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WEAKLY DEFINABLE TYPES

L. A. S. KIRBY1 AND A. PILLAY2

ABSTRACT. We study some generalizations of the notion of a definable type,

first in an abstract setting in terms of ultrafilters on certain Boolean algebras,

and then as applied to model theory.

The notion of a weakly definable ultrafilter or type was developed by one of the

authors [K] in a study of models of arithmetic. It generalizes the notion of a defin-

able type; and just as this latter notion has interesting properties in a much more

general context, especially in stability theory, it seemed worthwhile to investigate

weakly definable types in a general model-theoretic setting. A goal of this paper is

to present the results of our investigations on these lines.

It is natural to ask why such notions turn up both in arithmetic and in elementary

stability theory. Ressayre, for example, in a review [R] of Gaifman's paper [G],

says

.. .although the notion of definable type was introduced by Gaifman in the

study of PA, which is the most unstable theory, this notion turned out to be a

fundamental one for stable theories. And minimal as well as uniform types also

correspond more or less to properties important in the stable case. I expect

(i) that it will not be possible to "explain" this similarity by a (reasonable)

common mathematical theory; and (ii) that this similarity is not superficial,

however. Although they cannot be "captured" mathematically, such similari-

ties do occur repeatedly and not by chance in the development of two opposite

parts of logic, namely, model theory of algebraic style on the one hand, and

the theory (model, proof, recursion, and set theory) of the basic universes

(e.g. arithmetic, analysis, V, etc.) and their axiomatic systems on the other.

A second goal of this paper is to sketch out an abstract framework, which, while

certainly not "explaining" these connections, does give a rough indication of where

the common ground lies.

§1 will develop this framework, which is in terms of ultrafilters on certain systems

of Boolean algebras. A central notion will be a relation between two ultrafilters p

and q—"p fits qv—which generalizes the notion of weakly definable.

§2 will apply the ideas of §1 to types, in particular "fitting" heirs and coheirs,

into the picture.

§3 will make a further study of weakly definable types as they relate to two

important concepts in elementary stability theory, order and the independence

property.

Finally, a brief §4 will prove a result about the notions of §1 as they apply to

models of arithmetic.
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548 L. A. S. KIRBY AND A. PILLAY

1. Some notions about filters. Let / be an infinite set. If A Ç In, we shall

write A for the complement In - A. If also B Ç Im, then we shall define

A x B = {(3,5):3 G A & 5 G P} Ç In+m.

Here (5,5) stands for the concatenation of the sequences 5 and b. So A x B is not,

strictly speaking, the usual Cartesian product, except when n = m = 1, although

it is naturally isomorphic to it.

Now let A Ç In+m and ô G P\ Then we define

âA = {6G/m:(â,5)GA}Ç/m

and
Aô={&G/m:(5,â)GA}Ç/m.

In the case n = m = 1, we can picture these as the vertical and horizontal

sections of A.

Recall that a field of sets is a sub-Boolean algebra of the power set P(X).

Let N+ be the set of positive natural numbers. A terraced field of sets is a

structure (I, (R)n)neN+ such that:

(i) (R)n is a sub-Boolean algebra of P(In);

(ii) a E I => {a} E R, where P = (P)1;
(iii) 5 G In k A G (R)n+m => aA E (R)m;

(iv) A G (R)n & P G (R)m =>AxBE (R)n+m;

(v) for any permutation o of {1,... ,n}, A G (P)n => A" E (R)n, where

Aa = {(aa{i),... ,aa{n)): (ai,... ,an) G A}.

Note that we do not require closure under projections; that is, (v) is not required

to work for any <r: {1,..., n} —> {1,..., n}.

In (iii) we can also deduce Aa~ E (R)m. Indeed if we define T to be the permu-

tation of {1,..., n + m} which transposes the first n and last m elements, then for
AE(R)n+m,Aä = ä(AT).

If ô G In then the map A —> aA is a homomorphism from (R)n+m onto (R)m:

for example, a~(A n P) = SA n 5P.

Before continuing we shall give the motivating examples.

Example 1.1. (R)n = P(In).

EXAMPLE 1.2. / is the domain of a model M of some first-order theory, and

(R)n is the set of subsets of In definable (with parameters) in M.

In this case we do not have closure under projections (i.e., under existential

quantifications). But we also get a terraced field of sets if we restrict (P)n to

the sets definable using a formula from some fixed class T, closed under provable

equivalence in T and under Boolean combinations. And we may also suppose that

I is the domain of a substructure of M.

EXAMPLE 1.3. I and P are the numbers and sets, respectively, of a model of

the fragment A°CA0 of second-order arithmetic (see [K]), (R)n is obtained from

P by coding n-tuples. In particular, I might be an initial segment of a model of

PA, and (R)n the coded subsets of In. (This is also a special case of the special

case mentioned at the end of Example 1.2.)

From now on assume that (I, (R)n) is a terraced field of sets.
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We shall be considering properties of filters on the (R)n. In Example 1.2 these

correspond to types, as will be spelled out in §2.

Let p be a filter on (R)n, q a filter on (R)m. Define

p x q = {A G (R)n+m: 3X E p Vc G X cA E q}.

In the case of Example 1.1 this is identical to the usual product of two filters.

If A, P G p x q, it follows that for some X E p and all c G X, cA G q and cP G q:
but then c(A (~) B) E q, and A n P G p X q. It is easy to complete the proof that

p x q is a filter on (R)n+m.

