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THE DIVERGENCE THEOREM1

W. F.PFEFFER

ABSTRACT. We define a well-behaved multidimensional Riemann type in-

tegral such that the divergence of any vector field continuous in a compact

interval and differentiable in its interior is integrable, and the integral equals

the flux of the vector field out of the interval.

1. Introduction. The existence of a derivative which is not Lebesgue integrable

was probably the main driving force behind the work of Denjoy (1912) and Perron

(1914) who, independently and by different means, defined an integral which inte-

grates the derivative of any differentiable function. A corresponding local result in

higher dimensions should be the integrability of the divergence of any differentiable

vector field. It is remarkable that among the many higher dimensional generaliza-

tions of the Denjoy-Perron integral produced during the last 70 years, none lives up

to this requirement; we quote [K2 and Mc] as the most recent examples. Notable

exceptions are the papers [Mi and M2] of J. Mawhin, which came to the author's

attention only after the major bulk of this work had been completed. However,

Mawhin's integrals lack some standard properties one normally expects of any in-

tegral; e.g., the integrability over each member of a finite division of an interval

does not imply integrability over the whole interval (for more details see 7.2 and

7.3, and also the "Added in the proof" section).

Elaborating on the ideas of Henstock and Kurzweil (cf. [H3 and Ki]), we define

a Riemann-type integral over m-dimensional compact intervals which has all the

usual properties of integrals, and for which a very general divergence theorem holds

(Theorem 5.4). For nonnegative functions the integral coincides with the Lebesgue

integral, and for m = 1 it is equal to the Henstock-Kurzweil integral of [H3] and

hence also to the classical Denjoy-Perron integral (see [LW]).

Our results are achieved by employing partitions of a Vitali type. Since the

regularity of an interval is by no means a hereditary property, the Vitali condition

cannot be applied directly (as in [Mi and M2]). Rather, we have to consider a

relative Vitali condition with respect to a finite family of planes parallel to the

coordinate axes. Roughly speaking, an interval A is regular relative to a plane H

intersecting A if A n H is absolutely regular in H and the diameters of A and Ail H

are equal. In the figure below neither A nor B is absolutely regular, but A is regular

relative to H while B is not.

As the use of intervals precludes all but trivial formulations of the Stokes theorem

(see 6.2), global results are not accessible in the present setting. On the other hand,
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B

H

it seems that a reasonably general Stokes theorem for piecewise linear manifolds

can be obtained by our method if convex linear cells are used instead of intervals.

Such a change is nontrivial and leads to problems of a different nature than those

discussed in this paper (cf. 6.3). Whether a satisfactory Stokes theorem can be

established for differentiable manifolds was an open problem when this paper was

written. Since then two different solutions have been obtained independently in

[JK and P2].

The present paper is organized as follows. After some preliminary definitions and

lemmas in §2, the integral is defined in §3, where its basic properties are proved.

§4 deals with the relationship to the Lebesgue integral and resulting convergence

theorems. The divergence theorem is proved in §5. In §6 a modest proposition

about the change of variable is established. §7 is devoted to an informal discussion

of some alternative definitions of the integral.

2. Preliminaries. By R and R+ we denote the sets of all real and all positive

real numbers, respectively. All functions in this paper are real-valued, and the

constant functions are tacitly identified with the elements of R. Often, a function

on a set A and its restriction to a set B C A are denoted by the same symbol. The

algebraic operations, partial order, and convergence among functions on the same

set are defined pointwise.

Throughout this paper, m > 1 is a fixed integer, and Rm denotes the Tri-

dimensional Euclidean space. If x = (£i,..., £m) is an element of Rm, we let |a;| =

max{|£i|,..., |£m|}. In Rm we use exclusively the metric induced by the norm \x[.

The distance between a point x E Rm and a set E C Rm is denoted by dist(x, E).

If E C Rm, then E°, dE, d(E), and \E\ denote, respectively, the interior, bound-

ary, diameter, and outer measure of E. We note that when no further specification

is given, the words "outer measure", "measure", and "measurable", as well as the

expression "almost all", always refer to the m-dimensional Lebesgue measure in
Rm.

Let A; be an integer with 0 < fc < m — 1. By a plane, or more precisely a k-plane,

we mean a fc-dimensional linear submanifold of Rm which is parallel to fc distinct

coordinate axes. If E is a subset of a fc-plane and fc > 1, we denote by \E\k the

fc-dimensional outer Lebesgue measure of E. If E c Rm is finite, then |2?|o denotes

the number of elements of E.

An interval is a nondegenerate compact rectangle in Rm, i.e., the set A =

m , bi], where a¿, bi E R and Oj < bi, i = 1,..., m. If ¿>i - ai = ■ ■ ■ = bm-ar¡

then the interval A is called a cube.
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Let A be an interval and let M be a family of planes. The absolute regularity

of A is the number r(A) defined by r(A) = \A[/[d(A)]m (cf. [S, Chapter 4, §2,
p. 106]). Clearly, 0 < r(A) < 1, and r(A) = 1 if and only if A is a cube. The
regularity of A relative to U is the number r(A; U) defined as follows: if M = 0, then

r(A; X) = r(A); if M consists of a single fc-plane H, then r(A; M) = \AnH\k/[d(A)]k
whenever A n H / 0, and r(A; )/) = r(A) otherwise; finally, if V. ̂  0 is arbitrary,

then

r(A; M) = sup{r(A; {H}) : H E X}.

2.1. For any interval A the following conditions hold:

(i) If M is a family of planes, then r(A) < r(A; M) < 1. In particular, r(A; M*) <
r(A; M) for each family îi* C U.

(ii) If H and H* are planes, H* C H, and A n #* ^ 0, then r(A, {#}) <
r(A, {if*}). In particular, r(A; {H*}) = 1 whenever H* is a 0-plane.

Indeed, if fc and fc* are, respectively, the dimensions of H and H*, then

r(A) - -H_ < l^ng|fc[d(A)]"-* _
nAj"[d(A)]-- [d(A)]™ -HAW)

|Anff'|fc.KA)]fc-fc- _

-[cpjp--n'A {H}).

We say that intervals A and .£? overlap whenever A° n B° ^ 0. A division of

an interval A is a finite family of nonoverlapping intervals whose union is A. A

partition of an interval A is a set {(Ax, xi),..., (Ap, xp)} such that {Ai,..., Ap} is

a division of A, and x¿ e A¿, i = 1,... ,p.

2.2. DEFINITION. Let P = {(Ai,xi),...', (Ap,xp)} be a partition of an interval

A, let e and Ô be functions on A, and let M be a family of planes.

(i) If d(Ai) < 8(xí), i = 1,... ,p, we call P 8-fine.

(ii) If r(Af, X) > e(xi), i = 1,... ,p, we call P an (e, U)-partition.

By the above definition we control the size and shape of the intervals of a par-

tition. Part (i) is due to Henstock, Kurzweil, and McShane; part (ii), which plays

an essential role when m > 2, is new (cf. [Mj, Definitions 5 and 9]). The family

of all ¿-fine (e, .^-partitions of an interval A is denoted by P(A;e, )i;8). In view

of 2.1(i), we have P(A;e,M;8) C P(A;e*,M*;8*) whenever e* < e, M C #*, and
8<6*.

We close this section by proving a pivotal proposition about the existence of a

¿-fine (e, )/)-partition.

