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NONLINEAR OBLIQUE BOUNDARY VALUE PROBLEMS
FOR NONLINEAR ELLIPTIC EQUATIONS

GARY M. LIEBERMAN AND NEIL S. TRUDINGER

ABSTRACT. We consider the nonlinear oblique derivative boundary value

problem for quasilinear and fully nonlinear uniformly elliptic partial differen-

tial equations of second order. The elliptic operators satisfy natural structure

conditions as introduced by Trudinger in the study of the Dirichlet problem

while for the boundary operators we formulate general structure conditions

which embrace previously considered special cases such as the capillarity con-

dition. The resultant existence theorems include previous work such as that

of Lieberman on quasilinear equations and Lions and Trudinger on Neumann

boundary conditions.

1. Introduction. In this paper we are concerned with oblique, nonlinear elliptic

boundary value problems of the general form,

(1.1) F[u] = F(x, u, Du, D2u) = 0   in fi,

(1.2) G[u] = G(x, u, Du) = 0       on dfi,

where fi is a bounded smooth domain in Euclidean n-space, Rn, and P and G are

real valued functions on the domains r = fi x R x R™ x S", Y' = âfi x R x R".

Here Sn denotes the n(n + l)/2 dimensional linear space of n x n real symmetric

matrices, and Du — (P¿u), and D2u = [Díju] denote the gradient and Hessian

matrix of the real valued function u. By a classical solution of (1.1), (1.2) we shall

mean a function u E C1(fi) D C2(fi) satisfying equations (1.1), (1.2) in a pointwise

sense.

Letting X = (x,z,p,r), X' = (x,z,p) denote points in r,T', we shall adopt the

following definitions of ellipticity and obliqueness for functions F, G differentiable

with respect to r, p respectively. Namely, the operator F is elliptic at X E T if the

matrix Fr — [F13] = [dF/drij] is positive at X; while the operator G is oblique at

X' e I" if x = GPl = Gp ■ 7 is positive at X', where 7 is the unit inner normal to

9fi. Letting A, A denote the minimum and maximum eigenvalues of Fr, we shall call

P uniformly elliptic with respect to some subset U C T if the ratio A/A is bounded

on U.

We shall treat here uniformly elliptic operators P and oblique operators G sub-

ject to certain natural structure conditions. For the operators F these conditions

were introduced by Trudinger [30] as an extension to fully nonlinear operators of

the natural conditions of Ladyzhenskaya and Ural'tseva [14] for uniformly elliptic

quasilinear operators. Letting p, ¡jto, pi,p2 denote nondecreasing real functions, we

may express these conditions as follows:

FI: A < A/x(|z|) (Uniform ellipticity);

F2: |P(x,z,p,0)j < \po(\z\)(l + \p\2);
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F3: (1 + |p|)|Pp|, \FZ\, \FX\ < \pi(\z\)(l + \p\2 + \r\);

F4: (1 + |r|)|Pri|, (1 + |r|)|P„|, (1 + |r|)|Prp|, |PPP|, \Fpz\,

\Fpx\, \F„\, \FZX\, \FXX\ < \p2(\z\ + \p\)(l + |r|);

F5: Frr < 0 (that is, P is concave with respect to r),

for ail X — (x, z, p, r) G F. Unless otherwise indicated the arguments of all functions

occurring above are (x, z,p, r).   For oblique boundary operators G we formulate

corresponding conditions:

G2: \G(x,z,p')\<xPo(\z\)(l + \p'\);

G3: (1 + |p|)|Gp|, \GZ\,\GX\ < Xßi(\z\)(l + \p\),
for all X' = (x,z,p) E fi x R x R", where p' — p - (p ■ 7)7 is the tangential

projection of p and the normal vector field 7 and boundary function G have been

appropriately extended to fi x R x R™.

The conditions G2, G3 embrace a large class of boundary value problems includ-

ing quasilinear oblique derivative problems of the form

(1.3) G[u\ = b(x,u)-Du + g(x,u) = 0   on 3fi,

and the capillarity boundary condition

(1.4) G[u] = 7 • Du - g(x, u)\A + \Du\2 = 0   on dfi,

where the contact angle, 9 = arc cos g, between the graph of u and the cylinder

ôfi x R in Rn+1 is prescribed. Problem (1.3) is oblique when b ■ 7 > 0, while

problem (1.4) is oblique for \g\ < 1.
The method of continuity, as presented for example in [9], reduces the classical

solvability of the boundary value problem (1.1), (1.2) to the establishment of a

priori estimates in the Banach space C2'a(Ù~) for some a > 0, for solutions of a

family of related problems. For boundary value problems subject to the above

natural structure conditions, we shall prove the following estimate.

THEOREM 1.1. Let fi be a bounded domain in Rn with boundary dQ E C4 and

suppose that F E C2(T), G E C2(V) satisfy the structure conditions F1,F2,F3, F4,

F5, G2,G3. Then if0<a<l and u E C2(Ti) is a solution of the boundary value

problem F[u] =0 in fi, G[u\ on dQ, we have the estimate

(1-5) |w|2,a;n < C,

where C depends on n, p, po, Vi, ß2, <*,supn \u\, fi and all the second derivatives of

the functions F and G.

As an example of the application of Theorem 1.1, we have the following existence

theorem.

COROLLARY 1.2. Let fi,P and G satisfy the hypotheses of Theorem 1.1, to-
gether with the conditions

(1.6) supP2<0,        supG2<0.
r r'

Then there exists a unique classical solution u of the boundary value problem F[u] =

0 in fi, G[u] = 0 on dû with u E C2>a(fi) for all a < 1.

Theorem 1.1 and Corollary 1.2 are new, even in the quasilinear case where they

extend previous work of Lieberman [18]. In this case solvability of the boundary
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value problem (1.1) arises from only C1,Q!(fi) estimates. Whereas the Dirichlet

problem had been extensively studied for quasilinear equations [9, 14], the study

of oblique boundary value problems had primarily focussed on conormal derivative

problems for divergence form equations, such as the capillarity problem [7, 14, 17,

32].

The C?2'Q(fi) estimate of Theorem 1.1 is the culmination of several component

estimates of lower order which are established separately in the different sections

of this paper. In particular, in §2, we derive global Holder estimates for solutions

of (1.1), using a modification of the weak Harnack inequality [29]. In §3 we treat

gradient bounds, obtaining gobal gradient estimates under the structure conditions

FI, F2, F3, G2, G3, analogous to those for the Dirichlet problem [30]. Holder
estimates for derivatives are deduced in §4. These had been previously obtained

for quasilinear equations by Lieberman [18] using different methods. In §5 we

treat global bounds for second derivatives. Here the approach splits naturally

into two stages. First is the derivation of one-sided estimates for pure tangential

derivatives which has features in common with the Neumann type problems for

the Bellman equation treated by Lions and Trudinger [27], as well as earlier work

on the Dirichlet problem [25, 11]. The second stage is the estimation of the pure

normal second derivatives which involves substantially different arguments from the

more standard devices, used for example in [27]. In §6 we finally reach the global

Holder estimates for second derivatives, employing a different and more general

argument to that of [27], which like the first derivative estimates in [18] is based

on conormal divergence structure inequalities. In the last section, we discuss the

application of the preceding estimates to the boundary value problem (1.1), (1.2),

where an alternate approach to the method of continuity, due to Lieberman [16,

19], may also be used.

To conclude this introduction we remark that many of our estimates remain

valid under more general structural hypotheses than FI, F2, F3, F4, F5 and certain

extensions will be at least indicated in the course of this paper. In particular a mild

nonuniformity may often be achieved by expressing structural conditions in terms

of the Bernstein function Í = Fl3piPj, and its second order extension Z2, given by

£2 = F%3rikrjk- Also all notation, unless otherwise specified, will follow the book

[9].

We wish to express our thanks to P.-L. Lions whose contribution in [27] stim-

ulated our joint investigations. This research was carried out while we were both

visiting Indiana University in the Fall of 1983 and we thank in particular Roger

Newton and Bill Ziemer for their encouragement and hospitality as well as our

home institutions for supporting our leave programmes.

2. Weak Harnack inequalities and Holder estimates for solutions.  Our

Holder estimates will all be derived from the weak Harnack inequality, Lemma 2.1

below. Its proof uses the corresponding interior estimate of Trudinger [29, Theorem

9] (which is based on estimates of Krylov and Safonov [13]) and a comparison

argument inspired by a result of Krylov [12, Lemma 2.1]. The latter was used by

him to obtain boundary Holder estimates on second derivatives of solutions of the

Dirichlet problem.



512 G. M. LIEBERMAN AND N. S. TRUDINGER

In order to state our result conveniently, we introduce the sets

P+ = {xE Rn| |*| < 1,xn > 0},        P° = {x G Rn| \x\ < l,in = 0},

G(p,R) = {|x'| < R,0 < x" < pR},        G'(p, R) = {|x'| <R,pR<xn< 3pR/2}

for positive p and R, where x = (x',xn) = (x1,... ,xn_1,x").  We denote by a13,

i,j = 1,... ,n, the components of a positive Sn valued function on B+ satisfying

(2.1) A|d2<a^<Ak|2

for all f G Rn and some positive functions A, A; and we denote by ß = (ß1,..., ßn)

an Rn valued function on P° with ßn > 0.

LEMMA 2.1.   LeiuGC1(P+UP°)nC2(P+) satisfy the differential inequalities

(2.2) Lu = aijDljU< \(p®\Du\2 + $)    in B+,

(2.3) Mu = ßWiU < ßnxl)    on B°

for nonnegative constants po,^,i¡) and suppose there are nonnegative p and Mo

such that

u<Mo,    A/A</i    inB+,        \ß\/ßn<p    onB°.

Then there are constants k and p depending only on u and p and C depending also

on iM)Mo such that if R E (0, j) and u > 0 in G(p,2R), then

(2-4) (i^/Apm / uK)       <c(  inf   u + R2<f> + Rip).
\\G'(p,2R)\JG,,p¡2R)     J \g(p,r) J

PROOF.  Note that by considering ü = (1 - e~tí°u)/po in place of u, we may

assume that po — 0. With this assumption, we show that for p = l/4np, we have

(2.5) A=     inf    w<4   inf   u + 16(pP)2$ + 4pPV-
G'(p,2R) G{p,R)

The desired result then follows by combining this inequality with the interior weak

Harnack inequality

(\ 1^K / \

w1.m, f uA       < C (    inf    u + R2$) ,
\G'(p,2R)\ JG,{p:2R)       J \G>(p,2R) )

which follows from [29, Theorem 9] by means of an appropriate chaining argument.

To prove (2.5), we set

Gf = G(p,iR),    G^dG+nB0,       ¿ = 1,2,

and introduce the functions

tüi = 4(pP)2 - (xn)2,        w2 = 2pR - xn,

w3 = 2 - (xn)2/4(pP)2 - xn/2pR + \x'\2/R2.

Clearly u>i > 0 in G% for i = 1,2,3, and a simple calculation shows

Lwi < -2A,        Lw2 < 0   in G%,

Mwi < 0,        Mw2 < -ßn   on G§.
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Moreover we have

Lw3 < X(-p~2 + 4(n - l)p)/2R2 < 0   in G%,

Mw3 < ßn(-p'1 + Sp)/2R < 0   on G%,

by virtue of our choice of p, and

ti>3>4   on dG% n {|x'| = 2Ä},        w3 < 3   on Gf.

Thus the function w = u + $wi + ipw2 + Aw3/A satisfies

Lw<0   inG^,       Mw<0   on G°2,       w>A   oudGJ¡\G°2,

so the maximum principle implies that w > A on G\ and hence w > A on Gf.

Therefore
3

inf   u + 4(pP)2$ + pRtp + -A>A,
G{p,R) 4

which proves (2.5).    D

For future reference we give a simple modification of the preceding lemma.

LEMMA 2.2.  LetuE C1(B+öB°)nC2(B+) satisfy the differential inequalities

(2.7) Lu<A(/i0|Pu|2 + $(x")Q-1)    inB+,

(2.8) Mu < ßni)    on B°

for some nonnegative constants ßo,®,^ and a E (0,1). Suppose (2.1) holds. Then

there are constants n,p,C as in Lemma 2.1 with C now depending also on a, such

that if kE(0,\) and u > 0 in G(p, 2R), then

(2.9) (y^/K)   K<c(GMR)u + Rl+a* + R1?)        (G' = G'(p,2P)).

PROOF. We proceed as in Lemma 2.1 except that here

wi = [(2pR)1+a - (xn)1+a}/a(l + a).       D

A simple consequence of Lemma 2.1 is a new Holder estimate for solutions of

linear oblique derivative problems which is the analogue of the Ladyzhenskaya-

Ural'tseva estimate [14, Chapter 10] for solutions of conormal derivative problems.

For this result, (a13') is a positive Sn valued function on fi satisfying (2.1) and ß is

an Rn valued function on du such that ß ■ 7 > 0 on <9fi.

THEOREM 2.3.   Let dfi G C2 and let u E Gx(fi) f~l G2(fi) satisfy

(2.10) |L«| < X(po\Du\2 + *)    inQ,        \Mu\ < ß ■ 7^    on dn

and suppose that

\u\ < M0,    A/A </i    m fi,        \ß\/ß-l<ß    ondQ.

Then there are positive constants a depending on p,poMo,n and C depending also

on $, tp, fi such that

(2.11) [uUn =   sup   l"(')-yi < C.
x,yen     \x    y\

x¥=y
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PROOF. By virtue of [30, Corollary 11] it suffices to prove the Holder estimate

only at ¿9fi, that is we must show that for all x G dfi and sufficiently close y G fi,

\u(x)-u(y)\<C\x-y\a.

By means of a suitable change of variables (which increases p by a factor of at most

2), we reduce to the case fi = B+, dfi = B° and we may assume that y EG(p,\)

with p as in Lemma 2.1. For 0 < R < | and p as before, we set

mR =   inf   u,    MR =   sup  u,    G(R) — G'(p,R),
G(P,R) G(p,R)

and apply Lemma 2.1 to the functions u - m4R and Mm - u to obtain

\]G(2RJ\ (u-m4ñ)K)       <C(mR-m4R + R2$ + Rip),

TqHrjJ       (M4R-u)A      <C(M4R-MR + R2$ + RiP).

Adding these inequalities yields

M4R - m4R < C(M4R - m4R + mR - MR + R2 + R)

from which the estimate follows by a standard argument (see [9, Theorem 8.22]). D

We remark that Lemma 2.2 can be used to relax the regularity hypothesis on fi

to dfi G C1'6 for some 6 E (0,1). Also we could have employed the full Harnack

inequality [29, Corollary 10], instead of the weak Harnack inequality (2.6), to derive

the Holder estimate (2.11). However this will not be possible when we come to the

Holder estimates of derivatives.

The Holder estimate for solutions of the boundary value problem (1.1), (1.2) is

now a simple consequence of Theorem 2.3.

THEOREM 2.4. Let dfi G C2 and let u G G^fi) n G2(fi) be a solution of
(1.1), (1.2) with \u\ < Mq in fi and F1,F2,G2 holding. Then there are constants

a — a(n,Mo,p,ßo) > 0 and C = C(n, Mo,p, /¿o,fi) such that

(2.12) [u]a,n < C.

PROOF. Using the mean value theorem, we can write (1.1) in the form

Fij(x, u, Du, s)Díju + F(x, u, Du, 0) = 0   in fi

for some s = s(x) E Sn, and (1.2) in the form

(Gp(x,u,q)-~i)(Du-1)+G(x,u,D'u) =0   on dfi

for some q = q(x) E Rn with D'u = Du - (Du ■ 7)7 = q - (q ■ 7)7. Thus the

hypotheses of Theorem 2.3 are fulfilled with

a13 = **"(*, u, Du, s),        ßl = [Y + ß*D'lu/\D'u\}Gp(x, u, q)

for some ß*(x,u,Du) satisfying \ß*\ < po-    □

It is interesting to compare Theorem 2.3 and its proof with Krylov's boundary

Holder estimate [12, Theorem 4.1] (as simplified by Caffarelli). Indeed if we assume,
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instead of (2.3), the Dirichlet boundary condition u = 0 on B° in Lemma 2.1, then

using the replacement functions

wi =2pPxn-(xn)2,    w2=0,    w3 = xn(l-xn/2pR + \x'\2/R2),

and p — l/8n/z, we obtain a weak Harnack inequality for the ratio v = u/xn,

namely

(2-i3)   im IvK)1/K *c (a v+**)  {G>=g'(* 2R))-

As before we need only apply the interior weak Harnack inequality (2.6) to the

function u, observing that in G'(p, 2R) we have u/3pR <v< u/2pR. Accordingly,

by the proof of Theorem 2.3 (and the boundary Lipschitz estimate [9, Theorem

14.1], for any function u E C°(B+ U B°) D C2(B+) satisfying the differential in-

equality (2.10) in B+ together with u — 0 on P°, |u| < Mo, we obtain the Holder

estimate

(2.14) oscB+t;<G(Mo-r$)Pa,

where a and G are positive constants depending on n, p, and poM. We shall use

estimate (2.14) in §6. An extension, along similar lines to Lemma 2.2, is given in

To conclude this section we remark that conditions F2 and G2, which are used

in Theorem 2.4 and elsewhere in this paper to write the problem (1.1), (1.2) in a

quasilinear form, may be replaced by more general conditions. When A and \ are

bounded away from zero, they follow naturally from FI, F3, and G3. Otherwise we

may, for example, replace them by the conditions

(2.15) P(x,z,p,f) = 0,        G(x,z,p',pn)=0

for some f = f(x, z,p), pn = p„(x, z,p') satisfying

\r\<ii0(\z\)(l + \p\2),        \pn\<po(\z\)(l + \p'\)

(see [17, Lemma 2.1; 18, Lemma 4.2]).

3. Gradient bounds. In this section we prove various gradient bounds for

solutions of the boundary value problem (1.1), (1.2) under hypotheses FI, F2, F3,

G2, G3 as well as other closely related hypotheses. The method of proof combines

ingredients from the authors' previous works [18 and 30], although for computa-

tional reasons we employ a construction analogous to that in [2 and 4] (instead of

the change of dependent variable in [30]) and locally flatten the boundary. The

main new technical difficulty in the present situation arises from cubic terms in the

gradient, introduced through differentiation of the boundary condition (1.2).

Throughout this section we shall abbreviate Fl = FPi, Gl = GPi and use the

differential operators 6 = Dz + \p\~2p ■ Dx, 6 — p ■ Dp. We begin with a local

gradient estimate to illustrate the general argument. This estimate was proved in

a slightly different form in [30] via a change of dependent variable (see also [2]).

LEMMA 3.1. Let u E C3(fi)nC1(fi) be a solution of F[u\ = 0 in fi and suppose

there are nonnegative constants p,pi,M such that for any s E (0,1),

(3.1) A|p|2</x£,        |p||PpUP<^-£ + e£2/|p|2
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for \p\ > M. Then there are constants C and 9 depending only on n,p, and pi

such that if B = BR(y) is any ball in fi and a = osebu < 9, then

(3.2) \Du(y)\<Ca/R + M.

Further the estimate (3.2) remains valid if B is replaced by B D fi for any ball

B = BR(y) with y En and \Du\ < M on öfi n P.

PROOF. Without loss of generality we can take y = 0, and assume a < \pi and

e = 2api in (3.1). For ß G (0, \) set

n = (1- |x|2/P2)2,    Mi-supn\Du\2,    M0 = supu,
BR BR

u* =exp(tx- M0)/a,        w = n\Du\2 + ßMiu*.

As in [30, (4.7)], we apply the operator DkuDk to the equation F[u] = 0 to obtain

FijDijW + BWiW = ^^{F^Dijfi - (2/r1)FijDivDjri - FiDin - n6F}

+ (ß/a)Miu*{FiDiu - (2/n)Fi3Dir)DjU + Fi3Diju}

+ 2r,E2+ßa-2Miu*£,

where Bl = Fl - (2/r¡)Fl3Djr). Moreover a simple calculation gives

\Dn\< 4n1/2/R,        Fi3Dljn > -4Fll/R2 > -4nAP2.

From these estimates and the structure conditions (3.1), it follows that, on the set

where |Du| > M,

Fi3'DlJw + BWiW

> £{-4npR~2 - 32npR~2 - 2r)1/2\Du\/aR - n\Du\2/(2a)

- ßMiu*/2a2 - 8ßMiu*p/(an1/2\Du\R)

- ß2M2u*np/(2a2n\Du\2) + ßMiu*/a2}

+ £2{-8pian1/2/(R\Du\) - 2pian - 2piMiu*ß/\Du\2 + 3r?/2}.

Now we use the inequalities ß < \ and u* < 1 to infer that Mi < w < r¡\Du\2 +

Mi/2 at a point xo where w attains its maximum, that is, r¡\Du\2 > Mi/2. Hence

at xo,

Fl3DijW > £{-(4n + 32)p/R2 - 2M¡/2/(aR) - Mi/a}

+ (u*ß/a2)£{~8paMl/2/R - ßnpMi + Mi/2}

+ v£Á-8pi(x/(RM¡/2) - 2api - 4/?/^ + 3/2}.

Clearly the coefficient of £2 will be positive if

(Wpia/R)2 < Mi,        a < 1/4/zj,ß < 1/8/xi,

and the coefficient of (u*ß/a2)£ will be positive if (lOpa/R)2 < Mu ß < l/8np.

Hence for a < 1/4/ui, ß = min{l/8/xi, l/8np}, and Mi > 16(/líi + p)(a/R)2, we

have, since u* > e_1 > 1/3,

Fl3Dl0w > £{ßMi/24a2 - (4n + 32)p/R2 - 2M¡/2/(aR) - MJa}.
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Therefore we have F%3DijW > 0 at xo if

(3.3a) a<9 = l/[C(n)(p + m)}

and

(3.3b) Mi > (Ca/R)2,        C = C(n)(p + ßi).

Since F13DijW < 0 at a maximum of w, it follows that

Mi < max{(Ca/R)2, M2}   for a < 9,

where G and 6 are given by (3.3).    D

Let us note that (3.1) follows from the easily verified conditions

(3.1)' A|p|2 < p£,       |p| \Fp\,SF <ßi(£ + (A&)1/2)

and that (3.1)' follows from FI, F3.

Futher, Lemma 3.1 continues to hold for u E W2,q(n) when q > 2n (q > n

if (3.1)' is valid). In this case we replace the differentiation of F[u] = 0 by a

differencing. Setting

A(th)u(x) = [u(x + het) - u(x)]/h,

where et is the standard fth unit vector in Rn, h > 0, we obtain for

wh = r,Y^(&{th)u)2 + ßMhhu*,

the differential inequality

F%3DijWh + BlDiWh > -e(h)wh,    on BRth = \ x E BR\wh > | supiy^ >,

where ||e(/ï)IUn(Bflh) -* 0 as h-* 0, provided Mi,/, > max{(Ga/ñ)2,M2}, a < 9,

with G and 9 given by (3.3). Since \\Bl\\n is bounded uniformly with respect to h,

the Aleksandrov maximum principle [9, Chapter 9] provides the desired estimate

for Wh if h is small enough.

Our next step is to bound the tangential derivatives of u near a flat boundary

position. To this end we set

p' = (pi,...,p„_i),        P' = (Di,...,Dn-i),

C2 = Fi3nkrjk,        6t = Dz + \p'\2p' ■ Dx,

where here and in the following lemma, we adopt the convention that the index k

only goes from 1 to n — 1. We also recall the definitions of P+ and P° from §2.

LEMMA 3.2.  LetuEC2(B+(J B°) n C3(B+) be a solution of

(3.4) P[u] = 0    mP+,        G[u} = 0    on B°.

Suppose that there are nonnegative constants p,pi,ß2,Jl2,M such that

(3.5) |p||Gp|,¿rG</ii|p|x,

(3.6) A|p|2 < p£,

(3.7) A|r|,|p||Pp|,¿P,¿TP<M2¿+P2C7|p'|2    ifF(X) = 0,
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whenever \p'\ > M. Suppose also that there is a continuous increasing function lj

with oj(0) = 0 such that

(3.8) |u(*)-u(0)|<w(|*|),     \Du(x)\<uj(\x\)/xn    for all x E B+.

If also ~ß2 is sufficiently small (depending only on pi), then

(3.9) \D'u(0)\ < C(n,p,pi,p2,ß2,M,uj).

Before proving this lemma, we discuss condition (3.7) which is only required to

hold when F(X) — 0. Unlike the proof of the interior gradient bound, the present

proof uses a control of Dnnu in terms of DijU (for i + j< 2n), which can only be

obtained via the equation. For our proof, condition (3.7) is the correct form of this

control. We note here that FI and F3 imply that the quantities in the left-hand

side of (3.7) are bounded by AG(n,p, pi)(\r\ + \p\2 + 1) while FI and F2 imply that

\rnn\<C(n,p)l   £   (nj)2\      +/i0(l + |p|2)    ifP(X) = 0

\i+j<2n J

and hence, where |p| > 1,

|r„r,|<{G(n,/i,/z0)([fC2/|p|]1/2 + <f).
A

Therefore (3.7) holds in the uniformly elliptic case for any pZ2 with

p2 = C(n, p, po, ßi)(l + l/~ß2).

PROOF OF LEMMA 3.2. Let R E (0,1) be a constant at our disposal and set

BR- = {xE B+\ \x\ < R},        BR = {xE P°| \x\ < R},

Mo = sup«,     w' = \D'u\2,     Mi = suprjw',

where n is as in Lemma 3.1. With ai > 4 and a2 > 0 constants to be chosen, set

u* = expai(u-M0),    v — (l + \Du\2)1/2,    w — nw' + Miu*/Qi + a2Mivxn.

We then determine R from Qi,a2,M, and w so that R < 2/M and

ai(M0 - «) <1,        a2vxn < 1/4   in P¿.

If Mi < P~2, then the estimate on iu'(0) is clear once we have determined ai and

a2. We now determine suitable qi and a2 so that Mi < P-2. Suppose now that

Mi > R~2 and let xo be a point in BR where w attains its maximum. As before

nw'(xo) > Mi/2 and, in particular, n(xo) ^ 0.

If Xq = 0, then by applying the operator DkuDk to the equation G[u] = 0, we

obtain GiDiWl = -2(6TG)w'. Therefore for w' > M2, we have

GWiW = (G'Di^w' - 2r](6TG)w' + Miu*6G + a2MivX

> x[-^iw'\Dv\ - 2pinw'\Du\ - piMi\Du\ + a2Mi|Pu|]

> x[-^iV1/2w'/R - 3AtiMi|Pu| + a2Mi|Pu|]

>xMi|Pu|(-7/zi + a2).
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Hence GlDiW > 0 at xo if a2 = Ipi because w'(xo) > Mi/2 > M2. Therefore w

cannot have a maximum on BR if Mi > R~2 and a2 — Ipi.

If Xq > 0, then a direct calculation yields

DiW = nDiw' + w'Din + Mm*DiU + a2Mi(xnDijUv3 + vêin),

DijW = w'DijW + DivDjw' + Diw'DjT] + 2r)DijkuDkU + 2r¡DikiDjkU

+ aiMiu*DiuDjU + Miu*DijU

+ a2Mi(xnDl3muum + xnDtmugmsD]Su + èinD3muvm + Dimuum83n),

where v — Du/v and gms — (6ms — vmva)/v. Moreover, differentiating P[t¿] = 0

with respect to xm gives

Fl3Dijmu = -FlDimu - FzDmu - Fm

so, with Bl as in the proof of Lemma 3.1, we have

FljDijW + BiDlw = aiMiu*,? + 2r¡C2 + a2MixnF13 DimugmsDJ3u

+ (Fi3Dijr, - (2/n)Fi3DiriDj71)wl - (2/n)Mi(u*Ft3D,nDJu + a2vFinDtn)

+ Mi((2/n)a2xnF%3DmDjmuvm - 2a2FmDimwm + u*Fl3Diju)

+ Mi(a2vFn + u*6F - a2vxn\u\28F) + (P^P,// - 2r¡6TF)wT.

We now proceed as in Lemma 3.1, using conditions (5.3) and the inequalities \u\ < 1,

(gij) > 0 to obtain

Fi3DijW + B^iw > (¿ai - c(n,p,p2))Mi£ + (2 - c(a2)p2)nC2.

Recalling that a2 = 7pi, we see that the right-hand side of this inequality will

be positive if p2 is sufficiently small (depending only on pi) and ai is sufficiently

large. With these choices for ûi and a2, w cannot have a maximum where xn > 0

and therefore Mi < R~2.    D

As before, Lemma 3.2 is also valid for W2>q (q > 2n) solutions of (3.4), and (3.7)

will usually be inferred from

(3.7)' A|r|,|p||Pp|,¿P,¿TP</ii(f+ (AC2)1/2)    ifP(X)=0.

We also note that our estimate on |P'w| was achieved without first estimating the

ratio \Du\/\D'u\, as was done in [18].

Now we combine the preceding lemmata to bound the full gradient of solutions

of (1.1), (1.2) in arbitrary smooth domains.

THEOREM 3.3. Let <9fi G G3 and let u E G2(fi") n G3(fi) be a solution of
(1.1), (1.2) with \u\ < M in fi and suppose that F and G satisfy conditions FI, F2, F3,
G2 and G3. Then

(3.10) sup|Pu| < C(n,M,p,po,ßi,fi)-
n

PROOF. First we estimate \Du\ on dfi. To this end we consider a point on 3fi,

which we may take to be the origin, where \Du\ attains its maximum over dfi.

Since the form of our hypotheses is unchanged under any G3 change of coordinates

(although the values of the constants will change), we may also assume that finPi =

B+ and dfi n Pi = P°. It then follows from G2 that

|Pnti(0)|<Mo(l + |PX0)|)
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and hence we need only estimate |P/'u(0)|. This estimate is immediate from Lemma

3.2 since (3.5) follows from G3, (3.6) follows from FI, (3.7) follows from FI, F2,
and F3, and (3.9) follows from Theorem 2.3 and Lemma 3.1.

This estimate for \Du\ on an, and another application of Lemma 3.1 give the

full estimate.    □

Again we can relax the regularity of u to W2'q (q > n). Also the conditions on Fz

and Fx can be relaxed to a one-sided estimate on a suitable linear combination of

these derivatives corresponding to 6F and 6tF in the transformed domain. We shall

discuss presently a version of this one-sided bound without performing a change of

coordinates. The gradient estimate near <3fi may also be effected without a direct

use of the interior estimate, Lemma 3.1, although such an approach seems more

complicated.

So far our gradient estimates have all been local in character. This localness was

used crucially to make certain terms small by virtue of our modulus of continuity

estimates. We now consider an alternative approach which avoids the modulus

of continuity estimates by strengthening certain of our structure conditions. This

alternative approach has several other attractive features. It allows us to obtain

global estimates directly under the strengthened structure conditions and it does

not use a flattening of the boundary. In this last respect, it can be used to give an

explicit version of the one-sided estimates on combinations of Fz and Fx which were

used in the proof of Theorem 3.3. Also we are able to obtain gradient estimates

which are independent of the ratio |Gp|/x; the utility of this will be shown in an

example.

For our alternative approach, we define

£ = {x G fi : d(x) = dist(x, dû) < r},

where r > 0 is so small that d E G3(£), which is always possible if <9fi G G3. We
then set Dd = 7 in E and note that

|7| = 1,        -(Da3 = -fDji- =0    in E

and that this 7 is a G2 extension of the normal field on <9fi into E. We also define

¿W-.itf._yy,    D'x = à3D3,    D' = (D[,...,D'n),    p'% = â3Pj,

6' = DZ + \p'\-2p' ■ Dx - \\p'\-2piPjD(c13) ■ Dp.

Note that 6' = ¿r near a flat boundary portion. Further discussion of 6' can be

found in [18, §4] (where there is a minus sign missing in the definition of c¿ on p.

59).

THEOREM 3.4. Let <9fi G G3 and let u E G2(fi) n G3(fi) be a solution of

(1.1), (1.2) with

(3.11) (1 + |_»«|)d < K,    \u\ < M0    in E.

Suppose F and G satisfy the conditions

(3.12) A|r|,6P,|p||Pp|<Mi<?+PiC7|p'|2,        6'F <Jl\p\£+JixC2/\p'\2

for F(X) = 0, \p'\ > M, x E E, and

(3.13) -6G,6'G <p(\p\)\p\x
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for \p'\ > M, where p is a decreasing function with limt-^oo ~ß(t) = 0. If px is

sufficiently small, then

(3.14) sup|P'u| <C(K,M,Mo,p,pi,]li,p).
E

PROOF. Let ai > 4 and a2 < 1/4K be constants at our disposal and set

w' = |P'u|2 = cl3DtuDjU,    Mi = sup«/,    u* — expai(u - Mo),
e

w = w' + Mitt* /ai + a2Mivd,

where v = (1 + |Pu|2)1/2, as in Lemma 3.2. If Mi < 4(P"/r)2 + 2M2, we are done.

Thus we may assume that Mi > 4(P/t)2 + 2M2 which implies that w cannot

achieve its maximum over E where d — r. Thus w > Mi/2 and \D'u\ > M at a

maximum point xo- If xo G ¿>fi, then

GlDiw(x0) > MivX(a2 - 2p(\D'u(x0)\)),

so w cannot have a maximum on dfi if Mi > (p~1(a2/2))2.

If xo G E, we obtain an expression for FtJDijW + FlDiW, all of whose terms can

be estimated as before with two exceptions:

4Fi3DikuDj(ckm)Dmu = ^F^DikuDjuDj^Du ■ 7 - 4Fi3Diku1kDj1mDmu

> -C(n)p(£C2)1/2 - G(fi)<4/2A|D2u|

and

2Fl3Dlj(ckm)DkuDmu > -C(n)p£.

Hence, if a2 < 1 and p = p(Mi/2) < 1, then

F^Díjw + F^íw > {-C(n,p,pi,n)(a2+ß+u*) + aiu*}Mi£ + {2-c(a2)ßi}C2.

By first choosing ai sufficiently large, then a2 < u* and then JLX small, we see that

w cannot reach its maximum in E if p(Mi/2) < u*. As before this leads to the

desired estimate.    D

We remark that, by virtue of the proof of Lemma 3.1, the form of the interior

gradient estimate given in (3.11) is a consequence of a slight strengthening of (3.12),

namely,

(3.12)' \p\\Fp\<pi£ +Pi£2/\p\2,       6F<p(\p\)£+px£2/\p\2.

Moreover we can take pZ in (3.12)' and (3.13) (but not (3.12)) to be a constant if

we have a modulus of continuity estimate for u. By using the ideas of the proof of

Theorem 3.4, we can prove Theorem 3.3 without flattening the boundary, in which

case F3 and G3 can be relaxed to

(3.15) |p||Pp|,OP,¿'P</ziA(l + |p|2 + |r|),

(3.16) |p||Gp|,í'G</iix(l + |p|).

Also, we can replace — 6G by 6G in (3.12) by a simple modification of the proof, and

if /2(t) = 0(l/i) in (3.13) (but not necessarily in (3.12)), then any interior gradient

estimate can be substituted in (3.11). In this case, we take w = w' + Miu*/ai +

a2Mid with a2 a sufficiently large constant and r < l/4a2.
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As an application of Theorem 3.4, we consider the contact angle boundary con-

dition (1.4) with constant contact angle, i.e.,

G[u] = 7-Du-<¿(l + |Pu|2)1/2=0   ondfi

for some constant d> E (—1,1). By direct calculation, we have

Gp = 7 - <A(1 + |p|2)1/2P,    G2 = 0,    Gx = (D13)pJ,

X = 1 - #• 7/(1 + |p|2)1/2,    SG = p • 7 - <¿|p|2/(l + |p|2)1/2,

6'G = ArWlpf - (l - 0(1 + |p|2r1/2p) • D(c*3)PlP:/2\p'\2

= xDiijPiPj/\p'\2.

It is readily checked that

Dii>piPj < C(fi)|p'|2    in E,

and that
¿GM = 0(l + |Pu|2)-1/2   ifG[«] = 0.

Therefore G satisfies (3.13) with pz independent of cf> if -1 < <f> < 0. Hence if P
satisfies (3.12), we obtain a tangential gradient estimate on the solution of (1.1),

(1.4) for such <f), which is independent of the contact angle. A similar argument

gives a uniform tangential gradient estimate for 0 < 4> < 1. Thus we obtain a

tangential gradient estimate for solutions of (1.1), (1.4) which does not depend on

the contact angle if that angle is constant. An analogous result for the capillarity

equation

F[u] — div u + nH(x,u) — 0   in fi,

where H E Gx(fi x R) and Hz < 0, was given by Simon and Spruck [28].

Finally we show that the regularity of fi can be relaxed to <9fi G C2'a for some

a G (0,1). In this case, it follows from the methods of [20] that there are positive

constants e,ei, £2, Ci and a function p G G2'Q(fi) n G3(fi) such that

ed(x) < p(x) < d(x),    \D3p(x)\ < Cip(x)a-1    for all x G fi

and |Pp| > s i on the set where p < e2. For <j> a nonnegative G3(R") function

with support in the unit ball and /R„ <j> = 1, we extend the normal field 7 to some

boundary neighbourhood E by

7(x) = /     Dd(x — p(x)z)4>(z)dz.

If E is sufficiently small, then \Dd(x) - Dd(y)\ < G2(fi)|x - y\ in E, and hence

|7(x) - Dd(x)\ < f    \Dd(x - p(x)z) - Dd(x)\<j>(z) dz < C2p(x)   for x E E.

Also we have

f'D,f(ï) = /   [Dijd(x - p(x)zh3 - Dlp(x)13'D}k d(x - p(x)z)zk}(j>(z) dz

and a similar expression for 7lP¿7J(x), so \i3Dn3\, \^lDiq3\ = O(p). In the same

way, we can show that \D^\, |7fcP27fc| = 0(1) and |P27| = 0(pa~1). Hence

4Fl3DikuD0(ckm)Dmu > -C(n)(p[£C2]1/2^\D2u\w^/2 + K\D2u\pv),

2Fi3Dij(ckm)DkuDmu > -C(n)[p£ + Aw^vp«-1}.
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We now set

w = w' + (Mi/ai)u* + a2Miv(p + p1+a/(l + a))

and look at a point xo G E where w attains its maximum. As before, we can

arrange for xo G E if Mi is sufficiently large. But then, at xo,

Fi3DljW > aa2Mit;pQ-1 - c(fi)At4/2wpa~\

which is positive if Mi is large enough. This contradiction leads to the desired

estimate in Theorem 3.4 and a similar analysis, using a suitable change of variables,

applies in Theorem 3.3.

4. Holder estimates for first derivatives. Holder estimates for the first

derivative of solutions of the boundary value problem (1.1), (1.2) follow from the

boundary weak Harnack inequality, Lemma 2.1, in much the same way as the corre-

sponding interior estimates are derived from the interior weak Harnack inequality

in [30]. Since we may assume at this stage that the gradient has already been

bounded, we formulate our result under hypotheses corresponding to FI*, F3* in

[30].

THEOREM 4.1. LetdnEC3 anduEC3(n)nC2(U) be a solution of (1.1), (1.2)
with \u\ + \Du\ < K in fi. Suppose that F and G satisfy the structure conditions:

(4.1) A < p\;

(4.2) F(x,z,p,0)<poX;

(4.3) |PP|, (1 + |r|)-e|P*l, (1 + |r|)-e|Px| < /*iA(l + |r|);

dG
(4.4) x>ßo,    \G\, dXi

<P-ißo,        i = l,...,2n + l,

for all X E T with \z\ + \p\ < K, where p,po,ßi,ßo are positive constants and

9 < 1. Then there are positive constants a and C depending on n,p,po,pi,K,9,

and fi such that

(4.5) [Du]a,n < C.

Note that condition (4.2) is implied (at least for an equivalent problem) by either

A being bounded away from zero or F(Xo) = 0 for some Xo E T. Condition (4.4) is

simply a quantification of the fact that G G G1(r/) is oblique. Similarly conditions

(4.1), (4.2), and (4.3) automatically hold for quasilinear elliptic F with coefficients

inG1(îïxRxRn).

PROOF. