration is the straight line segment

from a to z (which stays entirely in D since D is convex). Such a simple integration

proof does not work for general n.

Our second main result is essentially the converse of Theorem 1.1 and implies

that the extremal problem is not conformally invariant]

THEOREM 1.2. Let D be a bounded simply connected nonconvex domain with

analytic boundary. Let Sa(D) = {g analytic in D:g(a) = 0 and \g'(z)\ < 1 for all

z in D}. Then for each positive integer n there exists a = (cti,..., an), aj in D,

such that Sa (D) contains no extremal function.

It is convenient to restate Theorems 1.1 and 1.2 on the unit disc U, which is easy

to do via the Riemann Mapping Theorem. Let k be a conformai map of U onto D,

and let h = k'. Then it is well known that

(1.1) ft is analytic through the unit circle and does not vanish anywhere in U.
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Moreover if D is convex, then 1 + Re[zk"(z)/k'(z)] > 0 for all z on T, which

implies

(1.2) 1 + Re[zh'(z)/h(z)] > 0   for all z on T.

Hence we have the equivalent theorems:

THEOREM l.l'. Let a = (ai,...,an), |ay| < 1, with no identical ay's on T.

Suppose h satisfies (1.1) and (1.2), and let g be analytic in U, with g(a) = 0 and

\g'(z)[ < \h(z)\ for all z in U. Then [g(z)[ < \4>(z)[ for all z in U, where <f> satisfies

(1) «/>(«) = 0.
(2) <j)'(z) = B(z)h(z), B a Blaschke product of order n — 1.

THEOREM 1.2'. Suppose h satisfies (1.1) but does not satisfy (1.2). Let a =

(ai,...,an), |oy| < 1, with Sa = {g analytic in U:g(a) = 0 and |ff'(2)| < [h(z)[

for all z in U}. Then for each positive integer n there exists a in Un such that Sa

contains no extremal function.

(We leave it to the reader to establish the equivalence between Theorems 1.1

and 1.1', and Theorems 1.2 and 1.2'.)
It is important to note at this point that our proof of Theorems 1.1' and 1.2'

relies heavily on the geometry of curves in the plane. Indeed any function </> whose

derivative is a finite Blaschke product has the property that <f>(T) has positive

curvature (this follows immediately from (2) in notation and terminology). This

is also true if <t>' = Bh, provided h satisfies (1.2). But if <f>' also has n - 1 zeros,

then <j)(T) not only has positive curvature but also has increasing argument. This

is what makes it an extremal function, and this is what fails if h does not satisfy

(1.2).
There is still something missing. What we need is to bridge the gap between the

extremal problem and these geometric notions of curvature and argument. This is

accomplished by the simple, but crucial, observation that Theorem 1.1' is equivalent

to stating that the differential operator / —> (f<j))'/h is a dilation on H°°. This was

first noticed in [5], and we provide the details in §2. In §3 we prove the existence

of a <f> such that <j)' = Bh, B of order n — 1 and h satisfying (1.2). In §4 we
prove Theorems 1.1' and 1.2' and also state our results for (*) when r > 2. The

general conjecture remains open in that case. We prove one of those results in §5,

employing standard variational methods different than the rest of our proofs.

Finally we mention that the extremal problem (*) grew out of work done by

Fisher and Micchelli on n-widths of certain spaces of analytic functions [2], and

there is also a close connection with optimal recovery theory [4].

2. Dilations on H°°. Let A be an operator mapping some subspace of H°°

into L°°(T). A is called a dilation if ||A(/)||oo > ||/|| for all / E domain of A. Let

h be a given nonvanishing function in H(U). Let r be a positive integer. Let

Sra = {g E H(U):g(a) = 0 and [g{r)(z)\ < [h(z)\ for all z E U},

where a = (ai,... ,an),  |ay| < 1.  The following lemma establishes the intimate

connection between extremal functions for S£ and dilations on H^°.

LEMMA 2.1. Let <f> E SI] and suppose that the only zeros of cp in U are

{ai,...,an}, counting multiplicities.  In addition, assume <j) is in H(U).  Define
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an operator A on H^° by A(f) = (f<j>)^/h (A maps Hy° into H°°). Then 4> is an

extremal function for S^ if and only if A is a dilation on H^°.

PROOF. («=) Suppose A is a dilation on H?°. Let g E S^- We must show that

Iff(z)| < \4>(z)\ for all zEU. Let / = g/<f>. Then f^ E H°° (just apply Leibniz'
rule and note that gW is in H°° for k < r, and (l/tpiz))^ remains bounded as

z ^>T since {ai,..., an} are interior to U and those are the only zeros of <f> in U).