2.3. LEMMA. Let A be an interval and let e < 1. Then there is a division V

of A such that r(D) > e for each D E D-

PROOF. If A = H£li [a¿> &»]> ^ c% — b% ~ a%, i = 1,..., m, and choose an a > 0
so that [(1 - a)/(l + a)]m > t. Find integers p¿ > 1 with |(ci/c¿)(p¿/pi) - 1| < a,

and set
771    r

Ui+ji—,di + (ji + í)-1Ajl—Jm — 11
1=1

Pi Pi



668 W. F. PFEFFER

where ji = 0, ...,p, — 1 for i = l,...,m.   Clearly, the intervals Ajl,,,jm form a

division of A, and if Ck/pk = max{ci/pi,..., cm/pm}, then

(\ m  m    /     \ / \ m  m    / \

t) n (*)-(!*) n(f£)
/l-o\m

>- > £.
-\l + aj

2.4. PROPOSITION. Let A be an interval. Then P(A;1-8,0;8)^0 for each
8: A^R+.

PROOF. Let S be the family of all intervals B C A with P(B; l-8,0;8) = 0,
and assume that A Ed. Using 2.3, find a division di of A such that d(D) < 2_1 and

r(D) > 1-2"1 for each D E Di. If for every D E Di there is a PD E P(D; 1-8,0; 8),
then contrary to our assumption, P = (Jeep! Pd belongs to P(A; 1 -8,0; 8). Thus

some Di 6 Vi belongs to B. Using 2.3 again, find a division D2 of Di such that

d(D) < 2~2 and r(D) > 1 - 2~2 for each D e ft, and as before show that
some D2 E D2 belongs to S. Proceeding inductively, we construct a decreasing

sequence {£>„} in B with d(Dn) < 2~n and r(Dn) > 1 - 2"", n = 1,2,.... Now if

{xo} = f)n=i Dn and 2""° < <S(x0), then {(£„„, x0)} belongs to P(Dno; l-8,0;8),
a contradiction.

2.5. COROLLARY. Let s and 8 be functions on an interval A, and let M be a

family of planes. Then P(A;e,'H;8) ^ 0 whenever e < 1 and 8 > 0.

Except for §7, we shall use (e, )/)-partitions only when £ is a constant function

with 0 < £ < 5, and the family M is finite. It will be convenient to call a regulator

each pair (e, M) where e E (0, ^] and H is a finite family of planes.

3. Definition of the integral and its basic properties. If / is a function

on an interval A, then for each partition P = {(Ax, xi),..., (Ap, xp)} of A we set

o(f,p) = J2f&)\u
i=l

3.1. DEFINITION. Let / be a function on an interval A. We say that / is

integrable on A if there is a real number / with the following property: given a

regulator (e,)l), we can find a 8: A —► R+ such that \o(f, P) — I[ < e for each

PEP(A;e,U;6).
It follows from 2.5 that the number / of the previous definition is determined

uniquely by the integrable function /. It is called the integral of / over A denoted

by ¡a /■ The family of all integrable functions on A is denoted by R(A). It is clear

that each function / on A which is integrable in the sense of [Mc, §1.6] belongs to

£(A), and that JA f is equal to the integral defined in [Mc, ibid.]. Moreover, the

two integrals coincide when m = 1. Some motivating remarks regarding Definition

3.1 are given in §7.

3.2. PROPOSITION. If A is an interval, then P(A) is a linear space, and the

map f t-> f  / is a nonnegative linear functional on P.(A).

The proposition is a direct consequence of Definition 3.1.
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3.3. LEMMA. Let f be a function on an interval A. Then f E %(A) if and only

if given a regulator (e, H), there is a 8: A —> R+ such that [o(f, P) - o(f, Q)\ < e

for each P,Q E P(A;e,)i;8).

PROOF. As the converse is obvious, suppose that / satisfies the condition of the

lemma. For n = 1,2,..., we can find 8n : A —> R+ such that \o(f, P) - o(f, Q)\ <
2~n for every P,Q E P(A;^,0;8n). Replacing each 8n by min{8i,... ,8n}, we

may assume that b\ > 82 > ••-. Using 2.5 to select a Pn E P(A; \,0;8n), we

obtain a Cauchy sequence {o(f, Pn)}- Let / = limcr(/, Pn), and choose a regulator

(£, )(). Then there is an integer fc with 2~k < e/3 and [o(f,Pk) - I[ < e/3, and

there is a 8: A —► R+ such that 8 < 8k and [o(f,P) - o(f,Q)\ < e/3 for each
P, Q E P(A; £, M; 8). Use 2.5 to select a Q E P(A; \, 0; 8), and observe that this Q

belongs to P(A;e,H;8) n P(A; \,0;8k). Thus for each P E P(A;e, U;8), we have

|<r(/, P)-I\< \o(f, P) - o(f, Q)\ + [o(f, Q) - o(f, Pk)\ + [o(f, Pk) - I\

< e/3 + 2~k + e/3 < e,

and so / is integrable.

3.4. PROPOSITION. Let f be a function integrable on an interval A. Then f
is integrable on each subinterval of A.

PROOF. Let B be a subinterval of A, and let (e, U) be a regulator. By 3.3, there

isatS: A -> R+ such that [o(f,P*)-o(f,Q*)\ <e for each P*,Q* E P(A;e,H;8).
Choose intervals B\,...,Bn so that {B,Bi,...,Bn} is a division of A, and use

2.5 to find Si E P(B{;e,ri;8), i = l,...,n. Now if P,Q E P(B;e,U;8), then
p* = p u Ur=i Si and Q* = Q U Ut"=i & belong to HM e, U; 8). Hence

\o(f,P)-o(f,Q)[ = \o(f,P*) -o(f,Q*)\ < e,

and the proposition follows from 3.3.

3.5. LEMMA. Let B and D be overlapping intervals, and let U be a finite
family of planes such that H n H* E M for each H,H* E íi with H D H* ^ 0. //
3D C (J X and D n H £ 0 for each HeU, then r(B; )i) < r(B nD;)i).

PROOF. Let M0 be the family of all planes in {H E M: B n H ^ 0} which are
minimal with respect to the inclusion. It follows from 2.1 that r(B; Mo) — r(B; U).

