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BOUNDARY BEHAVIOR OF POSITIVE SOLUTIONS
OF THE HEAT EQUATION ON A SEMI-INFINITE SLAB

B. A. MAIR

ABSTRACT. In this paper, the abstract Fatou-Naim-Doob theorem is used to

investigate the boundary behavior of positive solutions of the heat equation on

the semi-infinite slab X = Rn_1 x R+ x (0, X). The concept of semifine limit

is introduced, and relationships are obtained between fine, semifine, parabolic,

one-sided parabolic and two-sided parabolic limits at points on the parabolic

boundary of X. A Carleson-Calderón-type local Fatou theorem is also obtained

for solutions on a union of two-sided parabolic regions.

0. Introduction. The boundary behavior of positive solutions of second-order

parabolic equations on a horizontal boundary has been studied in [10] by applying

the abstract Fatou-Naim-Doob theorem (cf. [13]). The main aim of this paper is to

apply the same methods to investigate the boundary behavior of positive solutions

on a vertical boundary. This subject has already been studied by classical methods

in [5-8, and 14].

This paper obtains the Calderón-type result (Theorem A) in [14] and special

cases of results in [7, 8] by means of fine convergence. The advantage of using

this method is that, although the results in this paper are for solutions of the heat

equation, it is clear (cf. [10]) that if a suitable integral representation is obtained

then the results in §§2, 3, 6, and 7 still hold for positive solutions of more general

parabolic equations on the semi-infinite slab X = R™-1 x R+ x (0, T). In particular

the Calderón-type local Fatou theorem with two-sided parabolic approach regions

(Theorem 7.3) would still hold (cf. [5]).

Although the main interest is in behavior at the vertical boundary, this paper

does not consider only the right half-space, but rather the semi-infinite slab X,

this obtaining results for both horizontal and vertical boundaries. To do this, new

nonsemithin sets are obtained in §3 and new Harnack inequalities are found in §4.

I would like to thank Professor J. C. Taylor of McGill University, Montréal, for

his continuing interest in my work.

1. Preliminaries. Throughout this paper, 0 < T < oo and n E N are fixed.

X denotes the semi-infinite slab

Rn_1 X R+ x (0,T) = {(x1,xn,t):x' E Rn_1,xn > 0,0 < t < T},

H = R""1 x R+ x {0},    V = Rnl x {0} x [0, T)    and   B = HU V.

Then B is the parabolic boundary of X.
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The fundamental solution for the heat equation Axu = du/dt on Rn x R is

given by,

[ 0, if t < 8.

Define

G(x, t; y, s) = W(x, t; y, s) - W(x, t; (y', -yn), s).

For each (x, t) = (x', xn, t) E X, b E B, define,

jG(x,t;(b',bn),0), if b=(b',bn,0) EH,

KbM = \^-G(x,t;(b',bn),s)\bn=0,    ifb=(U,0,s)EV.

Now, it is well known that the solutions of the heat equation generate a strong

harmonic space on X (cf. [1]). In [11], axiomatic potential theory and Martin's

method for the construction of ideal boundaries are used to obtain the following

integral representation theorem.

THEOREM 1.1. Let u > 0 be a solution of the heat equation on X. Then there

exists a unique Borel measure p on B such that

u(x,t) = I Kb(x,t)dp(b),    for all (x,t) E X.

This p is called the representing measure for u.

The following abstract Fatou-Naim-Doob theorem then follows from [13].

THEOREM 1.2. Let u > 0, v > 0 be solutions of the heat equation on X,

represented by measures p, v respectively. Then u/v has fine limit dp/dv, v-a.e. on

B.

For any E C X and u > 0, superharmonic on X, Reu denotes the reduced

function of u on E.

For each b E B, 7(b) denotes the fine filter at b. For each b E B, let X£ =

{(x,t) E X: Kb(x,t) > 0}. Then X\X£ is empty if b E H and nonempty if b E V.

However, Kb = 0 on X \ X¿~ if b E V; hence X \ X£ is thin at each b E B.
Throughout this paper, C denotes a general positive constant (not necessarily

the same at different occurrences) which may depend on n and other constants.

PROPOSITION 1.3. If E is thin atb, then for any sequence {Um} of neighbor-

hoods of b in Rn+1 decreasing to {b} and (x,t) E X, limm_>00.ñ£(m)A'¡,(x, t) — 0,

where E(m) = E H Um.

Conversely, if there exist (x,t) E Xy and a sequence {Um} as above such that

limm_>00 RE(m)nx+ Kb(x, t) = 0, then E is thin at b.

PROOF. This result follows easily as in [10, Proposition 1.5] if the complement

of any neighborhood of b in Rn+1 is thin at b. To see this, note the following.

(i) If b = (b',bn,0) E H and 8 > 0, then \x - (6',6„)| > 8 ox t > 8 implies
Kb(x,t) < Ct, which is superharmonic on X and tends to 0 as (x, t) —> b.

(ii) If b = (6',0,s) E V and 8 > 0, then |x - (b',0)\ >8oxt-s>8 implies

Kb(x, t) < Cxn, which is superharmonic on X and tends to 0 as (x, t) —> 6.
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Hence, if U is a neighborhood of b E B in Rn+1, then Rx\uKb(x,t) -» 0 as

(x, t) -» b, so Rx\uKb í Kb.
As stated before, this paper links fine convergence with certain types of geometric

convergence at points of B. These regions will now be defined.

For each b = (b', bn, 0) E H and a > 0,

P(b;a) = {(x,t)ERn x R+: \x-(b',bn)\2 < at}

is called the parabolic region with aperture a and vertex b. For any 8 > 0,

P(b;a,8) = P(b;a) n {(x,t):t<8}

is called a truncated parabolic region.

For each b = (b1,0, s), a > 0, ß > 0, 8 > 0,

P(b;a:ß) = {(x',xn,t):0<a(t-s) < |x-(6',0)|2 <a~1(t-s),xn > ß\x' -b'\}

(here a < 1) is called the parabolic region with vertex b and aperture a : ß.

P(b;a: ß,8) = P(b;a: ß) D {(x,t): \x - (6',0)| < 8}.

TP{b;a: ß) = {(x',xn,t): |í-s| < a[x- (6',0)|2, xn > /3|x' -6'|} is the two-sided-

parabolic region with vertex b and aperture a : ß.

TP(b;a : ß,8) = TP(b;a : ß) H {(x,t): \x-(b',0)\ < 8}.

A real-valued function / on X is said to have parabolic limit A at b E B if /

converges to A within parabolic regions with vertex b.

As in [10], the parabolic filter at 6, Pib) = {E C X: for each P(b; t) there exists

8 > 0 such that P(b; r, ¿) C E} describes parabolic convergence at b.

2. Semifine and parabolic limits for arbitrary functions. As in [10], the

semifine limit is introduced and its existence is shown to be a consequence of the

existence of the parabolic limit for any function on X.

From now on fix 0 < 7 < 1.

DEFINITION 2.1. (i) For each ieß.meN define

i(x,t): \x-ib',bn)\<im,0<t<12m},    ifb=ib',bn,0)EH,

Rmib)= I {{x,t): |x-(6/,0)|<7m,0<i-6<72'",xn>0},

ifb=ib',0,s)EV.

Jm(b) = Rm(b)\Rm+i(b).

Jm(b) will be denoted by Jm when the context determines b.

(ii) A set E C X is said to be semithin at b E B if there exists (x, t) E Xb+ such

that limm^oo REnJmKb(x,t) = 0.

(iii) For each b E B, S(b) = {E C X: X \ E is semithin at b} is the semifine

filter at b. For any function /, semifine lim/(6) denotes the limit of / along S(b).