Since g E Sra, ||s<rty/i||oo = 11 (/</>)(r) AI loo < 1, which implies ||/||oo < 1 since A is

a dilation on H^°.

(=>) Similar to the proof above.

LEMMA 2.2.  Let r E Z+. Define an operator A mapping H^° into L°°(U) by

A(f) — oo/H-\-arf(r\ where the aj are functions continuous on U and f E H^°.

Suppose A is a dilation on H(U). Then A is a dilation on H%°.

PROOF. Let {p„} be a sequence of positive numbers < 1 with pn -* l~. Let

/ E H^° and let gn(z) = f(pnz), which implies that gn is in H(U) for all n. By

assumption we have

(2.1) ||A(ff„)||oo > Hffnlloo    for all n.

We must show that P(/)||oo > ||/||oo-

Now
r r

A(9n) = YjfliWÀi - 0-j{PnZ))f[3)(pnZ) + ^ aj {pnZ)fb) (pnz).
y=o y=o

By (2.1) we have

(2.2) Y^aj(pnz)f(3)(pnz)

3=0

ooMj,> Hffnlloo - X] \\aAZ)Pn - aj{PnZ
3=0

where Mj is chosen so that ||/^(pnz)||oo < Mj for all n. Now for fixed j,

\\aj{z)Pn - ay(p„2)||oo < \\aj(z)(Pn - ay(2)||oo + ||ay(z) - aj(pnz)\\00

< ||ay(e)||oo|pÍ - 1| + 11%(z) - aj(pnz)| U -» 0

as n —► 00 uniformly in |z| < 1 by the uniform continuity of ay(ar) on U. Taking

the limit as n -» 00 on both sides of (2.2), we get ||A/||oo > ||/||oo-

We now state some well-known facts that can be found in many texts on complex

variables.
Let T be a circle centered at the origin of radius R > 0. Let / be analytic inside

and on T, and suppose f(z) ^ 0, z E T. Choose a branch of log/ analytic in a

neighborhood of z. Suppose z = Relt. Then

(2.3)

(2.4)

dt
log[f(Relt)\ =-Im

jt(axgf(Reü)) = Re

'zf'(z)

. f(z) J
zf'(z)

f(z)

(2.5)      If f'(z) ¿ 0 for z E T, then ^ arg f - (f(Relt)) ) = 1 + Re */"(*)
[ f'(z)
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LEMMA 2.3. Let f E H(U), / ^ 0. Let £ be a maximum point for f on U

(i.e., H/lloo = 1/(01), l€l = 1- Then ç/'(0//(0 > 0.
PROOF. Let g(6) = log|/(e'e)| and suppose £ = e%e°. Since £ is a maximum

point for / on T, 9q is a local maximum for g as a function on the real line. Hence

g'(0o) = 0. But g'(60) = -Im[£/'(0//(0] by (4), and hence cT/'(0//(0 is real.
Now

|log|/(re*°)| = £log|/(rOI>0

for r close to 1~ by the Maximum Modulus Theorem. But

¿log|/(r0l=Re
if'(rQ

I /K)
Letting r -> 1", we get cT/'(0//(0 > 0.

We will now concentrate our attention for the rest of this chapter on first-order

differential operators A of the form / + uD, where (/ + uD)(f) = f(z) + u(z)f'(z).

For sufficiently smooth u, our next theorem characterizes those u for which / 4- uD

is a dilation on H(U).

THEOREM 2.1. Suppose u(z) is Lip 1 on the unit circle. Then I + uD is a

dilation on H(U) if and only if r\e(u(z) / z) > 0 for all z ET.

PROOF. (■<=) This is the easy part. Let / E H(U) and let £ be a maximum

point for / on U.

mmo\11/wi > 1/(0 + «C0/'(0l = 1/(01 i

X0 c/'(0
C   /(0

> 1/(01   1 +Re
£

1/(011 + C^Re

/(0
u(0

> 1/(01-/(0 "~V í
The last two steps follow from Lemma 2.3.

Before proving the necessity part of Theorem 2.1, we need the following lemma.

LEMMA 2.4.   For zeT and p E (0,1), 8 = (1 - p)2, define

u(z)     1      1  oAu(z)\2       1

(2.6)

gp(z) = pRe
Mi

-Re (I
\a

■pz)

log

2p6la^

\l-pz\

1 - pz\*

1'
+ Im I - ) arg(l - pz)

(i-p)y        Va,

where u is Lip 1 on T and Re(a) < 0, a = t¿(l). Leí {zj}, {pj} be any two sequences

with \zj\ = 1 and pj E (0,1) with pj —> 1~. Then some subsequence ofgPj(z3) tends

to co.