Let B = ní^i[a¿i^]> D = ni^it^'Ä]' and let H E Ho- By symmetry, we may
assume that

H = {(ii,..., U) e Rm: & = a,i = l,..., fc}

where 1 < fc < m and c¿ E [o,,6¿] fl [a¿,/?¿], i = l,...,fc. Suppose there is a

y = (ci,..., ck, nk+i,..-, nm) in (B-D)i)H. Then fc < m and r¡j E [o,-, bj]-[aj, ßf\
for some j > k. With no loss of generality, we assume that rfj < et,. As M is finite

and dD C \JX, the plane H* = {(&,...,&») € Rm: $ = a/} belongs to #,
and since H D H* ^ 0, so does H n H*. Now H f\ H* ^ H and the point

(ci,...,Cfc,Ofc+i,...,aj-i,aj,aj+i,. ..,am) belongs to BC\HC\H*; for a^ < r¡j <
aj and B° C\D° ^ 0 implies ct, < bj. This contradicts the minimality of H, and

we conclude that BnH = BnDnH. Consequently, r(B; UQ) < r(B n D; X0) <
r(Bf\D;M).
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3.6. PROPOSITION. Let f be a function on an interval A, and let D be a

division of A. If f E Z(D) for each D E D, then f E R(A) and JAf = Y,d&v Id /•

PROOF. Choose a regulator (e, X) so that \Jd€D dD c U # and H n H* E X for
each H,H* EX with HC\H* ¿0. Let n : A -+ R+ be such that n(x) < dist(x, H)
for each H E X and for each x E A - H. In particular, if D E D and x E A - D,

then n(x) < dist(z,D); for dD C \JX. Now given D E D, find a 8D: D -> R+
so that 8D < n and [o(f,P) - ¡D f\ < e\D\/[A\ for each P E P(D;e, X;8D). For
x E A set

8(x) = min{8o(x) : D E D, xE D},

and select a P E P(A;e,X;8). Let (B,x) E P, D E D, and B° n D° ^ 0.
Since 8 < n, we see that x E D and 5 n H = 0 for each H E X with x (¿ H.
Thus ß meets only those planes from X which meet D, and so by 2.1(i) and 3.5,

r(B C\D;X)> r(B; X) > e. It follows that

PD = {(BnD,x): (B,x)EP, B° n D °¿ 0}

belongs to P(D; e, X; 8d) for each D Ed. As o(f, P) = J^DeD °~ifi Pd), we have

a(f,P)-Y, f f ^E °(f,PD)- [ f <AiT,\D e.

4. The relationship to the Lebesgue integral, and its consequences. If

E C Rm is measurable, we denote by £(E) the family of all functions f on E for

which the finite Lebesgue integral (L) JE f exists.

4.1. PROPOSITION. Let A be an interval. Then Z(A) C Z(A) and jAf =

(L)lAf for each f E Z(A).

PROOF. Let / E Z(A) and £ > 0. There are functions g and h on A which
are, respectively, upper and lower semicontinuous, and such that g < f < h

and (L)JA(h - g) < e/2. Find a 8: A -> R+ so that g(y) < g(x) + e/2[A\
and h(y) > h(x) — £/2|A| for each x,y E A with \x - y\ < 8(x). Now let
P = {(Ai,xi),... ,(Ap,xp)} be a ¿-fine partition of A. By our choice of 8 we

have

(L)/t 9 - ^A - ffteMI < f(xl)[A[ < h(Xl)\Ai\

and since (L) JA g < (L) fA f < (L) fA h, we obtain

<

f(xi IAI - (L) /
Ja,

f <
2ÎÂ]+(V)f (h

JA,
9),

1,... ,p. Consequently.

o(f,P)-(L) í f
Ja i=l

f(xi)\Ai\ - (L) /
J Ai

Wfjfi-g)< e.
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We conclude that f E k(A) and fAf = (L) ¡A f.

4.2. COROLLARY.   Let f and g be functions on an interval A, and let f(x) =

g(x) for almost all x E A.  Then f E Z(A) if and only if g E P.(A), in which case

fAf = fA9-

As / - g is in £.(A), the corollary follows from 4.1 and 3.2.

4.3. LEMMA.   Let f be a function integrable on an interval A, and let (e, X) be

a regulator.  Then there is a 8 : A —► R+ such that

¿ f(xi)\Ai\ - í f
ëi Ja-

< £

for each {(Ai,xi),..., (Ap,xp)} in P(A;e,X;8).

PROOF. Find a 8: A -> R+ so that \o(f,P) - fAf\ < e/3 for each P E
P(A;e,X;8), and choose a partition {(Ai,xi),..., (Ap,xp)} in P(A;e, X;8). We

may assume that /(a;¿)|A¿| > Ja f f°r z ~ l,---,k, and /(x¿)|A¿| < JA. f for

i = fc +1,...,p, where 0 < fc < p. By 3.4 and 2.5, there are P¿ E P(Ai\e,X;8) such

that |cr(/, Pi) - fA f\ < e/3p, i = 1,... ,p. Since

p

P+ = {(Ai,xi),...,(Ak,Xk)}ö   (J   Pi,
i=k+l

k

P_ = {(Ak+i, xk+i),..-, (Ap, xp)} U (J Pi
i=l

belong to P(A; e,X;8), we have

fc

> o(f,P+)- f / = ¿ f(xl)[Al\- f   /+   ¿    o{f,PA-f   f
Ja ¿=1 jAi i=k+l L JA'

k

> ¿ f{xi)\Ai\ - /   /
Ja,

e(p - fc)

and similarly, using P_, we also have

p

>

Therefore

¿    f(xi)\Ai\- [  f
¿=fc+i Ja<

¿ f(xi)\M - f f
èi Jaí

ek

3p"

Let i1 be a function of subintervals of an interval A, and let x E A. Following

[S, Chapter 4, §2], we say that F is derivable at x if a finite lim[F(ß„)/|5il|]

exists for each sequence {Bn} of subintervals of A such that x E Bn, n = 1,2,...,

lim d(Bn) = 0, and inf r(Bn) > 0. If all these limits exist, then they have the same

value, denoted by F'(x) and called the derivative of F at x.
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4.4. PROPOSITION. Let f be an integrable function on an interval A, and let

F(B) = JB f for each interval B C A. Then for almost all x E A the function F is
derivable at x and F'(x) = f(x).

PROOF. We employ the technique introduced in [LW]. Let E be the set of all

x E A such that either F is not derivable at x, or F'(x) ^ f(x). It follows directly

from the definition of F'(x) that given x E E, we can find an a(x) > 0 such that

for each ß > 0 there is an interval B C A with x E B, d(B) < ß, r(B) > a(x), and

|[F(B)/|J5|] - f(x)\ > a(x). Fix an integer n > 2, and let En = {x E E: a(x) >

1/n}. Choose an £ G (0,1/n] and use 4.3 to find a 8: A —> R+, such that

"£\f{xi)\Ai\-F{Ai)\<

for each {(Ai, Xi),..., (Ap, xp)} in P(A; e, 0; 8). Let B be the family of all intervals

B C A such that r(B) > e, d(B) < 8(xB) for some xbeBP\ En, and |/(zß)|i?| -

F(B)\ > \B\/n. It is easy to verify that S covers En in the sense of Vitali. Thus by

[S, Chapter 4, Theorem (3.1)], there are disjoint intervals Bi,B2,... in S such that

[En — UfcLi P"k\ — 0- Using 2.5, it is easy to see that each {(Bi,xBl), ■ ■ ■, (Bs,xBs)}

is a subset of some P E P(A; e, 0; 8). Thus

J2\Bk[<nJ2[f(xBk)\Bk\-F(Bk)\<e
fc=i fc=i

for s = 1,2,..., and consequently

[En[ = En n (J Bk
fc=l

<£lß*l, <£.
fc=l

The arbitrariness of e implies that \En[ =0.   As E = \J^=2En, we also have

\E\ = 0.

4.5. COROLLARY.   Each integrable function on an interval A is measurable.

The corollary follows directly from 4.4 and [S, Chapter 4, Theorem (4.2)].

4.6. PROPOSITION.   Let f be a function on an interval A.  Then f belongs to

C(A) if and only if both f and |/| belong to P(A).

PROOF.   If / and |/| are integrable, then by 4.5, |/| is Lebesgue integrable.