Also if A G (P)n, P G (P)m then AxßGpx^iepiißeg. To prove

"=>", suppose X G p and Vc G X c(A x B) E q. Then X Ç A, and for any eel,

c(A xB) = B.
DEFINITION 1.4. p fits q if and only if for all A G (R)n+m there exists X G p

such that either Vc G X cA E q or Vc G X cA G q. Thus p fits q if and only if p x o

is an ultrafilter. In particular, if p fits q, then both p and g are ultrafilters.

Now let p, g be as above and r a filter on (R)k.

LEMMA 1.5.   (p x q)xr Çpx (qxr).

PROOF. Suppose AE (pxq)xr: take X Epxq such that Vo G X öA G r; take

F G p such that \/b E Y bX E q. Suppose b G Y. Then for ail c G 6X, (6,c)A G r;
i.e., c(bA) E r. Hence bA E q x r. Since b was any member of Y, it follows that

AEpx (qxr).    D

Corollary. Ifp x q fits r, then p fits qxr.

Now let p be a filter on P. We shall define two kinds of powers of p. This will

introduce a duality which runs through all this work, essentially reflecting the fact

that the relation "fits" is not symmetric.

DEFINITION 1.6. Define filters pn and pif on (R)n by p1 = p\ = p; and given

p" and pT,
pn+1 =pxpn,       pp-1 =pTxp.

It is straightforward to see that p2 = p\ and that for X E R,

Xep^X" Gp" <^X" Ep%.

Lemma 1.7. p£ cpn.

PROOF. We shall prove by induction on m > 1 the statement

*(m) Vk>m   pmxpk-mÇpk....

The lemma will then follow by induction on n: for

Pt+1 —Pt xP = Pn x P   by inductive hypothesis

Cpn+1    by *(n).

Now *(1) is true by definition; assume *(m) and k > m + 1. Then

pm+l x pfc-(m+l) = (p x pm) x pfc-(m+l)

Cpx(pm x^-1)-"1)    by 1.5

Çpx pk~1    by inductive hypothesis

= pfc-

We have shown *(m + 1).    □
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DEFINITION 1.8. p is n-ultra (respectively n-ultrar) iff p" (resp. pj.) is an ul-

trafilter. Thus p is 1-ultra o- p is 1-ultray o p is an ultrafilter, p is 2-ultra o- p is

2-ultraT O p fits p, and p is n-ultrar => pis n-ultra, by the last lemma. Note that

p is (n + l)-ultra => p fits pn and p is (n + l)-ultraT => pj fits p; so (by the remark

after 1.4)

p is (n + l)-ultra=> p is n-ultra,    p is (n + l)-ultraT => P is n-ultrar-

So we have a double hierarchy of properties of p.

DEFINITION 1.9. Now let p be a filter on (R)n. If A G (R)n+m, define

dpA = {cG/m:cAGp}.

Let

(dpP)m = {dpA:AG(P)n+m}.

Then dp(A f] B) = dpA n dpB, and if p is an ultrafilter, dpA = (dpA). In fact,

LEMMA l. 10.   (i) Ifp is an ultrafilter, then (I, (dpR)m)m€^+ is a terraced field

of sets, and the map A >—► dpA is a homomorphism of (R)n+m onto (dpR)m.

(ii) (P)m Ç (dpR)m for each mEN+.

PROOF. For (ii), if X G (R)m then X = dp(X x In). For (i), the least trivial

condition to verify is closure under products: suppose A E (R)m+n, B E (R)k+n;

we need dpA x dpB E (dpR)m+k. But if

A* = {(x,y,z):xElm, yElk, z G In k (x,z,y) G Ax Ik},

then

(x,y) E dpA x dpB & xA n yB G p

& (x,y)(A* n (Im x B)) E p.    a

Thus an ultrafilter p "generates" a new terraced field of sets. A desirable situa-

tion will occur if no new sets are in fact generated:

DEFINITION 1.11. p is definable if for all m G iV+, (dpR)m = (P)m.

The name comes from definable types: the connection with types will be elabo-

rated in §2.

DEFINITION 1.12. Let p be a filter on (R)n, q a filter on (P)m.

dqp= {dqA:AGpxç}.

Equivalent^, dqp = {B G (dqR)n: 3X E p, XÇ B}.

LEMMA 1.13. If p and q are ultrafilters, then dqp is a filter on (dqR)n, and

P Q dqp. In fact, dqp is the image of the filter p x q under the homomorphism

A r~* dqA.
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Thus any filter on (dqR)n which extends p has to include dqp, and hence:

PROPOSITION 1.14.   The following are equivalent:

(i) p fitsq.
(ii) dqp is an ultrafilter.
(iii) p has a unique extension to an ultrafilter on (dqR)n.

(iv) VPG(d,P)" 3XGp (XÇP orXÇB).    O

In Definition 1.9, dpA was formed from those c such that the "vertical section"

cA was large. A dual notion arises from considering "horizontal sections" :

DEFINITION 1.15. Let A G (R)n+m, p a filter on (R)n.

d^A = {cElm:AcEp} = dp(AT)

where AT transposes the first n and last m elements of the sequences in A as

before. So (dpR)m = {d^A:A E (R)n+m}. Now we can dualize the ideas of

1.12-1.14: define d%q = {eÇA: A G p X ç}.
Then if p is an ultrafilter, cÇg is a filter on (dpR)m, in fact the image of p x q

under the homomorphism A h-> dip A; and q Ç cÇg. Thus

LEMMA 1.16.  p fits q -o- djq is an ultrafilter.

DEFINITION 1.17. p is weakly definable if p fits p. This agrees with the definition
in [K]. We should point out that some of the above ideas were introduced in [K],

with a somewhat different notation.