Theorem 2.2 (cf. [10, Proposition 2.4]). For eachbEB, P(b) c S(b).

PROOF. If b = (b1, bn, 0)EH define um(x, t) = JB^ W(x, t; y, 0) dy, where

Bm = {y E Rn: !m+2 < [y - (b', bn)[ < l™"1}.

Then as in [10, Proposition 2.4], inf jm um = inf j, ux > 0 for all m. Since Kb(x, t) <

W(x, t; (b', bn), 0), the same estimates can be repeated here.
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Now, if b = (i/,0, s) E V, define

Fm = {y = (y'Ap): [y' - b'\ < 7—1, \p - s\ < f^"1)},

Bm = Fm\Fm+3,    Um(x,t)=        Ky(x,t)dy,
Jßm

and consider the transformation

(x', xn, t) ~ (T<*-V - &0 + *, 7"(m-1)x„, 7"2(m"1)(*-*) + a).

Then inf jm um = inf j, t¿i > 0. Now

/f6(x,i) < Cxn(i - s)(r-"-2)/2|x - (6',0)r

for all (x,i), and (x,t) E Jm implies either ~/m+1 < |x - (6',0)| < 7"1 and 0 <

í - s < 72m or \x - (f,0)| < 7"1 and 12(m+1) < t-a < 72m. Hence

Kb(x,t) < c7-("+1)(m+1) min{(i - s)'1'2^ - (6', 0)1,

(t-8)1/2\x-{V,0)\-1,xn¡x'-l/\-1}.

Let 0 < e < 1 and X \ E E P(b). Then there exists mo such that for m > mo,

(2,i) £ P(b;e2 : e2) for all (x,t) E En Jm. Then for m>m0 and (x,t)6ÊnJm,

JJT»(M) < C7-(n+1)(m+1)eum(x,r.). Fix (x,i) € X6+ such that t - s > 1, then

um(i,i) < Cxn(volume of Bm) = C7(n+1)(r"-1)xn.

Hence REnjmKb(x,t) < Ce, and so E is semithin at b.

3. Nonsemithin sets.

Proposition 3.1 (cf.  [10, Proposition 3.1]). Let {(ym,tm)} converge
tob E H within P(b;a). Then for any ß > 0,(j^=1{(x,tm) E X: \x-ym\2 < ßtm}

is not semithin at b.

PROOF. Let y¿,m denote the ith coordinate of ym and fix (z, r) E X. Then there

exists mo such that for all m > mo, tm < r and \fßtm < 6n/4 < bn/2 < yn,m. Put

Em = {(x,tm) E Rn x R+ : |x - ym\2 < ßtm}.

Then Em c X for all m > mo, and it suffices to prove that \Jm>m Em is not

semithin at b. It is easy to see that Kb(x,tm) > Ctmn for all (x,tm) E Em,

and R.Em 1 dominates the solution to the Dirichlet problem on the semi-infinite slab

{(x, t) E X: t > tm} corresponding to the characteristic function of Dm = {y E

Rn:\y-ym[2<ßtm}. Then

R^.r}>_Clr-ur''iB^{-^}{i-^(-^y)}äy,

and easy estimates give

liminftmn/2RErnl(z,r)>0.
771—* OO

Hence, REmKb(z¡r) > C > 0, which implies that E is not semithin at b.
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PROPOSITION 3.2.   Let {(y'm,yn,m,tm)} be a sequence of points in P(b;a : ß)

converging to b = (b', 0, s) EV. For each m, let

Em = {(x,tm + yl¡m) E X: oyn,m < |x - (y'm,fl)\ < vyn,m, \x' - y'm\ < 8xn},

where 0 < o < v(l + 82)~1^2 and a + w > 0. Then Um=i Bm is not semithin at b.

PROOF.  Fix a point (z,r) E Xb+, and for each m let Tm = tm + wyn,m ajl^

Dm = {x: (x,Tm) E Em}. Then for sufficiently large m, s < Tm < r and

REml(z,r)> f    G(z,r;x,Tm)
JDm

dx.

'<ryn,

which dominates

Now, put vi = i/(l + 82)^ 1/2. Then |x' - y'm[ < 8oyn,m, cryn,m < xn < viyn,m,

implies x E Dm. Hence, R,Eml(z,r) dominates

c /  lsm-z|2 + c<ml ,., f-l.       ( (*\l,

v^^s—»-.» p"iu.. v-^y—y]"""
rt  n+1   -1    I 1 /      aznyn,m \ I
Cyn+myn,m 11 -exp I—j^f-j I •

Hence

liminfy-£+1>A£ml(¿,r)>0.
m—>oo

Now, for all x E Dm, C^y2^ < Tm - s < Cy2¡m, oyn,m < \x - (y'm,0)[ <

(1 + 82)V2Xn, and |x - (&',0)| < Cyn,m. Hence, Kb(x,Tm) > Cyñ,(m+1), and so

liminfm^oo REmKb(z,r) > 0.

4. Harnack inequalities. In [10], a Harnack inequality in which the limiting

behavior of the Harnack constant is known was obtained for positive solutions of

the heat equation on an infinite slab. Similar results are obtained in this section for

solutions on the semi-infinite slab. The following technical results will be useful.

LEMMA 4.1.   (i) For any p > 1,

|2/-6|2-p-1|x-&|2>-(p-l)-1|x-y|2

for allb,x,yERn.
(ii) // p > 1 anda< pß, then pß(l - e~aX/P) > a(l - e~0x) for all A > 0.

PROOF. The inequality in (i) is equivalent to

p(p - l)|y - 6|2 + p|x - 2/|2 >(/>-1)1*-&I2-

This follows from the triangle inequality and the fact that p(p — 1)72 + p82 >

(p-l)(7 + ¿)2forall7,¿eR.

PROPOSITION 4.2. (i) For each p > 1, there exists 6(p) > 0 such that for any

nonnegative Borel measure p on H and t > 0,

IKb(x, t) dß(b) > 6(p)IKb(y,t)dß(b)

if \x - y[2 < (p - l)2t and p~xyn < xn < pyn. Furthermore, lim^i 6(p) = 1.



692 B. A. MAIR

(ii) For each 0 < p < 1, there exists <p(p) > 0 such that for any nonnegative

Borel measure p on H and t > 0,

f Kb(x, pi) dfi(b) < <p{p) Í Kb(y, t) dii(b)    if |x - y[2 < p~x(l - p)2t

and pyn < xn < p~xyn. Furthermore, limp_»i ¡p(p) = 1.

PROOF. Let p > 1 and b E H. Then, by using Lemma 4.1,

Kb(x,t) > p-("+4)/2exp((l - p)/4)Kb(y,t).

The result in (ii) follows from (i) by interchanging x and y, replacing t by pt, and

setting <p(p) = {e(p~1)}-1.

PROPOSITION 4.3.   (i) For each 0 < p < 1 there exists Oi(p) > 0 such that for

any nonnegative Borel p onV and r > 0,

J' Kb(c,r + p(l-p)yl)dii(b)>eí(p) jKb(y,r)dfi(b)

if p1/2yn < |x-(y',0)| < yn, [x'-y'\ < (l-p)xn- Furthermore, limp_i0i(p) = 1.

(ii) For each p > 1 there exists <pi(p) > 0 such that for any nonnegative Borel p

on V and r > 0,

j Kb(x, r-p(p- l)y2n) dß(b) < <pi(p) JKb(y,r) dpt(b)

ifyn < \x-(y',0)[ < p1/2yn, [x'-y'[ < (p-l)yn- Furthermore, limp^i<pi(p) = 1.

PROOF. Let b = (b',0, s) E V, s < t, s < r. Then

t^-^("+2)/2-{î^)(M^*-ll-(6'0)|2)}'

where r = (r — s)/(t — s).

To prove (i), put t = r + p(l — p)y2 and assume the conditions on x and y in (i)

are satisfied. Then 0 < r < 1, and so

!v^£_iI._tf>_lî^Ji£>_(iz#Ij.
t ' '~        1-T-       l-rn

Hence

Kb(x, t)/Kb(y, r) > {p/(l + (1 - p))2}1/2t/>(r),

where

^(A) = A<"+2>/2 exp { ̂ —^ [i1^ - (1 - p)2] } ,    for A > 0.

Then

Put
Ai = {(n + 2)2p2(l - p)2 + I}1'2 - (n + 2)p(l - p).

Then

^(A) > ^(Ai) > Ain+2)/2exp (-^) .    for a11 x > 0-
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Put

^{ï^fV-M-^)-
To prove (ii), put t = r — p(p - l)y2 and assume x and y are as in the state-

ment of (ii). Put oj = 1 + (p - l)2. Then p_1/2xn < yn < w1/2xn, r > 1, and

Kh(x,t)/Kb(y,r) < p1/^), where

}^-H)~}}-
for t > 1. Then x'(r) = 0 implies r2 - 2p(p - l)(n + 2)wt -oj = 0. Put

n = p(p - l)(n + 2)w + {p2(p - l)2(n + 2) V + c}1/2.

Then x attains its supremum at ri. The result in (ii) follows by putting ipi(p) =

P1/2x(ri).

5. Semifine and parabolic limits. The precise Harnack inequalities obtained

in §4 will be used here to prove the equivalence of semifine and parabolic limit at

each point of Bo = 5\(R"_1 x {0} x {0}) for positive solutions of the heat equation.

Theorem 5.1 (cf. [10, Theorem 6.2]). Letu>0 be a solution of the
heat equation on X having parabolic cluster value A at b E Bo- Then

semifine liminf u(b) < A < semifine limsupu(6).

Consequently, for any b E Bo,

fine limu(b) = A =>• semifine limu(6) = A •<=>• parabolic limu(b) = A.

PROOF. Let b = (b',bn,0) E H. Since JvKy(x,t)dp,(y) —► 0 continuously on

H (cf. [15, p. 72]), it suffices to consider u(x,t) = J Ky(x,t)dp,(y) for some Borel

measure p on H. Assume furthermore that A < co. Then there is a sequence of

points {(ym,tm)} in a parabolic region P(b;a) converging to b such that for all

8 > 0, there exists M(8) such that A — 8 < u(ym,tm) < A + 8 for all m > M(8).

For each p > 1 and m E N, define

Em,p = {(x, ptm) ■ \x - ym\2 < (p - l)2tm}.

Now, choose mo > M(8) such that p2tm < (bn/2)2 < t/2)m for all m > mo- Then

P_12/n,m < xn < pyn,m if \x - ym\2 < (p ~ l)2tm. Hence by Proposition 4.2,

u(x, t) > 6(p)u(ym, tm) > A - 2(5 for all m > mo and (x, t) E Em^p, for some p, since

6(p) —» 1. Therefore u > A — 28 on the set Um>m0 Em,p, which is not semithin

at b, by Proposition 3.1. Hence A < semifine limsupu(6). The other inequality is

proved in a similar manner.

To complete the proof in case b E H, consider A = co. Fix p > 1 and let

{(ym,tm)} converge to b in P(b;a) and u(ym,tm) —> co. Then for any 8 > 0,

choose M(8) such that u(ym,tm) > 8[6(p)]~1 for all m > M(8). Now, choose

mo > M(8) as above. Then u > 8 on a set which is not semithin at b.