Proof. Let x¡ = Re(zy).
The second term in (2.6) remains bounded by our choice of 8, and the fourth

term clearly remains bounded. Now the first term equals

\u(z)-u(iy
pRe

L "(i - pz)
+ pRe

1

1 — pz
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and
u(z) — u(l)

a(l - pz)
<

z-1

1 pz

u(z) — u(l)

1

which remains bounded by the Lip 1 condition on u and the fact that

z-1

1 — pz
= l + z p-1

1 — pz
<2

for z on T.   So it remains for us to consider Aj = |1 — pyzy|2/(l — py)2 and

Bj = (1 - pjXj)/[l — pjZj[2. Clearly Aj > 1 and Bj > 0, and

1 - PjXj ^    1-Py 1
A^-(. -p3)2 >

(i - pjY    i - pj
which tends to oo as py tends to 1~. Hence {Ay} and/or {Bj} must have a subse-

quence tending to co and that completes the proof upon noting that -Re(l/a) > 0

and that Re(l/(1 - PjZj)) = Bj.
Necessity proof of Theorem 2. l (=>) We must produce a function / e

H(TJ) s.t. IIZ+u/'Hoo < ll/lloo given that Re(u(z)/z) < 0 for some z E T. Without
loss of generality assume that a = Re(u(l)/1) = Reu(l) < 0. Choose the branch

of the logarithm slit on the negative real axis and such that log t is real for t > 0.

Define, for 0 < p < 1,
■(1-P)2

(2.7) fp(z) = exp log(l - pz) = (i-pzyi-p) ia.

Hence / is analytic in |z| < 1/p, and for p close to 1, fp will be the required function.

To simplify notation, let 8 = (1 - p)2. Now consider

u(z)    p8
fp(z)+u(z)f'(z) = fp(z) 1

a   1 - pz

Then we have

(2.8)
[fp(z) + u(z)f'p(z)f

l/p(l)l2
1-

u(z)    p8

a   1 — pz

\fP(z)?

I/p(112-

First we will show that for each zq E T, there exists p (depending on 2n) such that

the right-hand side of (2.8) is < 1. Then we will show that the p's can be chosen

so that their supremum (over zo) is < 1. Using the definition of gp(z) in Lemma

2.4, we claim

(2.9) gp(z0) > 0 => \fp(z0) + u(z0)f'p(z0)[ < \fp(l)\.

To prove this it suffices to show that the right-hand side of (2.8), with z = zq, is

< 1. Note that

i/,(di2   p
S.28Re ( - ) log

1 — pz\

1-P
-Im arg(l -pz)]}

Multiply both sides of (2.6) by 8, letting z = zq. Using the fact that gp(zo) > 0,

we have

p<5Re
u(zo)

a(l-pz0)\

1

a
>8Re log

I      19 H 19
|a|^|l - pzoy

1-pzo

1-P
— ¿Im ( — ) arg(l P^o),
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which implies

l-2p<5Re
u(zq)

a(l- pz0)\

<l-2¿Re(-J

+

log

p282\u(z0)\2

a\2\l - pzo\

1 - pzo[

< exp ( - log

1-p

1-pzp

1-P

+ 281m(-)axg(l-pz0)

arg(l - pzo)

using the inequality 1 +1 < el for all real t

This says that

u(zo)     8p
1- <

1

a

+ 2¿Im(-

I/p(1)|2
\fo(zoWa    1 - pz0 |

which says that the right-hand side of (2.8), evaluated at zq, is < 1. This gives

(2.9).
In light of (2.9) we shall now work with gp(z). By Lemma 2.4, for each fixed

zo € T, 3po E (0,1) such that po < p < 1 implies gp(zo) > 0. Let

So = set of all such p0 = {po E (0,1): gp(z0) > 0 Vp E (po, 1)}.

So is nonempty by our previous remark, and in fact So = (ao> 1) for some ao E [0,1).

It is not hard to show

(2.10) ffaoU))=0.

This follows since h(p) = gp(zo) is a continuous function of p for each fixed zq E T.

Clearly h(0) = 0 for any given zo E T. Now suppose h(ao) = gao (zo) > 0. Then

ao > 0 implies there exists po < ao s.t. h(p) > 0 for all p E [po, 1), by the continuity

of h. This contradicts the definition of ao = infPoes0(po). Summarizing

(2.11) For each z0 E T, 3a0 E [0,1) with ffao(20) = 0 and gp(z0) > 0
for all p E (ao, 1).