An intuition behind this definition is that, whereas p being definable makes

(dpR)n no bigger than (R)n, if p is weakly definable then (dpR)n is at least not

much bigger then (P)n; p has a unique extension to an ultrafilter on (dpR)n. If p

is weakly definable, then dTp = dpp, although this will not be true in general. Of

course, if p is definable then p is weakly definable.

PROPOSITION 1.18. Let p be an ultrafilter on (R)n. Then p is definable if and
only if for all ultrafilters q on (R)m (for any m), q fits p.

PROOF. If p is definable then (dpR)m = (R)m for any m, and the considerations

of 1.14 show that any q fits p.
Suppose p is not definable: say (dpR)m ^ (P)m. Pick A G (dpR)m -_(R)m. We

will construct an ultrafilter q on (P)m such that both qö{A} and qU{A} have the

finite intersection property. This will suffice because it implies that both dpqU {A}

and dpq U {A} have the f.i.p., and so q does not fit p.
Enumerate (R)n as {Xa:a < p}, p = |(P)n|. A sequence (Sa)a<u will be

constructed so that

Sa Q (P)n;

either XQ G Sa+i or XQ G Sa+i; and

(*) for any Yt,... ,Yi € Sa, neither Yx n • • • n Y{ n A nor Yi n • • • n Y» n A is in

(R)»....
So = 0; limit stages will be dealt with by taking unions; and q will be \Ja<u Sa.

The last condition (*) ensures the desired finite intersection properties because,

e.g., if Yi n • ■ • n Yi H A were finite it would be in (R)n.

If we have Sa, and either Sa U {Xa} or Sa U {Xa} satisfies (*), then we can

define Sa+i accordingly. So suppose that neither of them do.
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Case 1. For some Yi,..., Y¿+J = Sa,

Yi n • • ■ n Yt n XQ n A = P,    say,     G (P)n

and

Y¿+i n • • • n yi+i n xa n A = G g (P)n.

Then

Y, n • • • n Yi+j n A = (P n Yi+1 n • • • n Yi+j) u (G n Y, n • • • n y)

G (P)n,    contradicting (*).

Gase 2. For some Yi,..., Y¿+J G 5a,

Yi n • • • n Yi n xa n A = P g (P)n

and

Yî+1 n • • • n Y+j nxQ nÂ = G g (R)n.

Then

Yi n • • • n Yi+j n A = Y<+1 n • • • n Yl+j

n [P U (Yi n • • • n Y¿ n XQ n G)] G (R)n,    contradiction.

There are two other cases, which are dealt with similarly.    D

Let p be an ultrafilter on P. We return to the powers of p and the hierarchies

of 1.6 in the light of the operations dp and dj. Where confusion is unlikely we will

write dA for dpA, etc.

LEMMA 1.19.  A G Pr+1 -»■ 3X G p£ X Ç dA.

LEMMA 1.20.  Let Ag (P)"+1. Tften

A G pn+1 <*■ dA G (dp)n &(FAE (f(pn).

PROOF. The equivalence of the first and third items just restates some defini-

tions. So does the first equivalence when n = 1. Suppose inductively that the first

equivalence is true for all A G (R)n+1. Now let A G (R)n+2. Then

A G pn+2 <^ 3X G p Vc G X cAe pn+1

o 3X E p Vc G X c(dA) = d(cA) G (dp)n

by inductive hypothesis

o 3X G dp Vc G X c(dA) G (dp)n

&dAE(dp)n+1.    D

Corollary, p is (n + 1)-ultra <=>■ dp z's n-ultra.

Let 0(n + 1) denote the statement:

VA G (P)n+1 3X G pT    X n dA G (P)n.

PROPOSITION 1.21.   Ifn>2, then p is n-ultraT «■ 0(n).
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Before proving this we need a

LEMMA.   Suppose p is (n - l)-ultrar and 0(n + 1). Then 0(n).

PROOF. Given A G (R)n, we need Y G p?"1 such that YndA G (P)n_1. Apply
0(n+l) to the set Ix A E (R)n+1 to obtain X G pT such that (R)n 3 Xild(IxA)

= XD(IxdA) = B, say. So for any a, aB = aXndA E (R)71^1. We will be done

if for some a, aX E p?1- But suppose not: then \fa E I aX E pj~\ since p is

(n - l)-ultraT, so Vo G / oX G pn_1 by Lemma 1.7, so X G p", contradicting the

fact that XGp£ Qpn.   D

Proof of Proposition 1.21. =?>: Given A g (R)n, obtain X g pt_1 such

that X Ç dA or X Ç dA = dA, so X n dA G (P)""1.
<=: Suppose that either n = 1 or we have proved "•<=" for n. Let A G (P)n+1.

We need one of A, A to be in p£+1, assuming 0(n + 1): take X G Pj. such that

XndA (= P, say) G (P)n. If P G pj then dA D XnP G p£ so A G p£ by Lemma
1.19. If not then since p is n-ultra^ (by the lemma and the inductive hypothesis,

or by supposition when n = 1) P G p? and we derive A G pT+1 similarly.    D

Now we introduce a third hierarchy, just to confuse things: let p be an ultrafilter

on P.

DEFINITION 1.22. p is (n + l)-ultra* iff VA G (P)"+1 3X G p Xn n dA G (P)™.

By the last proposition and the fact that X Ep ■& Xn G p¡y,

p is n-ultra* => p is n-ultrar

(the converse holding when n = 2).

And, straightforwardly,

p is definable => p is n-ultra* for every n.

2. Types, heirs and coheirs. In this section we shall apply the ideas of §1 to

the situation of Example 1.2. Some of what we will do was done, in a less systematic

way, in §6 of [K].