Now assume b E V D Bo- It is easy to show that JHKy(x,t)dp,(y) -» 0 con-

tinuously on V n Bo-   Hence it suffices to consider u(x,t) = JKy(x,t)dp(y) for

x(r) = r(n+2)/2expi
1

4p(p-l)
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some Borel measure p on V. Let {(ym, tm)} converge to b in P(b; a : ß) such that

u(ym, tm)     ► A.

Em,p = {(x,tm + p(l- p)y2n<m): p1/2yn,m <\x- (y'm,0)[ < yn,m,

\x'-y'm\<(l-p)xn}.

Then Proposition 4.3 implies that u(x,t) > Oi(p)u(ym,tm) for ail m e N and

(x, t) E Em. Now, p{l + (1 - p)2} < 1 and a + p(l - p) > 0. Hence Proposition 3.2

implies that |Jm>m Em,P is not semithin at b.

For each p > 1, m E N define

Fm,p = {(X,tm - P(P - l)yl,m)- yn,m < \x - (y'm,0)\ < p1/2yn,m,

\x'-y'J<(p-l)xn}.

Then u(x,t) < <pi(p)u(ym,tm) for ail (x,t) E FmtP. Now, there exists po, 1 < po <

2, such that 1 < p < po implies 1 + (p - l)2 < p and a — p(p - 1) > 0. Hence,

Proposition 3.2 implies that (Jm>m0 ^m.p ^s no* semithin at b if 1 < p < po. The

proof is completed as above.

Next, an example of a positive solution is given which has neither fine, semifine,

nor parabolic limits at any point of B \ Bo- Hence there is no advantage in trying

to extend the above result to points on B\Bo-

EXAMPLE 5.2. Let u be the solution represented by Lebesgue measure restricted

to //. Then
2       /•i„/2v/t        2

u(x, t) = —¡= j e~r dr.
V^/o

For each 0 < t < 1, let aT be such that (2/y/ñ) J^T e~r dr = r. For each e > 0

and A > 0, [u(x,t) - A| > e iff t < u(x, t) < w, where r = max(A - £,0) and ui =

min(A + e, 1) iff 2tsJI < xn < 2oj^/1. Hence, by Proposition 3.2, {(x, t) : [u(x, t) —

A| > e} is not semithin (hence not thin) at each b E B\Bo- Also, it is easy to see

that u does not have a parabolic limit at points on B\Bo-

6. Parabolic and fine limits almost everywhere. In §5 it was proved that

for positive solutions semifine and parabolic limits are equivalent at each point of

Bq. This section shows that fine and parabolic limits are equivalent except on a

set of measure zero for positive solutions.

LEMMA 6.1. Let E C B and W C X be such that for each b E E,W contains a

truncated parabolic region with vertex b. Then X\W is thin at almost every b E E.

PROOF. Let Ex = EC\H and E2 = E n V. As in the proof of [10, Lemma 5.1],
it suffices to assume that Ei and E2 are compact, d\st(Ei,V) > 0, dist(E2,H) > 0,

Wi 3 \Jb€El P{b; a : 6), and W2 D [JbeE2 P{b] r : v) n {(x, t) : xn < 8}.

Now, define Gi = (X\Wi)il{(x,t):t<8} and G2 = (X\W2)n{(x,t): xn < 8}.
Then, it suffices to prove that G i is thin at a.e. b E Ei. To do this, let it, be the

solution of the Dirichlet problem on X corresponding to the characteristic function

of Ei. Then for any 0 < A < 1 and i = 1,2, the set F¿(A) = {(x, t)EX: u¿(x, t) <

A} is thin at a.e. b E Ei. Let D¿ = {6 E Et: (x,t) E P(b;a)}, i = 1,2. Then

(x,i) E Gi => E, c B \ Dz, Kb(x,t) > Ct-nl2 if b E Du and Kb(x,t) > Cx~{n+1)
if b E D2, where C is independent of (x, t) and 6. By assuming that dist(Wi, V) > 0,
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it follows that the volume of Di > Ctnl2. Also, in case of D2, choose a = t : v

such that t2(1 + V2) < 1; then

{(b',0,s): t(1 + v~2)x2n <t-s< r^x^Xn > v\x' - b'[} C D2.

Hence the volume of D2 > Cx™+1. Consequently, Ui(x,t) < 1 - C < 1.

The main result of this section can now be obtained by suitably modifying the

proof of Theorem 5.2 in [10].

THEOREM 6.2. /// has parabolic limit il>(b) at each bE E, then fine lim f(b) =
yj(b) for a.e. bEE.

7. A local Fatou theorem. Theorem 9.2 in [10] already gives a Carleson-type

local Fatou theorem for sets which touch the horizontal part of the boundary B.

So to establish the analogue of Theorem 9.2 of [10] here, one only needs to consider

the vertical boundary V.

By using Theorem 1.1, Moser's Harnack inequality (cf. [12]), and the nonthin

set constructed in [9], the next result can be proved by an obvious modification of

Theorem 4.2 in [9].

THEOREM 7.1. Let b E V and u > 0 be a solution of the heat equation on

TP(b;r : 8,p). Let a > r and ß > 8. If u has limit 0 along the fine filter 7(b)
restricted to TP(b; a : ß), then u(x, t) —► 0 as (x, t) —> b within TP(b; a : ß).

LEMMA 7.2. Let E C V and W C X be such that for each bE E,W contains a

two-sided parabolic region with vertex b. Then for a.e. bE E, W contains two-sided

parabolic regions of arbitrary aperture with vertex b.

PROOF. It suffices to assume that dist(£, //) > 0 and W = \Jb€E TP(b; a : ß, 8)

for fixed a,ß,8 > 0. Choose mo such that 1/mo < 8. Fix v, p > 0. For each

m > m0, define Em = {b E E: TP(b;u : p, 1/m) C W}. Let D be the set of

points of strong density of E. As in [10, Lemma 9.1], it suffices to prove that

D C Um>m0 ^'», If i> = (b',0,s) £ Em for m > mo, there exists a sequence

{(xm, tm)} contained in TP(b; v : p)\W such that |xm - (V, 0)| < 1/m.

Define

Em = {(y',0,p): |p - tm[ < ax2nm, \y' - x'm[ < ßxn,m}.

Then Fm D E = 0 for all m > mo- Now, (xm,tm) E TP(b; v : p). Hence \tm - s\ <

v(l + p2)x2 m and |x^ — b'\ < pxn,m. Therefore, y — (y',0,p) E Fm implies that

|p - s[ < [a + u(l + p2)]x2 m and [y' - b'[ < (ß + p)xn,m. Hence the rectangle Fm

is contained within another rectangle of comparable volume having center b.

THEOREM 7.3 (CF. [10, THEOREM 9.2]). Let E C B andW be an open

subset of X which contains a region Wb for each bEE where Wb is a parabolic

region with vertex b for each b E E n H and Wb is a two-sided parabolic region with

vertex b for each b E EflV. Let u be a solution of the heat equation on W which is

either upper or lower bounded on Wb for each bEE. Then u has finite two-sided

parabolic limits a.e. on E.

PROOF. It suffices to assume E compact C V fl Bo, a,ß,8 fixed and Wb =

TP(b; a : ß, 8) for all b E E, W connected and u > 1 on W. By suitable truncations

of W by horizontal planes, it is seen that condition (**) in [10, p. 592] is satisfied
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by W. It is also clear that there is a constant t > 0 such that the plane xn = r

intersects W^ for all bEE. Let A = W n {(x,t): xn = r}, and let /„ denote

Lebesgue n-dimensional measure on A.

Define the measure r on X by r = u_1/n. Then r is supported on W and

s = r\w = t. Clearly, r(X) < co, and the functions 1 and u axe s-integrable. Also,

r is a reference measure on W and on X (cf. [10, Theorem 9.2]). For each bE Bo,

define Q(b) = J Kb dr as in [10]. Then 0 < Q(b) < co, and Q is continuous.

Define 0: Bo —> ¿?rPQ — {u > 0: u is minimal solution, Judr = 1}, by

fi(6) = Q(b)~1Kb- Then f2 is continuous and injective. It does not seem that Í7 is

a homeomorphism (cf. [10, Theorem 9.2]); however, the representing measure for

the constant function 1 on X can still be related to Lebesgue measure on Bo as

follows.

Let v be the measure on Bq defined by du(b) = Q(b) db. Then u(Bn) =

JBo Q(b) db = r(X) by Fubini. Let Vi = v o fi"1. Then

/       k(x,t)dui(k)= i   Kb(x,t)db=l.
JBr(x) Jb0

Hence vi is the representing measure for 1 on Br(x). Now, from Lemmas 6.1 and

7.2 there is a set Ei C E such that E\E\ is of Lebesgue measure zero, X \ W is

thin at every b E Ei, and for each b E Ei, W contains two-sided parabolic regions

of arbitrary aperture with vertex b. The proof is completed as in [10, Theorem 9.2]

by using Theorem 7.1; and the reduction theorem and the local fine limit theorem

in [10].

References

1. H. Bauer, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Math., vol.

22, Springer-Verlag, New York and Berlin, 1966.

2. M. Brelot and J. L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble)

13 (1963), 395-415.

3. A. P. Calderón, On the behaviour of harmonic functions at the boundary, Trans. Amer.

Math. Soc. 68 (1950), 47-54.

4. L. Carleson, On the existence of boundary values for harmonic functions in several vari-

ables, Ark. Mat. 4 (1961), 393-399.

5. E. B. Fabes, N. Garaofalo and S. Salsa, A backward Harnack inequality and Fatou theorem

for non-negative solutions of parabolic equations, Univ. of Minnesota Math. Rep. 83-117.

6. B. F. Jones, Jr. and C. C. Tu, Non-tangential limits for a solution of the heat equation

in a two-dimensional LipQ region, Duke Math. J. 37 (1970), 243-254.

7. R. Kaufman and J.-M. Wu, Parabolic potential theory, J. Differential Equations 43 (1982),

204-234.
8. J. T. Kemper, Temperatures in several variables: kernel functions, representations, and

parabolic boundary values, Trans. Amer. Math. Soc. 167 (1972), 243-262.

9. A. Koranyi and J. C. Taylor, Fine convergence and parabolic convergence for the Helm-

holtz equation and the heat equation, Illinois J. Math. 27 (1983), 77-93.

10. B. A. Mair, Fine and parabolic limits for solutions of second-order linear parabolic equa-

tions on an infinite slab, Trans. Amer. Math. Soc. 284 (1984), 583-599.

11. B. A. Mair and J. C. Taylor, Integral representation of positive solutions of the heat

equation, Lecture Notes in Math., Springer-Verlag, vol. 1096, pp. 419-433.

12. J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl.

Math. 17 (1964), 101-134.



BOUNDARY BEHAVIOR OF SOLUTIONS OF THE HEAT EQUATION 697

13. J. C. Taylor, An elementary proof of the theorem of Fatou-Naim-Doob, 1980 Seminar on

Harmonic Analysis (Montreal, Que., 1980), Cañad. Math. Soc. Conf. Proc, vol. 1, Amer.

Math. Soc., Providence, R. I., 1981, pp. 153-163.
14. C. C. Tu, Non-tangential limits of a solution of a boundary-value problem for the heat

equation, Math. Systems Theory 3 (1969), 130-138.

15. D. V. Widder, The heat equation, Academic Press, New York, 1975.

Department of Mathematics, The Pennsylvania State University, Mont
Alto Campus, Mont Alto, Pennsylvania 17237