Moreover, by 4.1 and 3.2,

(L) / l/l = lim(L) / min(|/|,n) = lim / min(|/|,n) < f \f\ < +oo,
Ja Ja Ja Ja

and so |/| E i(A). From this and 4.5, we see that / E Z(A). The converse follows

from 4.1.

4.7. COROLLARY.  Let f be an integrable function on an interval A. If JBf = 0

for each interval B C A, then f(x) = 0 for almost all x E A.

It follows from 4.3 that |/| E R(A) and JA |/| = 0.  Hence the corollary is a
consequence of 4.6 and 4.1.



THE DIVERGENCE THEOREM 673

4.8. COROLLARY. Let {/„} be an increasing sequence of integrable functions

on an interval A, and let lim JAfn < +00. If f = lim/„, then f E Z(A) and

JAf = lim JAfn.

Using 3.2 and 4.6, we can apply the monotone convergence theorem for the

Lebesgue integral to the sequence {/„ - fi}. Then the corollary follows from 4.1

and 3.2.

4.9. COROLLARY.  Let fn, g, and h be integrable functions on an interval A,

and let g < fn < h, n = 1,2,_   If f — lim/n, then f E Z(A) and JAf =
Urn JAfn.

Using 4.6, 4.1, and 3.2, it suffices to apply the dominated convergence theorem

for the Lebesgue integral to the sequence {/„ - g}.

We say that a sequence {Bn} of intervals converges to a set E C Rm whenever

E C Bn, n = 1,2,..., and each open set G C Rm containing E contains Bn for all

sufficiently large n's.

4.10. PROPOSITION. Let f be an integrable function on an interval A, let

B C A be an interval, and let H be a plane with B C\ H ^ 0. If a sequence {Bn}

of subintervals of A converges to BC\H, then lim JB  f = 0.

PROOF. In view of 4.2, we may assume that f(x) = 0 for every x E B D H.

Choose a regulator (e, £) so that H E £, dB C \J£, and E n E* E £ for each

E, E* E £ with E n E* ^ 0. By 4.3, there is a 8 : A -> R+ such that

¿ /(zOlAl - /   / < e

for every {(Ai,xi),..., (Ap,xp)} in P(A;e, £;8). With no loss of generality, we can

assume that 8(x) < dist(i, E) for each E E £ and for each x E A — E. Now given

a sequence {Bn} of subintervals of A converging to B (1H, we consider two cases.

(i) Let H = {x} be a 0-plane, and let G = {y E Rm : [x - y\ < 8(x)}. If Bn C G,
then {(Bn,x)} is a subset of some P E P(A;e,£;8), and we have \ JB  f\< e.

(ii) Let H be a fc-plane with fc > 1. Using 2.4 for m = fc, we can find a ¿-fine

(£, 0)-partition {(Ci,xi),..., (Ca,xs)} of the fc-dimensional interval B n H. Let

■n = min{¿(xi),... ,8(xs)} and

G = {y E Rm : dist(y, B n H) < r¡}.

If Bn C G, then using our choice of ¿, it is easy to construct a ¿-fine partition Q =

{(Di,yi),...,(Dq,yq)} of Bn so that {yi,...,yq} C {xi,...,xs}, and D3 DBnH
is a face of C¿ whenever yj = a?¿. From the choice of £ it is not difficult to deduce

that Q E P(Bn;e, £;8). Thus by 2.4, Q is a subset of a P E P(A;e, £;8), and we
have

g\ r H     r

\   >*£/\Jb„   I     j=1 Jdj
f \<e.

The next corollary follows from Propositions 3.4, 3.6, and 4.10.   We omit its

tedious but straightforward proof.
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4.11. COROLLARY. Let f be an integrable function on an interval A, and let

{Bn} be a sequence of subintervals of A such that Ufc*Li fl^Lfc Bn = f]fc*Li U^fc Bn-

If B is the closure of\Jkx>=1 H^Lfc Bn, then lim JB f = JB f if B is an interval, and

lim JB f = 0 otherwise.

5. The divergence theorem. Throughout this section, we assume that m > 2.

By x ■ y we denote the usual inner product of x, y E Rm, and we set ||x|| = \Jx ■ x.

However, notwithstanding the introduction of the Euclidean norm ||x||, the metric

in Rm is still that induced by the norm |x|.

If H is a fc-plane, fc > 1, and E C H is measurable with respect to the fc-

dimensional Lebesgue measure in H, we denote by (L¡t) JE f the fc-dimensional

Lebesgue integral of /: E —> R (provided it exists). If A is an interval, then using

the (m - l)-dimensional Lebesgue integral, we can define the flux of a vector field

v : dA —♦ Rm across dA in the direction of the exterior normal n as the surface

integral (Lm_i) JdA v • n (provided it exists).

The word differentiable is used in the sense of [R, Definition 9.11]. Thus dif-

ferentiability of a function implies its continuity and the existence of finite partial

derivatives, which need not be continuous. The ith partial derivative of a differen-

tiable function / is denoted by <9,/, i = 1,...,m. If f = (/i,..., fm) is a vector

field on an interval A, we call a divergence of v any function g on A such that

9(x) ~ Y^JILi difi(x) for each x E A° at which v is differentiable. Each divergence

of a vector field v is denoted by V • v.

In the following three lemmas we assume that A is an interval, and that v : A —►

Rm is a vector field such that a finite (Lm_i) JdB v-n exists for each interval B C A.

5.1. LEMMA. Let v be differentiable at x E A°. Then given e > 0, there is a

¿ > 0 such that

V ■ v(x)[B\ - (Lm-i) [    vn
JdB

for each interval B C A with x E B, d(B) < 8, and r(B) > e.

PROOF. It suffices to prove the lemma for v = (/, 0,..., 0). Let x = (£i,..., £m)

and y = (ni,..., nm) be in A. By our assumption there is a function w on A such

that limy-^x oj(y) = 0 and

m

/(y)^/(*>:=E[aí/(*)+^y)](*-6).
i=i

Now given e > 0, find 8 > 0 so that [u(y)\ < e2/2m whenever \y - x| < ¿. Let

B = [a, b] x C be a subinterval of A such that xE B, d = d(B) < 8, and r(B) > e.
For any t = (r2,..., rm) in C, set fa(t) = f(a, t) and fb(t) = f(b, t). Then

fit) - Hi) = [f(b,t) - f(x)] + [f{x) - f(a,t)]

= dxf(x)(b -a) + w(6, t)(b - 6) + oj(a, *)(& - a)
m

+ [w(b,t) - w(a,t)]£fa - Ci),

<e[B[
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and so

2m'

£2
<—d

m

|/»-r-M*)(»-«)l <£(*-*) + ;■;£ to-6
2    m

i=2

+ (m - 1) <e2d.

From this we obtain

(Lm-i ) /    v-n-V -v(x)\B
JdB

= |(Lro_i) /" [/6 - fa] - (Lm_i) /" dif(x)(b - a)
Jc Jc

< £2d|C7|m_i < £2cT = e2 jm _ c2 \B\

W)<e\B\

5.2.   LEMMA.  Let v be continuous at x E A, and let H be an (m — l)-plane

containing x. Then given e > 0, there is a 8 > 0 such that

(Lm_i) /    v
JdB

<£|-Bni7|m_i

for each interval B C A urc'iA x E B, d(B) < 8, and r(B; {H}) > e.

PROOF. Given £ > 0, find a ¿ > 0, so that [\v(y) - v(x)\\ < e2/2m whenever

y E A and \y — x| < ¿. Now if B is a subinterval of A, x E B, d(B) < 8, and

r(B; {H}) > e, then

=-2

(L,>-i) /    v'
JdB

n (Lm-l) /    [v — v(x)] ■ n
JdB

<^\dB\m-i

<e2[d(B)] m—l = £
2 \B Pi r7|m_i

<e|BnJT|m_i.
r(fl;{ff})

5.3. LEMMA. Lei fc be an integer, 0 < fc < m - 2, and let a: R+ —► R+ be a

decreasing function with (Li)/0 a < +00. Further, let H be a k-plane containing

a point x E A, and suppose that

\\v(y)-v(x)\\=0[a(\\y-x\\)\\y-x\\k+2-m]

as y approaches x. Then given e > 0, there is a 8 > 0 such that

(Lm-i) /    v-n <e\BC\H\k
JdB

for each interval B C A with x E B, d(B) < 8, and r(B; {H}) > e.

PROOF. Given £ > 0, there are M > 0 and n > 0 such that

IK2/)-«(x)||<Ma(||2/-x||)||2/-x||fe+2—

for each y E A with 0 < \y - x| < n. Set N = 47rm-2m(fc/2)+1M, and find ¿ > 0

so that 8 < n and (Li)/0      a < e2/N.   Let B be a subinterval of A, x E B,

d = d(B) < 8, and r(B; {H}) > e. If Ü = {y E Rm : \\x - y[\ < dy/m} and E is an
(m - l)-plane containing x, then the integral

J=(Lm_t)/      a(\\y-x\\)\\y-x\\k+2-mdy
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is independent of the choice of E; for both fi and the integrand are invariant with

respect to rotations about x. Since the integrand in / is a decreasing function of

||y — x||, we have

(Lm_i) /    v-
JdB

<

(Lm_i) /    [v-v(x)]-
JdB

M(Lm_x) [   Q(||y-x||)||y
JdB

lfc+2-m dy < 2mMI.

Changing to spherical coordinates about x in E, we see that

fd^/m

I < 27Tm-2(L1) /        a(t)tk
Jo

¡•dsjm 2

<2^-2(d^nu)jo   «<^d\

>kdt

fdy/rn

and hence

(Lm_i) /    v
JdB

:e2dk = e2^BS]H\t <e\BDH[k.
r(B;{H})

We are now in a position to prove the divergence theorem.

5.4. THEOREM. Let S-i = 0, and for k = 0,... ,m-1, let Sk be a countable
union of k-planes. Let v be a vector field on an interval A, and suppose that the

following conditions are satisfied:

(i) v is differentiable in A° - Sm-i;
(ii) v is continuous in A - 5m_2;

(iii) for each x E A — Sk, k = —1, ...,m — 3, there is a decreasing function

ax: R+ —> R+ such that (Li) /0 ax < +co and

\\v(y) - vix)\\ = 0[axi[[y - x\\)\\y - x\\k+3~m]

as y approaches x.

Then (Lm_i) JdA v ■ n exists, V • v E £(A), and JA V • v = JdA v ■ n.

PROOF. Let H be an (m- l)-plane and let x E AC\H. By (ii), the vector field v

on A fi H is measurable with respect to the (m — l)-dimensional Lebesgue measure

in H; for \H (1 Sm-2\m-i = 0. By (iii), there exist M > 0 and ß E (0,1] such that

IKy)ll<ll«(*)„ + IKy)-«(x)||
<|Hx)||+Mollit/-x||)||y-x||2-m

for each y E A with 0 < ||y - x|| < ß. If Q = {y E H: \\y - x|| < ß}, then using

spherical coordinates about x in H, we see that

(Lm—1 ) [ a
Jq

I(||y-x||)||2/-x||2-"l(ij/<27r
,m-2

(Li) / ax
Jo

< +00.

It follows that (Lm_i) JAnn \\v\\ < +oo, and since A H H is compact, we also

have /jawIM! < +oo- Thus a finite (Lm-i) fdBv ■ n exists for each interval

B C A, and the common assumption of Lemmas 5.1-5.3 is satisfied. In particular,

(Lm_i) JdA v ■ n exists and it is finite.
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Choose a regulator (e, X) so that d A C {] X and H n H* EX for each H,H* EX
with H n H* ¿ 0. For fc = 0,..., m - 1, let Sfc = {Hi, Hi,...} be a countable

family of fc-planes whose union is Sk, and let S = \Jk=o Sk- Replacing the Sfc's by

larger countable families of fc-planes, we may assume that the following conditions

hold:
(a) XcS;
(b)Sk-iCSk,k = 0,...,m-l;
(c) HnH* E S for each H,H* E S with HnH* ^ 0.

There exists a 8 : A —> (0,1] having the following properties:

(d) ¿(x) < dist(x, H) for each H E X and for each x E A — H;

(e) if x G A° - Sm_i, then

V • v(x)\B\ - (Lm-l ) /    u ■ n
JdB

<e\B\

for each interval B c A with x E B, d(B) < 8(x), and r(5) > £ (see 5.1);

(f) if x e #£ - Sk-i, fc = 0,..., m - 1, then ¿(x) < £2-n-V[|V • v(x)\ + 1] and

(Lm—1 ) /    v • n
JdB

<e2-n-L[Br\H£[k

for each interval B c A with x E B, d(B) < 8(x), and r(£?; {#£}) > £ (using

5.2 when fc = m - 1, and 5.3 otherwise). Now let d = max{d(A), 1}, and select

a P = {(Ai, xi),..., (Ap, xp)} in P(A; e, X; 8). We prove the theorem by showing

that

<r{V-v,P)-{Lm-i) [   v.
JdA

<edm(l + m).

To this end, let

oti = V ■ v(xi)\Al\ - (Lm-l)  /       V
JdAi

for z' = l,...,p, Xm = {xi,...,Xp}-S'm_i, and X% = {xt,... ,xp}n (Hg - Sk-i)
for fc = 0,..., m-1 and n = 1,2,.... If x¿ E Xm, then by (a), (b), and (d), x¿ E A°
and r(Ai) = r(At; X) > e; fox Ai n [j X = 0. Thus by (e),

J2   at<£   ̂ 2   |A¿| <£|A| <£dm.

Let Xi E X%. By (b), x¿ is contained in no plane from Ui=i Sj, and thus by (c),

each plane from \J^Sk Sj containing x¿ contains H%. In particular, each plane from

X containing x¿ contains HJ¡. Choose an H E X so that r(Ai; {H}) = r(Ai; X). If

AiHH = 0, then by 2.1(i), r(Ai; {H%}) > r(A{) = r(A{; {H}). UAiHH ¿ 0, then
by 2.1(h), again r(Af, {#£}) > r(A¿; {H}); for by (d), x E H and hence H£ C H.
Thus we always have r(Ai; {Hg}) > r(A; X) > e, and applying (f), we obtain

*£, <*i<   ¿2 {\V-v(xl)\\AinHl£[k[d(A)r-k + e2-n-1\AlnHZ\k}
XiEXJ¡ x¡^Xk

<e2~n £ |Ain^U<£2-"|An^|fc

< £2-"[d(A)]fe < £2-ndm,
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for [d(At)]m-k < [8(xl)]m~k < 6(h). In conclusion

o(V-v,P)-(Lm-X) [   v
JdA

p m—1   oo

^Ea* = E«i + EE Ea-
i=l Xi€Xm k=0n=lxi€X£

oo

< edm    1 + m ]T 2"n    = £dm(l + m).

n=l

It appears worthwhile to formulate separately an important special case of The-

orem 5.4 when So = ••• = Sm-i — 0-

5.5. COROLLARY. Let v be a continuous vector field on the interval A which

is differentiate in A°.  Then V • v E P(A) and JAV ■ v = (Lm_i) JdA v ■ n.

5.6. REMARK. We proved Theorem 5.4 and Corollary 5.5 only for m > 2.

However, their validity for m = 1 is well known (see, e.g., [Mc, §1.4, p. 27]). It is

also easy to see that, modulo some obvious adjustments, our proof applies to this

much simpler case too.

5.7. EXAMPLE. Let m = 2 and In = [2-n_1-,2-nJ, n = 0,1,.... Using a
standard technique (see, e.g., [Mu, 1.3]), we construct continuously differentiable

functions <pn on R so that the following conditions are met:

(i) 0 <<pn< 1, <f>n(t) = 0 for t < (4/3)2-"-1, and (pn(t) = 1 for t > (5/3)2""-1;
(ii) there is an a > 0 such that J¡  <pn > o¿2~n for n = 0,1,_ Given (£, n) in

R2,let f(Ç,ri) = 0iîri<0, /(ç,ry) ="n2sin£ if r, > 1, and

/(£,*?) = <t>n(n)n2 sin8"cl + [1 - <¡>n(ri)]n2 sin8"+1e

if n E In, n = 0,1,.... In essence, / is obtained by a smooth deformation of

the function 772sin8n£ on the strip R x [(5/3)2""-1, (4/3)2_n] to the function

772sin8n+1£ on the strip R x [(5/3)2-n"2, (4/3J2""-1]. It is easy to see that / is

differentiable in R2. Thus applying 5.5 to the vector field v = (f,0) in the interval

A = [0,27r] x [0,1], we see that <9i/ is integrable on A, and JA dif = 0. However,

we show that the integral /0 dif(^,n)dn does not exist for almost all £ E [0,27r],

and hence the function <9i/ is not integrable on A in the sense of [Mc] (see Chapter

6, ibid.). Indeed, if/0 dxf(t\,ri)dn exists, then by [Mc, Chapter 1, Ex. 5],

¡■1 oo       /•

/   dif(i,r1)dn=YJ       dif(i,n)dn
JO n=0Jln

= EÍ8n/  V2 4>n(ri) dn ■ cos%n t + cT+1 Í  n2[l - <pn(r¡)] dn ■ cos8"+1ç|.
n=0 I       Jl» Jl» }

Since by (i) and (ii),

8" / V2Mri)dv + Sn+1 [ n2[l-<bn(ri)]dr,
Jin Jln

>8n [  r,24>n(ri)dn > 8n(2-n-1)2a2~n = |,

J In
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n = 0,1,..., and since by [KN, Chapter 1, Theorem 4.1], the sequence {8n£} is

uniformly distributed mod27r for almost all £ E [0,27r], it is easy to see that the

above series diverges for almost all £ E [0,27r].

5.8. REMARK. The previous example shows that the Fubini theorem is false

for the integral defined in 3.1. This is, of course, not a reparable deficiency of our

definition, but rather the unavoidable price one must pay for making the divergence

of each differentiable vector field integrable.

NOTE. The Fubini theorem is used in two principal ways: as a test for non-

integrability by showing that the iterated integrals have different values, and as a

means of calculating integrals whose existence has been already established. For

our integral, the former use is lost without any compensation; however, the loss

of the latter deserves the following comment. Unlike for the Lebesgue integral,

there are no easy existence criteria for nonabsolutely convergent integrals such as

the Denjoy-Perron integral. Thus even when Fubini's theorem holds, we do not

know a priori whether it can be applied. On the other hand, using the divergence

theorem, we can often conveniently evaluate an integral as the flux of a suitably

chosen vector field.

6. Change of variable. Let <fi : A —► Rm be a map of an interval A. We say

that (b is admissible if it is continuous, and if there is a division D of A such that

the restriction (b \ D is affine for each D Ed. Clearly, among all such divisions of

A there is a unique division do which is maximal with respect to refinements. For

D E Do, the usual determinant of the affine map <b \ D is denoted by det(<^> \ D).

Given x G A, we set (det<^>)(x) = det(^> \ D) if x E D° for some D E Do, and

(det(b)(x) = 0 otherwise.

6.1. PROPOSITION. Let A be an interval, and let(f>: A —> Rm be an admissible

injection such that <f>(A) is again an interval. If f is an integrable function on <b(A),

then f o <f> ■ | det (¡>\ is integrable on A and JAf' o<j>.\ det cb[ = f¿/A\ f ■

PROOF. In view of 3.4 and 3.6, we lose no generality by assuming that <b is an

affine map of Rm. Since B = <f>(A) is an interval, there exist a = (ai,. ..,am) and

b = (ßi,...,ßm)in Rm such that ft^U <*,■ ± 0, and tp(x) = a-x+b for each x E Rm.

In particular, (b maps intervals onto intervals, and fc-planes onto fc-planes. Let a =

XYiLi ai and p = |a|/|a|m. By 4.2, we may assume that (det<ô)(x) = a for each x E

A. Choose a regulator (e, X), and let X* = {(¡>(H) : H E X}. Then (pe, X*) is also a

regulator, and we can find a ¿* : B —► R+ so that |cr(/, Q) — JBf[ < pe for each Q E

P(B;pe,X*;8*). Set 8 = (6* o <p)/(a| and select a P = {(Ai,x,),..., (Ap,xp)} in
P(A;e,X;8). Now it is easy to check that Q = {[<b(Ai),<b(xi)],... ,[(f>(Ap),d)(xp)]}
is in P(B; pe, X*; ¿*), and hence

o(f o <j>-\ det <b\,P)- f f\= '¿fo<b(xi)\a\\Ai\- if
Jb   I      i=1 Jb

J2m(xi)MAi)[- Í f = o(f,Q)- [ f
i=i jb Jb

< pe < e.

We show next that for m = 2, admissible injections cannot be replaced by

piecewise linear injections in Proposition 6.1.
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6.2. EXAMPLE. Let m = 2, A = [-3,3] x [-3,3], and for n = 1,2,..., let

An+ = [3-2-n-1,2~n+1] x [2-n-1,2"n]

and
An  = j2_n_l)2_„j x j32_n_l^2_n+lj_

Given xEA, set f(x) = ±22(n+1)/n if x G A\, and f(x) = 0 otherwise. Finally,

letx0 = (0,0).

We claim that / G R(A) and JAf = 0. To see this, choose ¿/-: A —» R+,

fc = 1,2,..., so that ¿fc(xo) < 2~k, and if x G A - {xo}, then ¿fc(x) < |x| and

¿fc(x) < dist(x, AJ) for each A± which does not contain x. Now if P is a ¿fe-fine

partition of A, then it is not hard to show that

\<T(f,P)\ = ^{jDf--(D,x)EP, ¿¿-To} <j±~.

There is a piecewise linear bijection <b: A —> A such that <b restricted to C =

[0, \/2] x [0, \/2] is the rotation by -7r/4 about xn. Defining det <b in the obvious

way, we claim that / o <p • | det <b[ is not integrable on A. Indeed, if it were, then

by 3.4 and 4.2, / o ct> would be integrable on C. However this contradicts 4.6; for

/ o <b > 0 on C and (L) Jq f o <b = £~=1 (1/n) = +oo.
6.3. REMARK. It is clear that examples similar to the previous one can

be constructed for any m > 1. It follows that except for m = 1, the integral

we have defined is tied to the affine structure of Rm. Fortunately, it appears

that by using convex linear cells instead of intervals, we may be able to modify

Definition 3.1 so that the resulting integral is invariant with respect to piecewise

linear homeomorphisms, and still integrates the divergence of every differentiable

vector field. As the regularity relative to a plane is meaningless for convex linear

cells (e.g., it may be arbitrarily small for a simplex whose absolute regularity is

1/m), we have to proceed along the lines suggested in [Pi]. The details will appear

elsewhere.

7. Discussion. In the previous sections, we showed that our definition of the

integral yields satisfactory results. However, there is no obvious reason why a

different, possibly simpler, definition would not produce as good results as those

we have obtained. Thus it seems much in place to provide some motivation for

Definition 3.1, which is too complicated to be self-motivating. We shall do this

indirectly, by presenting various modifications of Definition 3.1 and pointing out

(often without proofs) their consequences. As obtaining the divergence theorem

has been the principal task of this paper, we shall consider only those modifications

for which Theorem 5.4 remains valid.

We begin with a modification leading to the GP-integral of Mawhin (see [M2,

Definition 9]), and show by example that Proposition 3.6 does not hold for this

integral.

7.1. If / is a function on an interval A, then I(f,A) denotes a unique number

with the following property: given e > 0, there is a 8 : A —* R+ such that |<r(/, P) -

/(/, A)\ < e for each P E P(A; e, 0; 8).



THE DIVERGENCE THEOREM 681

7.2. EXAMPLE. Let m = 2, A = [0,1] x [0,1], B = [-1,0] x [0,1], and
for n = 1,2,..., let A+ = [3 ■ 2-"-1,2-"+1] x [0,2-2n] and An_ = [0,2"2"] x

[3-2-n_1,2-n+1]. Given x G AöB, set /(x) = ±23n+1/n if x G AJ, and f(x) = 0

otherwise. Finally, let xn = (0,0).

Clearly I(f,B) = 0, and we claim that also I(f,A) = 0. To see this, choose

£ > 0 and an integer fc > 1 with fc/(fc2 + 1) < £. Next find ¿: A —> R+ so that

¿(xo) < 2~k , and if x G A - {xn}, then ¿(x) < |x| and ¿(x) < dist(x, Ag.) for each

AJ which does not contain x. Now if P E P(A;e,0; 8), then it is not difficult to

check that

W(f,P)\ "|£/:(C,x)GP, x^xoj

fc2+fc

-    ^    n ~ fc2 + 1
n=fc2 + l

<£.

On the other hand, given ¿ : A U B —► R+, find an integer fc > 1 so that
2-k+1 < ¿(xo), and let C0 = [0,2'k+1] x [0,2~k+1] and D0 = [2-2k-2~k+1,2~2k] x

[0,2_fc+1]. Now it is easy to find partitions P = {(Cb,xo), (Ci,yi),..., (Cp,yp)}

and Q = {(D0, x0), (Di,zx),..., (Da, zq)} in P(A U B; 1,0; 8) such that <r(/, P) =

¿Xi Jc, / = ° md

, = 1 JL>3 n=k

It follows that /(/, AUB) does not exist.

7.3. REMARK. If in 7.1 we replace P(A;e,0;8) by P(A;r(A),0;8), we obtain
a modification which is similar to the RP-integral of Mawhin (see [M2, Definition

10] or [Mi]). For this integral neither Proposition 3.6 nor Proposition 3.4 hold.

This can be seen as follows. In the notation of Example 7.2, given x G A, set

g(x) = ±n23m+1 if x G A\, and g(x) = 0 otherwise. Then observe that g is

integrable on A but not on A U B or [0, 5] x [0,1]. It is immediate that the same

happens when the actual RP-integral is used.

7.4. REMARK. Example 7.2 indicates that (e, #)-partitions are unavoidable.

However, there is a natural alternative which would allow replacing (£, #)-partitions

by (£, 0)-partitions and yet keep Proposition 3.6 valid. Namely, call a partition

{(Ai, xi),..., (Ap, xp)} special if x¿ is a vertex of A,, i = 1,... ,p, and then use

only special partitions in Definition 3.1. Unfortunately, given an interval A, the

author has not been able to establish whether there exists an e > 0 such that

P(A; e, 0; 8) contains a special partition for each 8 : A —> R+.

NOTE. Say that a function / on an interval A is /'-integrable whenever there

exists a division D of A such that / is /-integrable on each D Ed, and set /*(/, A) =

J2d€D I(f'D)- I* is easv to verify that the value of /*(/, A) does not depend on

the choice of V, and that Proposition 3.6 is valid for the integral /*. A serious

shortcoming of this simplistic restoration of Proposition 3.6 is the complete failure

of Proposition 4.10. Indeed, in Example 7.2, the squares

Bn = [2~2n - 2~n+1,2~2n] x [0,2-n+1],
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n = 1,2,..., converge to xn, and yet

lim/*(/,£„) = lim/(/,[0,2-2"] x [0,2-"+1])

fc -       2n 2
k=n

In   1

~ <L*  fc

As it stands, Proposition 4.10 fails also for the integral /, however, the following

weaker version of it remains correct. If / is an /-integrable function on an inter-

val A and a sequence {Bn} of subintervals of A converges to an {x} C A, then

lim/(/, Bn) = 0 whenever inf r(Bn) > 0.

7.5. If / is a function on an interval A, then JA / denotes a unique number

with the following property: given a regulator (e,X) and a: A —► R+, there is a

S : A -> R+ such that \o(f, P)-JAf\<e for each P E P(A; a, X; 8).
The next lemma shows that the modification of 7.5 coincides with Definition 3.1,

i.e., f = /.
7.6. LEMMA. Let f be an integrable function on an interval A, and let (e, X)

be a regulator. Then given a: A —> R+, there is a 8: A —> R+ such that \o(f,P) -

JAf\ < e for each P E P(A;a,X;8).

PROOF. By 4.3, there are ¿n : A —» R+ such that

¿ f(xi)\Ai\ - /  /
¿=i JAi

<e2~

for each {(Ai,xi),..., (Aq,xq)} in P(A;l/n,X;6n), n = 1,2,.... The interval A

is a disjoint union of the sets Ei = {x E A: a(x) > 1} and En = {x E A: 1/n <

a(x) < l/(n — 1)}, n = 2,3,_For x G A set ¿(x) = ¿n(x) if x G En, and choose a

P = {(Bi,yi),..., (Bp,yp)} in P(A;a, X;8). By 2.5, each Pn = {(#,-,&): Vi G En}
is a subset of some Q E P(A; 1/n, X; 8n), and clearly P = (Jn=i Pn f°r some integer

fc > 1. Consequently,

i fc i

o(f,P)- f f\ =¿   Yl    f(Vi)\Bi\- [   A
J A     '        n=lyieEn J Bi     '

k
< V 2-n£ < £.

n=l

7.7. Fix an a : Rm —r (0,1). If / is a function on an interval A, then Ia (f, A) and

/»(/, A) denote unique numbers with the following properties: given a regulator

(e, X), there is a ¿: A —► R+ such that \o(f,P) - Ia(f,A)\ < e for each P G

P(A;a,X;8) and \o(f,Q)-h(f,A)[ < e for each Q E P(A; 1 - 8, X;8).
The integrals Ia and /* are well behaved, although it is not clear whether they

satisfy Proposition 6.1. Obviously, /*(/, A) exists whenever Ia(f,A) exists, and

Ia(f,A) exists for each / G R(A). However, it is not known which of these impli-

cations, if either, can be reversed.

To see some more sophisticated modifications, we cast Definition 3.1 in the form

of a variational integral (see [Hi]).

Let A be an interval. A superadditive function in A is a function F of subintervals

of A such that F(B) > X^oeP P(^) f°r eacn interval B c A and each division V
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of B. Replacing the sign > by =, we obtain the definition of an additive function

in A. If / G P.(A), then by 3.4 and 3.6, the function B >-> JB f of subintervals of A

is additive; we denote it by / /.

7.8. DEFINITION. Let X be a family of planes, let / and e be functions on

an interval A, and let F and M be functions of subintervals of A. We say that

M is an (e,X)-majorant of the pair (f,F) if there is a ¿: A —> R+ such that

[f(x)\B\ - F(B)\ < M(B) for each interval B C A with x E B, d(B) < 8(x), and
r(B; X) > e(x).

Note that if M is a superadditive (£, #)-majorant and e < 1, then 0 < M <

M(A). Indeed, by Corollary 2.5, each interval C C A has a ¿-fine (e, #)-partition

{(Ci, xi),..., (Cp, xp)}, and hence

M(C) > J2M(Ci) > ¿ \f(xi)\d\ - F(Ci)\ > 0.
i=l i=l

From this and the superadditivity of M, we see that M < M(A).

7.9. PROPOSITION. Let f be a function on an interval A. Then f E R(A) if
and only if there is an additive function F in A such that for each regulator (e, X)

the pair (f,F) has a superadditive (e,X)-majorant M with M (A) < e; in which

case F = J f.

PROOF. Suppose that an additive function F in A satisfying the condition of the

proposition exists. Given a regulator (e, X), find a superadditive (£, ¿/)-majorant

M of (/, F) with M (A) < e, and choose the corresponding ¿ : A —> R+. Now let B

be a subinterval of A, and let P = {(Bi, xi),..., (Bp, xp)} be in P(B; e, X; 8). In
view of the note following Definition 7.8, we have

\o(f,P)-F(B)\<J2\f(xl)m-F(Bt)\
i=l

V

<^M(Bi)<M(B)<e.
i=l

It follows that / G 2(B) and JB f = F(B).
Conversely, suppose that / G R(A) and let F = J f. Given a regulator (e, X),

use 4.3 to find a ¿: A —> R+ so that |<j(/,P) - F(B)\ < £/3 for each interval
B C A and each P E P(B;e, X;8). This is possible, for by 2.5, P is a subset of
some Q E P(A; e, X; 8). Now for every interval B C A, set

G(B) = inf o(f, P)    and    H(B) = sup o(f, P)

where the infimum and supremum are taken ever all P E P(B; e, X; 8). By 2.5 and

our choice of ¿, we have F-e/3<G<H<F + e/3. Thus if M = H - G,

then 0 < M < 2f/3 < e. Let B be a subinterval of A, and let a > 0. By
3.4, there is a P E P(B;e,X;8) such that F(B) - a < o(f,P) < F(B) + a.
Consequently, F(B) - a < H(B) and G(B) < F(B) + a, and by the arbitrariness

of a, also G(B) < F(B) < H(B). Next assume that x G B, d(B) < 8(x), and

r(B;X) > £. then {(B,x)} belongs to P(B;e,X;6), and so G(B) < f(x)\B[ <
H(B). Therefore |/(x)|J3| - F(B)\ < M(B), and we see that M is an (e,X)-
majorant of (f,F). It remains to show that M is superadditive. To this end, let
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{Ci,..., Ck} be a division of an interval C C A, and let P¿ G P(d;e,X;6), i =

1,..., fc. Then P = Uti P belongs to P(C; e, X; 8) and o(f, P) = f¡¡ml o(f, Pi).
Hence G(C) < X^=i<r(/, P¿) ^ H(C), and by the arbitrariness of the P¿'s, also

G(C) < ¿,-=1 G(Ci) and //(C) > £-=i H(Ci). The superadditivity of M follows.
Observe that, in the respective notations of the proofs of Proposition 4.1 and

Theorem 5.4, the following holds:

(¡)Iff(B) = (L)/B/and

M(S) = m + (L) /a'*""
for each interval B C A, then M (A) < e and M is an additive (0,0)-majorant of

(f,F).
(ii) If G(B) = (Lm_i) JdB v ■ n and

(m—1   oo \

isi + EE2_nifîn ^nife
fc=0 n=l /

for each interval ß C A, then AT(A) < £dm(l + m) and N is an additive (a, X)-

majorant of (V • v, G) for each a > 0.

Proposition 7.9 together with the above observations suggest the following mod-

ifications of Definition 3.1.

7.10. If / is a function on an interval A, then J(f) denotes a unique additive

function in A such that for each regulator (e, X) the pair [/, </(/)] has an additive

(e, #)-majorant M with M(A) < e.

7.11. If / is a function on an interval A, then Js(f) and Ja(f) are unique additive

functions in A with the following properties: given a regulator (e,X), in A there

exist a superadditive function Ms with MS(A) < e and an additive function Ma

with Ma(A) < £ such that for each a > 0, Ms is an (a, #)-majorant of [/, JS(F)]

and Ma is an (a, #)-majorant of [/, Ja(f)]-

The integrals J, Js, and Ja are well behaved; however, it is unclear whether

their definitions can be translated back to those of a Riemann type. An argument

similar to the proof of Lemma 7.6 shows that no new modifications are obtained

from 7.10 and 7.11 by considering (ß, #)-majorants with nonconstant ß.

For an interval A, denote by J(A), JS(A), and Ja(A) the families of all J-, Js-,

and Ja-integrable functions on A, respectively. Then Ja(A) C JS(A) n J(A) and

JS(A)U J(A) C R(A), and the corresponding integrals coincide on the intersections

of their respective domains. Whether any of the families J(A), JS(A), Ja(A), or

Z(A) are equal to each other is unknown.

If B and C are intervals in Rfc and R', respectively, then following the proof

of [H4, Theorem 1], we can show that J(B) (g J(C) C J(B x C) and J(f ® g) =
J{f) ' J{°) f°r each / G J(B) and g E J(C). While the same holds for Ja, it is
not clear whether this is also true for Js or for our main integral defined in 3.1.

The differences between integrals defined by means of additive and superadditive

majorants are discussed in [H2].

ADDED IN PROOF. The deficiency in the additive properties of Mawhin's in-

tegrals (see [Mi and M2]) has been corrected in [JKS]. However, the divergence

theorem (Theorem 3) proved in [JKS] is still substantially weaker than our Theo-

rem 5.4.
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