Now define L = supZoeT(ao), using the correspondence in (2.11). We claim that

L < l! If not, 3 sequences {ao.,}, {zoj} s.t. ao3 ~* l~, with gao (zq,) = 0. But this

cannot happen by Lemma 2.4.

Since L < 1, we can choose p* E (L,l) (any choice suffices). For any zo E

T, gP-(zo) > 0, since p* > L > ao (again using the correspondence in (2.11). Note

that p* does not depend on zq ■ We now define

f(z) = fp.(z) = (l-p*zyi-»'^a-

By (2.9),
|/(20) + u(zo)f'(z0)\ < |/(1)|    for any z0 E T,

which implies ||/ + u/'||oo < ||/||oo-

If Re(u(a)/a) < 0, a ^ 1, a simple change of variable establishes the theorem.

REMARKS. To prove the sufficiency part of Theorem 2.1 we certainly only need

u defined and bounded on T, and if we allow ||/ + u/'||oo = co, we could also

remove the bounded assumption.

To prove the necessity part, if Re(u(a)/a) < 0, we need only assume u is bounded

on T and \u(z) — u(a)[ < M\z — a| for all z on T. It would be interesting to see if

we need that assumption at all. Is u bounded on T enough to prove the necessity

part of Theorem 2.1?
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3. Existence. Before proving Theorem 1.1' our method requires proving the

existence of the extremal function <f>. Throughout this section h(z) will denote a

function satisfying (1.1) and (1.2).

THEOREM 3.1. Let {ai,... ,an} ÇU, with no identical aj 's onT. Then there

exists cj> E H(U) such that

(!) <t>((Xj) = 0forj = l,...,n.

(2) (¡>'(z) = B(z)h(z), where B is a Blaschke product of order n — 1.

Before proving the theorem, we need the following lemmas.

LEMMA 3.1. Suppose f(z) is analytic inside and on a circle V centered at the

origin, T(t) = Re%t (0 < t < 2w), and that f and f do not vanish anywhere on T.

Let n > 1. Suppose

(A) 1 + Re(zf"(z)/f'(z)) > 0 for all zEY,
(B) f(z) has n zeros inside T. Then f'(z) has at least n — 1 zeros inside T.

PROOF. (A) expresses the well-known condition that f(T) has positive curvature

—i.e., the tangent vector to f(F) has increasing argument. (See (2.4) and (2.5).)

(B) says that f(T) has winding number n about the origin. It is geometrically clear,

then, that the tangent vector must wind about the origin at least n times. But the

tangent vector = izf'(z), and hence /'(T) has winding number > n — 1. For more

details, see [3].

COROLLARY 3.1. Suppose f(z) is analytic inside and on a circle T centered at

the origin, and that f'(z) does not vanish anywhere on T. Also suppose

(i) 1 + Re(zf"(z)/f'(z)) > 0 for all zeT.
(ii) / has m zeros inside and onT, m> n.

(iii) /' has m! zeros inside T, m' < n — 1, where n > 1. Then f has precisely n

zeros inside and on T, and f has precisely n—1 zeros inside T.

PROOF. We can choose a circle G, radius of G > radius of T, such that

(a) / is analytic inside G and does not vanish on G.

(b) / has m zeros inside G.

(c) /' does not vanish on G and has m' zeros inside G.

(d) 1 + Re(zf"(z)/f'(z)) > 0 for all zEG.
By Lemma 3.1, n — 1 > m' > ra — l=>m<n=>m = n and m' = n — 1.

LEMMA 3.2 (FISHER AND MICCHELLI). Let S„ = set of Blaschke products

of order < n, given the topology of uniform convergence on compact subsets of U.

Then there exists an odd continuous map P: S2n+1 —> Bn, where

Í n+1 )
S2"+1=   K,...,™„+1)eÜn+1:£K|2 = ii.

PROOF OF THEOREM 3.1. Assume n > 2 (otherwise the theorem is trivial).

Suppose first that ai,...,an lie in U. For w in S2n_1 define

Q(w) = {(f(a2),..., f(an)) E Cn-l:f = hP(w), f(ai) = 0},
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where P is the odd continuous map given in Lemma 3.2. Then Q is an odd contin-

uous map of S2n_1 into Cn~1 and so has a zero by Borsuk's Theorem. So we have

a function <¡> such that cp(a) = 0 with <j>' = Bh, B in Bn-i- Now

for all z on T by (1.2). Applying Corollary 3.1 we get

(3.1) <t> does not vanish on T and has exactly n zeroes inside T.

(3.2) B(z) has order n - 1.

The case when some or all of the ay's are on T follows by a simple limiting

argument.

4. Solution of the extremal problem. The geometric essence of the proof

of Theorem 1.1' noted earlier is embodied in the next lemma, which is the key to

our use of Theorem 2.1.

LEMMA 4.1. Let V be a circle of radius R > 0, centered at the origin. Suppose

f(z) is analytic inside and on T, and f and f do not vanish on T. Also, suppose

f satisfies the following:
(A) / has n zeros inside T.

(B) /' has n — 1 zeros inside T.

(C) 1 + Re[zf"(z)/f'(z)] > 0 for all zET.
Then Re[zf'(z)/f(z)] > 0 for all zET.

PROOF. Let 7 = f(T). (A) says that 7 has winding number n about the origin,

while (B) says the tangent vector to 7 also has winding number n. As noted earlier,

(C) means that the curvature of 7 is positive. (B) implies that 7 has precisely n

loops, while (A) implies all the loops must wind about the origin. For a curve

with positive curvature this implies nondecreasing argument. By (2.4), we get the

lemma. (See [3] for more details.)

PROOF OF THEOREM 1.1'. As noted in the introduction there is a simple proof
of Theorem 1.1 (and hence Theorem 1.1') for the case n = 1. So assume that n > 2.

Case 1. |ay| < 1 fox j = 1,... ,n. Let <p(z) be any function satisfying (1) and

(2). (Such a <t> exists by Theorem 3.1.) Then we have

(4.1) 1 + Re[z4>"(z)/<j)'(z)] > 0   on T

by (1.2) and the fact that zB'(z)/B(z) > 0 onT.

By Corollary 3.1, the only zeros of <j> in U are (ai,...,an). Letting SQ =

{ff in H(U)[g(a) = 0 and |g'(z)| < \h(z)\ for all z E U}, we see that Theorem 1.1'
is equivalent to saying that </> is an extremal function for Sa. By Lemma 2.1, this

is equivalent to saying that the operator A(f) = ((¡)f)'/h is a dilation on //f°. By

Lemma 2.2, we need only prove that A is a dilation on H(U). Now

"<fl = f/+^' = (/+^')i,s'ii-4«ii- = ftP
We can now apply Theorem 2.1 with u = <j)/(j)' to assert that ||/ + u/'||oo >

provided Re(u(z)/z) = Re(4>/zd)') > 0 on T. But this follows directly from Lemma
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4.1, with T = T, by using (4.1) and the fact that <f> and cj>' do not vanish on T. This
completes the proof of Case 1.

Case 2. a = (ai,..., an) with |a¿| = 1 for some i, but no identical a¿'s on T.

Let a^) = (ax,...,an), |a¿ | < 1, with a^ —> a. For convenience assume

that if |afc| < 1, then a£' = a^. Suppose <f>j is a function such that cf>j(a^) = 0

and (f>'j = Bjh, Bj a Blaschke product of order n — 1. Then taking subsequences if

necessary, tpj converges almost uniformly to cj>, where 4>(a) = 0 and cf>' = Bh, B in

Bn-i- By Lemma 3.1, the order of B = n — 1.

Now suppose g(a) = 0 and |g'(.s)| < \h(z)\ for all z E U. Without loss of

generality, assume that {ai,... ,am} are the ay's on T. Note that a^' = ak for

all j and any k with m + 1 < k < n. Define the sequence of functions

n

vM3)) = „n      m-)-r.     i = h-..,m.

(4-2) gj(z) = g(z)-    J]   (z-ak)Pj(z),
k=m+l

where py is the unique polynomial of degree m - 1 satisfying the m interpolation

conditions

yjh _        9K0))
Utm+^-at)'

Note that ffy(a^) = 0 for k = 1,... ,n so that ffy has n zeros in U. Since g' E

H°°, g is continuous on U, which implies that limy-^ g(aj¡. ) = ff(c¿fe) = 0 for

k = 1,... ,m. Since the aj¿ s stay bounded apart as j —> co (for k = 1,..., m),

the coefficients of py tend to 0, and hence p'- converges to 0 uniformly in U. Then

g'j converges to g' uniformly in U (and hence gy certainly converges pointwise to

g). Now by Case 1

(4.3) Iffy(2)| < \cj<pj{z)\    for all z E U

where Cj = ||ffy//i||oo- Hence Cj —► 1. Taking the limit as j —► co (for fixed z) on

both sides of (4.3), we get that \g(z)\ < [4>(z)\. Since this holds for any z EU, Case

2 is proven.

We can now prove that (up to a rotation) the function <f> given by Theorem 3.1

is unique.

COROLLARY 4.1. Let a = (ai,..., a„), ay E U. Let h be any function satis-

fying (1.1) and (1.2). Suppose 4>i(a) = (/»2(a) = 0 and (¡>'x = Bih, <¡>'2 = B2h, where

Bi and B2 are both Blaschke products of order n — 1. Then (¡>i = c<f>2, c some

constant with \c\ = 1.

PROOF. In the proof of Theorem 1.1' we assumed that <¡> was any function

satisfying 4>(a) = 0 and <f>' = Bh, order of B = n — 1. Under that assumption

we then showed that <j) was an extremal function for Sa. But this means that

|0i(2)| < \4>2(z)I and |</>2 (z)I ̂  l<Ai(z)l f°r o-ll z in U, and hence |0i(2)| = 102(^)1
everywhere in U. Since <¡>i and <f>2 are analytic, the Corollary is proven.

Does our existence-uniqueness result hold even if h does not satisfy (1.2)? In

other words, given a bounded simply connected domain D, is there always a unique

function cp vanishing at n given points in D with

(i) 4>' analytic through D and unimodular on d(D).
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(ii) (j)' has n — 1 zeroes in the interior of D

assuming also that d(D) is analytic?

We now state a positive result for any r > 1. We defer the proof to §5.

THEOREM 4.1. Let a = (ai,...,a„), |ay| < 1. Let £ E U - {ai,...,an},

and let r be a positive integer. Let h be any function satisfying (1.1). Suppose

g is analytic in U, with g(a) = 0 and |g(r)(z)| < [h(z)\ for all z E U. Then

|g(0l ^ l0i(OI> where 4>ç(a) = 0 and (pf" = Bh, B(z) a finite Blaschke product.

Before proving Theorem 1.2' we state some lemmas.

LEMMA 4.2. Suppose f E H(V) and 1 + Re(z2f"(z2)/f'(z2)) < 0 for some
z2 E T. Then there exists ziET such that Re((f(z2) - f(zi))/z2f'(z2)) < 0.

PROOF. Again, we refer the reader to [3] for the details. As earlier, this lemma

has a simple geometric interpretation. Let T = f(T). Then the curvature of T

is negative at f(z2). By translating T so that the negatively curved part passes

through (or near) the origin, the new curve 7 will have decreasing argument some-

where. The translated curve is T - f(zi), zi near z2. Letting g(z) = f(z) — f(zi),

this says that g(T) has decreasing argument at g(z2).

LEMMA 4.3. Let h satisfy (1.1), and let a = (ai,... ,an), |ay| < 1. LetSa = {g

in H(U):g(a) = 0 and \g'(z)[ < \h(z)\ for all z E U}. Suppose <j> is an extremal

function for Sa. Then cp' = Bh, where B is a Blaschke product of order n — 1, and

the winding number of <p(T) is n.

Proof.
Case 1. The ay's are all distinct. Note that for g E Sa,

g(z) - g(aj)
<

d)(z) - 4>(aj)
for any z EU - {ai,..., an}-

Letting z —» aj we get that |g'(ay)| < |0'(ay)|. Since there are functions in Sa whose

derivatives do not vanish at any of the ay's, <f>'(aj) ̂  0 for any j. Also, <¡>(z) ̂ 0

for any z E U — {ax,..., an} for similar reasons. Hence the winding number of 4>

is exactly n. By Theorem 4.1, <j>' = Bh, where B is a finite Blaschke product. Now

suppose B has order m, m ^ n- 1. Since the only zeros of <j> in U are {ai,..., an},

we can apply Lemma 2.2 (with r = 1), which says that the operator A(f) = (f<j>)'/h

is a dilation on //f0. Since B does not have order n—1,

z<yy }   zBh> '

has nonzero winding number => Re(<f>/z<f>') < 0 for some z E T. By Theorem 2.1,

A cannot be a dilation on Z/f0 (u = 4>/4>'). Hence B must have order n - 1.

Case 2. a = (ai,... ,an), with some of the ay's identical. We use a limiting

argument similar to the proof of Theorem 1.1'—Case 2. Let a^ — (ax,... ,a«')

with |aj. I < 1, all of the coordinates distinct, and a^ —> a. Let (pj be an extremal

function for Sau) which implies that (p'j = Bjh, with Bj a Blaschke product of

order n—1, by Case 1. Taking subsequences, if necessary, Bj converges almost

uniformly to B, Be Bn-i, by (3) in notation and terminology. Letting 4>(z) =

f   B(w)h(w) dw, it is easy to see that 4>(a) = 0 (there is no problem with identical
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coordinates here since all of the ay's are in U.) We now show that 0 must be an

extremal function for SQ. Let g G Sa. Then we can easily construct a sequence

{gy}, with gj E Sau) and gy converging to eg uniformly in U, with c > 1 (pointwise

convergence is sufficient). Just define ffy(z) = Cj(g(z) - Pj(z)) where py is the

polynomial of degree < n — 1 satisfying py(a¡¡. ) = ff(ûfc ) f°r ^ = l,--.,n and

cj = VIKff' _ Py)/^lloo- Then all the coefficients of py —► 0 as j —> co, which

implies that py and p' converge to 0 uniformly in U. Also, cy —► c, where c —

VllffV^lloo > 1. Since ffy E Sa(J), |ffy(0l < |0y(OI for any £eU. Taking limits we
get c|g(0l < 10(01, and hence |g(0| < |0(OI- (It is trivial that 0^(0 - 0(0 for
each ÇeU.)

So 0 is an extremal function for Sa with 0' = Bh, B E Bn-i- It is obvious that

(p(z) t¿ 0 for z E U — {ai,..., an}- But suppose 0 vanishes with greater multiplicity

at some of the ay's than some of the functions in Sa (i.e., the winding number of

0(T) is > n). More precisely, 0(6) = 0, where b = (bi,..., bm), m > n. Then 0 is

an extremal function for S0, and we can now apply Lemma 2.2 again to S& (note

that SbÇSa). But

■±m = -Ê-m
z#K  '     zBhK  '

would then have positive winding number. Using the same reasoning as earlier, 0

could not be an extremal function for Sb, and hence not for Sa-  So the winding

number of 0 is exactly n, and applying the same reasoning again, B must have

order exactly n—1.

PROOF OF THEOREM 1.2'. Since h does not satisfy (1.2), letting k be any
primitive of h, there exists z2 E T such that 1 + Re(z2k"(z2)/k'(z2)) < 0. By

Lemma 4.2, there exists zi E T such that Re[(k(z2) - k(zi))/z2k'(z2)] < 0. Letting

H(z) = k(z) — k(zi), we have

(4.4) Re(H(z2)/z2H'(z2)) < 0    and    H(zi) = 0.

Let {aj} be a sequence in U with ay —> zi, and let afïï  = (a j' ' i) («(i)
Un).  Suppose 0y is an extremal function for Sau).  For large j we shall derive a

contradiction.

n — 1. Hence

(4.5)

By Lemma 4.3, 0' = Bjh, where Bj is a Blaschke product of order

#-

z-a-j

1 - äjZ
h(z) = Bj(z)h(z)

since 0^m) (aj) = 0 for m = 0,1,..., n - 1. As ay -> z\, Bj(z) -* (-zi)n  x for any

z E V, z=y zi. Then

\4>j{z2)-{-ziT-iH(z^[

<

J aj

rz:

J aj

Bj(z)h(z) dz

Bj(z)h(z) dz

[■zt

ÇZ2

J Z\

zi)n-1h(z)dz

Bj(z)h(z) dz

+ rJ Z\

(B3(z) - (-Zl)n-l)h{z) dz
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The first term —> 0 by the uniform boundedness of Bjh in U and the fact that

aj —> zi. The second term —> 0 by the Bounded Convergence Theorem. Hence

JM^L |.J '-"'■-''¡;-')^(^1)<.   by (4.4).
\Z2<t>'j(z2)J \z2(-zi)n lh{z2)J \z2H'(z2)J

Using the same reasoning as earlier, for j sufficiently large, 0y cannot be an extremal

function for Sau) ■ This proves the theorem by contradiction.

We now state some results for r > 2. Our first result establishes (*) when r = n.

THEOREM 4.2. Let a = (ai,...,a„), |ay| < 1. Suppose g(a) = 0 with

[g{n)(z)\ < 1 for all z E U. Then \g(z)\ < |0(z)| for all z E U, where (¡>(z) =

(l/nl)(z-ai)---(z-an).

PROOF. Assume first that {ai,... ,an} Ç U. By Lemma 2.1 (with h = 1) and

by Lemma 2.2, it suffices to prove that A is a dilation on H(U), where A(f) =

(/0)(™'. We shall factor A into a product of dilations. Indeed,

¿(/)=(n('+^>)W
where / is the identity and D the differentiation operator. Since Re((z-ay)/z) > 0

for all z E T, I + (z - aj)D/j is a dilation on H(U), by Theorem 2.1. A limiting
argument proves the case when some of the ay's are on the unit circle.

Using a somewhat different operator factorization, we can prove (*) when the

functions all vanish with multiplicity n at a single point a in U (for details, see

[3]). It had been hoped that a factorization of the appropriate rth-order differential

operator into a product of first-order dilations would prove the r > 2 case in general,

but this has not worked out so far.

REMARKS. There is an interesting application of Theorem 4.2 to divided dif-

ferences of analytic functions. Let f[zo,zi,... ,zn] denote the nth-order divided

difference of f at {zq, ■ ■ ■ ,zn} and assume / is in Z/£°. Then it is easy to show that

Theorem 4.2 is equivalent to

(4.6) n!|/[20,...,2n]|<||/(n)||oo    foxany{zo,...,zn}ÇU.

This can also be extended to any convex domain D that is bounded with analytic

boundary. But is it true if D is not convex (n > 2)?

(4.6) has direct applications to polynomial interpolation of analytic functions.

Also, for real-valued functions defined on an interval the result is a simple conse-

quence of the Mean Value Theorem for Divided Differences. Of course there is no

such theorem for complex-valued functions on U.

5. Proof of Theorem 4.1. Let Xa = {gE H?°\g(a) = 0}, Ya = Dr(Xa)/h =

{g(r)/h, g E Xa} with ||/|| = supzef/ \f(z)[ for / E Ya. Let S(Ya) = unit ball of

Ya. Then S(Ya) is a weak*-compact subset of the unit ball of H°° (follows easily).

For w Ell — {ai,..., ar}, let

kw(z) = (—l)rh(z) ■ any rth primitive of -,—-r——,—-—,,     —r
wK '     y     '    y '        y        F (z-ai)---(z-ar)(z-w)
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(as a function of z). Then using Cauchy's Integral Formula and repeated integration

by parts, one has

(5.1.) FoxfEYa,    / =
7(r)

~~h~
Lw(f) = g(w) = 2^1 fiz)kwiz)dz

(Of course (5.1) defines Lw(f) for any / E H°°.)
Since S(Ya) is weak*-compact, there exists a function G¿ E S(Ya) such that

G€(0 > 0 and

(5.2) Li(Gî)=    sup    |L€(/)|.
f€S(Ya)

Gç is a normalized extremal function for L¿ on Ya. Now let N(Laj) = {/ E

H°°\Laj(f) = 0}. Then Ya = fïyW+l N(Lc%j). Since Ya is a norm-closed subspace

of H°°, Lç can be extended, in a norm-preserving fashion, to a bounded linear

functional A^ on H°°, by the Hahn-Banach Theorem. Since (Aç - L¿) _L YQ,

there exists cr+i,... ,cn such that \¿ — L% = ^y=r+i c.j'£a> =i> G¿ is a normalized

extremal function for A^ on H°°. Using the standard theory of extremal functions

on H°° (see Duren [1]), we have

(5.3) There exists n^ E H1 such that

kç +   ]P  Cjka. + n€
j=r+l

=   inf
n€H>

L1

fc| + ^2 cj^a3+ n
j=r+l Ll

(5-4)        ||A€||(Hoo).

(5.5)

(5.6)

where /Q = k^ + 2_, Cjkaj + n$.

zK€(z)Gz(z) >0    a.e. on T.

|Ge(s)| = l    a.e. on{zET\K/:(z)¿0}.

Using these facts, one can show that there can be only one G¿ satisfying (5.2) since

there is only one Gç in the unit ball of H°° with

AÍ(GÍ)= sup |A€(/)|.
/€H»;||/|U=1

Now there exists t E (0,1) such that K$ E H1{z\ t <[z\ < 1}. (For the appropriate

facts on H1 of general domains, see [1].) This says that K¿ cannot vanish on a

set of positive measure Ç T => \G^\ = 1 a.e. on T by (5.6)—i.e., Gj is an inner

function. To prove that Gç is a finite Blaschke product, we restate the following

result from [6, Proposition 6, p. 11].

LEMMA 5.1 (ROYDEN) . Let f be in H1 of the annulus R = {z\ r0 < \z[ < 1}
and g in H°°(R), where 0 < r0 < 1. Suppose fg > 0 a.e. on T and that \g\ = 1 on

{z E T[f(z) 9¿ 0}. Then f and g are analytic in some annulus ro < \z\ < P£, with

r\ > 1.

If we let / = zK^ and g = G¿, using Lemma 5.1 and (5.5) we get that G¿ is

analytic through |z| = 1 and hence is a finite Blaschke product. To finish Theorem
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4.1, let 0£ =unique rth primitive of hG% vanishing at {ai,... ,an}. If g(a) = 0

and \g^(z)[ < \h(z)\ for all zEU, then / = g^/h E S(Ya), and thus |0C(OI =

|L€(Gi)| > |LÇ(/)I = lff(OI-
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