2.1. M will be an infinite structure for a language L, with domain /. For

convenience we will work inside a very large and saturated elementary extension

M' of M. A formula (p(x) of L(M') (i.e., with parameters from M') is associated

with the set
4>M = {ô G In: h 4>(ä)}

where "h" means "M' |=". Then (R)n = {<¡>M: <p(x) E L(M) k lh(x) = n}.

If p(x) is a partial n-type over M, let pM = {d)M:d)(x) E p}. Then pM is a

filter on (R)n. This gives a 1-1 correspondence between partial n-types over M

and filters on (R)n, under which (complete) types correspond to ultrafilters and

isolated types to principal ultrafilters. This correspondence has been known and

used at least as far back as [Li]. It enables us to translate the notions of §1 and

to say that p is n-ultra just when pM is, and so forth. In fact, eventually we shall

simply identify p with pM and regard it ambiguously as both type and ultrafilter.

In particular, Definition 1.11 really does give us back the notion of a definable type.

Now let <t>(x,y) G L(M), c a sequence of elements of M, of the same length as x.

Then ccpM = [d)(c,y)]M.

Assume below that <j>(x,y) E L(M) has length(z) = n, length(y) = m; p G

Sn(M) and b is an m-tuple (which may well be outside M).
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2.2.Define dyf> to be the L(M') formula <j>(x, b). This notation is justified by the

following remark: Let q(y) E Sm(M) be the type realized by b. Then

(d-b<j>)M = {cEMn:^ct>(c,b)}

= {cEMn:<t>(c,y)Eq} = dq(cbM).

Now we will really confuse things by dropping the superscript M and identifying

a formula with its extension: so we write dj¡<j) = dq4>. Define

drjp = {<t>(x, b): there exists ip(x) Ep such that

for all c E Mn, \= ip{c) -> <j>(c,b)}.

Then the same considerations justify this notation by the fact that drjp = dqp.

2.3. Let p, g, b be as above. We now see that we can equate (dqR)n with the set

of formulae in L(M U b) with n free variables, and, translating what was said in

1.8:

LEMMA.  dqp is a partial type over MUb extendingp, and is complete iff p fits

q-

Now to tie this up with some known model-theoretic notions:

DEFINITION (LASCAR-POIZAT [LP]). Let A D M and let p' be a type over A

extending p. Then p' is a coheir of p iff whenever a E Am and (f>(x, ô) G p' then for

some c G Mm, f= <j>(c,ä).

PROPOSITION. Let p' be a type over M lib extending p. Then p' is a coheir of

p& p' D dqp.

PROOF. =>: Suppose p' is a coheir but <t>(x,b) E dqp, ^cf>(x,b) E p'. Take X Ep

such that Vc G X |= <f>(c,b). Since X EpCp', the formula "x G X A -id>(x,b)" is in

p'. By coheirdom, for some c G Mn,

\=cEXA-i(j)(c,b),    a contradiction.

<^: Suppose p' is not a coheir: take <f>(x,b) E p' such that Vc G Mn J= ->(¡>{c,b).

So 4>(x,b) is in dqp but not in p'.    D

COROLLARY, p fits q if and only ifp has a unique coheir over Mob, this coheir

being dqp.

2.4. Now for the dual notions. As before p(x) E Sn(M), q(y) G Sm(M), b

realizes q. Also let 5 realize p. As above we write, for a formula (j)(x,y),

d£<j) = d[pn<}> = <¡>(a,y).

And
a%q = d^q = {4>(a~,y): there exists ip(y) G L(M)

such that  |= ip(a), and for all c G Mn,

if \= ip(c) then 4>(c,y) E q}.
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Then

LEMMA.   dTq is a partial type over M (Ja extending q, and is complete iff p fits

DEFINITION (LASCAR-POIZAT [LP]). Let A D M and q' be a type over A

extending q. Then q' is an heir of q iff whenever a G Am <f>(a~,y) E q' then for some
cEMn, 4>(c,y)Eq.

PROPOSITION. Let q' be a type over M U 5 extending q. Then q' is an heir of

q^q'2 dTq.

PROOF. =>: Suppose 4>(a, y) E dp"q, -><£(ä, y) G q'. Take X Ep such that Vc E X
4>(c,y) G q. But "S G X A -^(ô,y)"G g' so g' cannot be an heir of g, for if it were,

for some c G Mn, c E X A -xt>(c, y) would be in q.

<=: If q' is not an heir of g, obtain 4>(a~,y) E q' such that Vc G Mn^<j)(c,y) E q

and hence ->(/)(ä, y) G djç.    D

COROLLARY, p /its g if and only if g has a unique heir over M U 3, this heir

being d^q.

2.5. Let us summarize. p,q,a,b are as above.

THEOREM.   The following are equivalent:

(i) ci realizes dqp.

(ii) t(â/M U b) is a coheir of t(a/M) = p.
(iii) b realizes dTq.

(iv) t(b/MUa} is an heir oft(b/M) = q.

(v)t((a,b)/M)2pxq.

(ii) «-> (iv) is a well-known elementary fact about heirs and coheirs [LP].

(i) <-> (ii) and (iii) «-> (iv) are proved above.

The equivalence of (v) with (i) and (iii) follows from the fact that

<p(x,y) G p x g o <j>(x,b) E dqp «■ <¡>(a,y) E d^q.

COROLLARY.   The following are equivalent:

(i) p fits q and t(â/M U b) is the unique coheir oft(a~/M) over M U b.

(ii) p fits q and t(b/M U o) is the unique heir of t(b/M) over M U ö.

(iii)i((5,5)/M)=pxg.

Proposition 2.14 in [L] has what might be called a glimmering of this result.

2.6. Some consequences for weakly definable and definable types.

If p is weakly definable then it has a unique heir dTp and a unique coheir dp over

M U o (where S realizes p), and

(f)(x, 5) G dp O- <fi(a~, x) E dTp.

THEOREM (LASCAR-POIZAT [LP]). p is definable if and only if whenever
A I) M, p has a unique heir over A.

PROOF. This latter condition is equivalent to saying that p has a unique heir

over M U b for any b. By the corollary in 2.4, this is equivalent to: for any q in

Sm(M) (for any m), q fits p. Now use Proposition 1.18.    D



556 L. A. S. KIRBY AND A. PILLAY

Lascar and Poizat proved this result using the Beth Definability Theorem.

2.7. Now we return once more to the hierarchies studied in §1. So p G Si(M).

For a change we will deal with heirs and the "T"-hierarchy first.

DEFINITION. An heir-sequence for p is a sequence (ai,...,an) such that Oi

realizes p and for 0 < / < n, a¿+i realizes an heir of p over M U {ai,..., o¿}.

LEMMA.   The following are equivalent:

(i) (oi,..., an) is an heir-sequence for p.

(ii) t((ai,...,an)/M)DplT.

PROOF. By induction on n using 2.5:

t((ai,...,a„+i)/M) 2Pt+1 = Pt X P

&t((au...,an)/M) DpT k t(an+i/M Ö {au... ,an})

is an heir of p

<=> (<n,..., an+i) is an heir-sequence for p,

using the inductive hypothesis.    D

Thus if p is n-ultrar, <j>(x) E pT <=>• for some (and hence for any) heir-sequence

3 = (ai,...,an), |= <p(a).

The results of 2.4 tell us that if a is an heir-sequence for p and p' is a type over

Mua, then p' is an heir of p O- p' D d£p. And

THEOREM, p is (n+l)-ultrar <$■ whenever a = (ai,..., an) is an heir-sequence,

p has a unique heir over M U a; this heir being d^p.

2.8. In dualizing, beware because coheir-sequences go backwards in order to get

the lemma below to look nice.

DEFINITION. A coheir-sequence for p is a sequence (ai,...,on) such that an

realizes p and for 0 < i < n, a¿ realizes a coheir of p over M U {a¿+i,... ,an}.

LEMMA.   The following are equivalent:

(i) a = (oi,..., an) is a coheir-sequence for p.

(ii) t(a/M) 2 Pn-

Dualizing the rest of 2.7 gives in particular

THEOREM, p is (n+l)-ultra •»■ whenever a = (oi,..., an) is a coheir-sequence,

p has a unique coheir over Möä; this coheir being dâp.

Note that any coheir-sequence is an heir-sequence, since p" 2 Pt-

2.9. Turning to the third hierarchy (see 1.22), we first rewrite the definition

of an (n -I- l)-ultra* type in a more traditional form using a "defining schema".

(This can also be done for the other notions; in [K, §6] it was done for weakly

definable types.) Again, p G Si(M). p is (n + l)-ultra, •«■ for all <t>(y,x) E L(M)
there exist ip<t,(x) E p and o<j>(y) E L(M), where length(y) = n, such that for all

ci,...,cn EM,

|= ^(Cl) A--- AV0(Cn) =► \4>(cl,...,Cn,x) Gp^|=<T^,(ci,...,Cn)].

Now let ai,..., an each realize p. Define

dip = {4>(a,x):\= 04(a)}.
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Then analogously to earlier proofs we can show

LEMMA, d^p is a partial type over M U3, and if p' is a type over M U5 then

p' is an heir ofp&p' 2 d^-p.

THEOREM, p is (n + l)-u/tro* o- whenever oi,... ,a„ each realize p, p has a

unique heir over M U a, í/i¿s /ieiV being d^p.

DEFINITION, p is locally definable iff whenever A is a set of realizations of p, p

has a unique heir over M U A.

By compactness we have

PROPOSITION,  p is locally definable if and only if p is n-ultra, for every n.

In fact for A a set of realizations of locally definable p, we can get a "local

defining schema", and the unique heir is

d*AP=   (J   ^P-
n(=N
a~€An

3.   Weak definability, the independence property and order. Here we

relate the previously mentioned notions of weak definability, n-ultra, etc., to some

notions connected with elementary stability theory, in the context of 1-types over

models. So T is a complete theory. We work in a big saturated model of T. We

shall call T weakly stable if every 1-type p over a model of T is weakly definable.

We shall see that this notion is strictly weaker than stability. (On the other hand,

the condition that for all n, every n-type over a model is weakly definable, is equiv-

alent to stability.) We shall examine conditions under which 1-types which satisfy

weak notions of definability are actually definable. We shall also relate the weak

definability of 1-types to the existence of a definable order on some infinite set of

elements.

We first recall

DEFINITION 3.1. T has the independence property (LP.) if there is a formula

4>(x,y), tuples bs, s <z (jj, and elements a¿, i < w (in some model of T), such that

for all i, s, \= 4>(ai,bs) iff i G s.

The following is due to Poizat [P] and also appears in [Pi].

FACT 3.2. Suppose that T does not have LP. Let I = (a¿, i < w) be an indis-

cernible sequence, and let <p(x,y) be any formula, b any tuple (1(b) = l(y)). Then

either for eventually all i \= 0(a,, b) or for eventually all i (= -i^(o¿,6). (Similarly

if w is replaced by a limit ordinal.)

LEMMA 3.3. Letp(x) E Si(M) be n-ultrar for all n < w. Let (o¿:¿ < u) be an
heir-sequence of p. Then (a¿:¿ < w) is an indiscernible sequence over M.

PROOF. Let n < u> and ii < i?, < ■ ■ ■ < in < u. Clearly (o^,..., o¿n) is an heir

sequence of p. Thus t(a^,..., ain/M) = t(oi,..., an/M), as p is n-ultrar-    □

LEMMA 3.4. Let M c N c UA. Let p E Si(M), p' E Si(N) an heir of p, and
q E Si (N U A) an heir of p1. Then q \ M U A is an heir of p.

PROOF. Trivial.
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THEOREM 3.5. Suppose that T does not have LP. Let p E Si (M) be n-ultrar,

n < uj.  Then p is definable.

PROOF. To show that p is definable, it suffices by the theorem of Lascar and

Poizat (see 2.6) to show that p has a unique heir over any N >■ M. So to get a

contradiction, suppose not. Let M < N and pi,P2 G Si (TV) be distinct heirs of p.

Now let us define oo, ai, 02,... as follows.

First let ao be a realization of pi. If do, ■ • • ,a>n-i bave been already defined,

where n is odd, let an realize some heir of p2 over 7Vu{oo,..., an_i}. If ao, ■ ■ ■, an-i

have already been defined, where n is even, let an realize some heir of pi over N U

{ao, ■ ■ ■ ,a„_i}. By Lemma 3.4, eacho„ realizes an heir of p over Mu{ao, • ■ • , a„_i}.

Thus (ao, ai, d2,...) is an heir sequence of p. By Lemma 3.3, (d¿: i < w) is indis-

cernible over M (as a sequence). However, as pi ^ P2 there is 4>(x,b), b E N, such

that (f>(x,b) E pi, -i0(x,6) G P2-
Thus by the construction of the a¿, we have that \= 4>(an,b) for all even n, and

|= -i</>(d„,o) for all odd n. We now have a contradiction to Fact 3.2.   G

EXAMPLE 3.6. Here we mention an example of a theory T all of whose 1-types

over models are n-ultrar (and also n-ultra) Vn, but which is unstable. In fact, it

is the canonical example of a theory with the independence property but without

the strict order property (see [Sh]).

T has one binary relation G and two unary predicates P, Q which partition any

model. T says that G can only hold between P elements and Q elements, and that

if oi,..., dn, 6i,..., bm are distinct elements satisfying Q then there is c satisfying

P such that A"=i c G o¿ A AvLi ^ic £ °j)^ and also dually. T is complete and has

quantifier elimination.

Let M |= T, let p(x) G Si (M) be nonalgebraic with P(x) G p. Let A be any

set of elements (outside M) satisfying P. It is clear, by quantifier elimination and

the axioms, that p(x) has a unique nonalgebraic extension over M U A. The same

thing is true if Q(x) G p and A is a set of Q-elements. Thus, in particular, any

p(x) G Si (M) is n-ultra and n-ultrar Vn < w. In particular, T is weakly stable but

unstable.
DEFINITION 3.7. We shall say that T has an order on elements if there is

a formula (j>(x,y) (maybe with parameters) such that there is some infinite set

{o¿: i < ut} in a model with (= <f>(ai,aj) iff i < j.

LEMMA 3.8. Suppose that some p(x) E Si (M) has an heir sequence di, d2 such

that t(aiaz/M) ^ t(û2di/M). Then T has an order on elements.

PROOF. Let di,d2 be as in the hypothesis. Let us rebaptize them a and b so

t(a/M U 6) is a coheir of p. Let N D M U b be very saturated. It is easy, by

compactness, to find g(x) G Si(N) such that

(i) g(x) extends t(a/MUb), and

(ii) g(x) is finitely satisfiable in M (i.e., g is a coheir of p).

Now define bo,bi,02,... in N, as follows: bo = b, and given 6o,...,&n-i, we

choose bn to realize g(x) \ (M U {&o, • • •, bn-i}) (as N is saturated enough).

It is routine to check that the sequence (6¿:¿ < w) is indiscernible over M

(using (ii)). Moreover, as i>i realizes g(x) \ M U b = t(a/M U b) we see that

t(b0bi/M) = t(ba/M). In particular, t(b0h/M) ^ t(bib0/M). So let <p(x,y) be a
formula (with parameters in M) such that |= 4>(bo,bi)A^d)(bi,bo). Since (bf.i < u)
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is an indiscernible sequence over M, we see that |= (¡>(bi,bj) iff i < j. Thus T has

an order on elements.    D

PROPOSITION 3.9.   Suppose that T has an order on elements.   Then there is

p(x) E Si(M) (some M) such that

(i) p is not weakly definable,

(ii) p has an heir sequence a, b such that t(ab/M) / t(ba/M).

PROOF. Let 4>(x,y) be a formula which totally orders some infinite set of ele-

ments in a model. By adding the parameters to L we assume <f> is parameter-free.

First let us Skolemize T to get T" in language L'. Now by compactness, we can

find a model N' of T", containing a set X such that

(i) 4> totally orders X,

(ii) X has the order type of the rationals under this ordering,

(iii) X is indiscernible with respect to this ordering, in N'.

Now let M' < N' be the Skolem hull of X in N' (so M is an L'-structure).

Let (Xi,X2) be a Dedekind cut in X. For c,d G X with M' \= <j>(c,d) we will

let (c, d) denote {a G X:M' \= <j>(c, a) A <f)(a, d)}.

Claim I. For any L'-formula if>(x,y) and m E M', there are c G Xi, d G X2 such

that either for all a E (c,d) M' \= i¡)(a,rñ) or for all a G (c,d) M' \= ^ip(a,m).

PROOF. Now m = f(oi,...,an) for some sequence of L'-terms f and for

oi,...,dn in X. Thus if a G X, the truth or falsity of ip(a,m) in M' depends

just on where a sits vis-à-vis di,... ,an with respect to the order <f> on X. The

claim is now immediate.

Now let p'(x) be the following set of formulae over M' : {4>(a,x):a G Xi} U

{4>(x,b):b E X2} U {tp(x,m):ip an L'-formula, m in M and for some c G Xi,

d G X2, M' \= ip(a,m) for all o G (c,d)}.

Claim IL p'(x) G Si (M') (namely p' is complete and consistent as a 1-type over

M').
PROOF. Immediate by common sense and Claim I.

Now let a be a realization of p' (in some elementary extension of M').

Claim III. p'(x) U {(p(x, a)} is finitely satisfiable in M'.

PROOF. Let t¡j(x,rñ) E p'. Let c G Xi, d G X2 be such that M' \= ijj(a',fn)
Vo'G(c,d).

Choose a' E (c, d), a' E Xi.

Then clearly |= tp(a',rn) A 4>(a',a) (as a satisfies p'). So Claim III is proven.

Now let q1(x) be a complete extension of p'(x) U {<t>(x, a)} over M' U a, which is

finitely satisfiable in M'. So g*(x) G Si (AP U a) is a coheir of p'. Let b realize g1.

Let p(x) be the reduct of p'(x) to a complete 1-type over M, where M = M' \ L.

Clearly (6, d) is an heir sequence of p. We may assume that \= <p(x, y) -* -><t>(y, x)

and thus, as f= 4>(b,a) we clearly have t(ba/M) ^ t(ab/M). This proves part (ii) of

the proposition.

To get part (i) of the proposition we should just observe that p'(x) U {4>(a, x)}

is finitely satisfied in M', by the same argument as in the proof of Claim III. Now

let g2(x) be an extension of p'(x) U {4>(a, x)} to a coheir of p' over M'Ua. Then we

see that the L-reducts of g1, g2 to types over M U o are distinct coheirs of p. Thus

p is not weakly definable, proving (i).    D
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COROLLARY 3.10. T has an order on elements if and only if there is p E Si (M)

and an heir sequence a,b of p such that t(ab/M) ^ t(ba/M).

COROLLARY 3.11. Suppose that T is weakly stable and does not have I.P. Then

T is stable.

PROOF. Poizat proves (Theorem 12 of [P]) that if T is unstable and does not

have I.P. then T has an order on elements. Now use Proposition 3.9(i).    □

REMARK. In the case where T has Skolem functions, Corollary 3.11 follows

directly from Theorem 3.5 without recourse to Poizat's result: for in this case one

can show if T is weakly stable then every type over a model of T is n-ultrar Vn < u>.

COROLLARY 3.12. Let T be weakly stable. Then for any p(x) E Si (M) and a
realizing p, any heir of p over M U a is also a coheir of p.

PROOF. If not, we clearly have for some p G Si(M) an heir sequence a, b of p

such that t(ab/M) ^ t(ba/M). Now use Corollary 3.10 and Proposition 3.9(i).    O

The question arises whether the converse to Corollary 3.12 holds. (Remember

that T is stable if and only if for every pE Si (M) and ADM, every heir of p over

A is also a coheir.) The following example shows that it does not hold.

EXAMPLE 3.13. Here the theory T will be the model completion of the theory

of a binary irreflexive symmetric relation. T has the independence property. We

shall show:

(I) For any p(x) G Si (M) and heir sequence a,b of p, t(ab/M) = t(ba/M).

In particular, any heir of p G Si (M) over a realization of p is also a coheir. Also

by Corollary 3.10 T has no order on elements.

(II) T is not weakly stable.

Let us first recall the axioms for T. T is in a language L containing just a binary

relation symbol P. The axioms for T state that P is irreflexive and symmetric, and

also

vxi,..., xn, yi,..., y m

[f\Xiï Vi - 3z j f\ R(z,xí) A ¡\ ^R(z,y3)A/\z^ y3

(Vn, m <(jj)

This example is mentioned in [Sh] and also examined in some more detail in

[T W]. In particular we will state without proof that T is complete and has quantifier

elimination.

FACT. Let p(x) G Si{M) (M (= T). Let t(o/M) = t(b/M). Then t(ab/M) =
t(ba/M).

PROOF. If a = b, it is clear. If o ^ 6, then we have two cases: (i) |= R(a,b)

and (ii) [= -P(a, 6). As P is symmetric, we see by quantifier elimination that

t(ab/M) = t(ba/M). Thus (I) above is verified.
Now, in order to prove (II) (i.e., that T is not weakly stable) we must find some

M \=T and p G Si (M) with at least two distinct heirs over M Da (a realizing p).

We first seek to construct the model M. So

FACT 2. There is a model M of T and X, Y ç M both finite, such that X n Y =
0, X U Y = M, and moreover, for any do, di,..., an E X and bo, 6i,..., bm E Y
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there is c G X, c ^ a¿ Mi < n such that

M |= R(c, o¿) Vi < n   and   M |= -.P(c, 6¿) Vj < m

and there is also d G Y, d ^ b3■ V?' < m such that

M|=P(d,d¿) Vz'<n   and     |=-.Ä(d,6y) Vj < m.

PROOF. M and X, Y are constructed by an obvious union of chain argument.

Namely, start with an arbitrary countable model Mo, and let Xo,Yo be arbitrary

infinite subsets of Mo which partition Mo- Now, by compactness (and the axioms for

T) we can find a countable elementary extension Mi of M0 and Xi, Yi partitioning

Mi with Xo C Xi, Yo C Yi such that for any ao,.-.,anE Xo, bo,..., bm E Yo there

are c G Xi, d G Yi doing the right things. Continuing this way, let M = \Jn<¡¿ M„,

and X = Un<w xn,Y = Un<w Yn, and everything is clearly fine.

Now let p(x) G Si (M) (M as above) be the following:

{P(x, a): a G X} U {^R(x, b):b EY}ö {x ¿ a:a E M}.

p(x) is consistent and complete, by quantifier elimination.

Now let d realize p(x).

CLAIM, p has an heir gi(x) over MUd containing P(d, x) and also an heir g2(x)

over M U d containing -iP(d, x).

PROOF. Let gi(x) bep(x)U{P(d, x)}. By quantifier elimination, this determines

a complete 1-type over M U d (it is clearly consistent). We show that gi(x) is an

heir of p(x).

So let ©(x) G gi(x). O(x) is, without loss of generality, of the form

n m m

i¡)(x) A R(a, x) A A P(d, mi) A /\ ->P(d, nj) A A d ^ nj
i=l 3 = 1 j=l

where m¿ G X, nj E Y and ip(x) G p(x).

By our choice of M, there is a' in X such that

M )= /\ P(d', mi) A /\ ->R(a',nj) A /\ a' ¿ n3.
i 3 3

As a' E X we have P(d', x) G p, so R(a', x) G gi. Thus clearly

ip(x) A R(a', x)A/\ R(a', mi) A f\ -iR(a', nj) A f\ a' ¿ nj
i 3 3

is in p(x). So gi is an heir of p. By the same kind of argument, g2(x) = p(x) U

{-P(d, x)} is also an heir of p.

By the claim, we see that T is not weakly stable, showing (II). (End of Example

3.13.)
NOTE 3.14. Note that Proposition 3.9 is still valid if we replace "elements" by

"n-tuples" and "Si(M)" by ^(M)". So bearing in mind the fact that T is stable

iff T has no order on n-tuples Vn iff all n-types over models are definable, we see

that T is stable iff Vn every p G Sn(M) (M f= T) is weakly definable.
Thus the definition of T being weakly stable, in terms of 1-types, is important

to ensure that the notion of weak stability does not mean the same as stability.

QUESTION 3.15. Are there examples of T and p(x) G Si (M) which are n-ultra
but not (n + l)-ultra, and similarly for n-ultrar?
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4. A result for models of arithmetic. In the last section, we saw that in

the model-theoretic situation of Example 1.2, it is of interest whether all types

are weakly definable, or definable. At the "opposite" end of model theory, in

arithmetic—specifically, in the situation of Example 1.3—the interest lies in whe-

ther there exist weakly definable, or definable, ultrafilters. This was the concern of

[K], where it was shown that (in the notation of 1.3, and assuming (/, P) a model

of EC-induction):

There exists a definable ultrafilter on R

<& (I, R) is a model of arithmetic comprehension

«• Ramsey's Theorem for triplets holds in (I,R);

and
There exists a weakly definable additive ultrafilter on R

•»■ Ramsey's Theorem for pairs holds in (I, R).

But it is not known to us whether these two sets of equivalent conditions are in

fact equivalent to each other or whether there exist weakly definable, nondefinable

ultrafilters in this context.   Some partial results are in [K]; the purpose of this

section is to give another partial result.

PROPOSITION 4.1. Let p be an ultrafilter on R, (I,R) \= AÇGAo. If p is
3-ultrar and additive, then p is definable.

REMARKS, (i) "Additive" means that if X G (P)2, a E I and for all i E a,

iX E p, then (\<a iX e P-
(ii) The converse is, of course, true.

PROOF. First we note that it is straightforward to show, by induction on n, that

[I]n G pT, where [I]n is the set of increasing n-tuples from I.

Assume the hypotheses for p, and let A G (R)2. We want {»': i A E p} to be in P.

Define
P = {(i,3, k) E [I]3: i H Aj = i H Ak}.

(We sometimes identify i with {x:x < i}.)

Case 1. P G pT. Obtain X G pT, such that Vx G X, xB G p. Then obtain Y G p

such that Vy EY, yX E p. Given i E I, let

Ui = min[Y fi {x: x > i}\    and   Vi = min[Y flu¿X].

Since (ui,Vi) E X, we have (u¿,i>¿)P G p. If i E Avi, then by the definition of P,

Vz G (uí,Ví)B, i E Az. Likewise if i ^ Avi then Vz G (uí,ví)B, i dl Az. So

¿A G p ■«■ {z:i E Az} Ep<$iE Avi.

Since Vi is uniquely determined by i, S E Av" can be formalized in a A? way, so

{i: iA E p} G P.
Case 2. Not Case 1. Since p is 3-ultrar,

G = Pn[/]3GpT.

Take XEp2 such that Vx G X, xG G p, and Y G p such that MyEY,yX G p. Let
i = min Y and j/o = min(iX). Given yo, ■ • • ; 2/fc in iX, set

yk+i = mm txn  f| (i,yj)c
0<j<k



WEAKLY DEFINABLE TYPES 563

By the additivity of p, this set is in p, so yk+i can always be found; and the definition

of the sequence (yk)k&i can be formalized in (I,R). In particular, y2; exists. Now

for 0 < j < k < 2%, yiç G (i, yj)C, so (i, yj, yk) G P and hence i n Ayk ^ if) Ayj.
This contradicts the fact that there are only 2* possible subsets of i, and so Case 2

cannot happen.    □
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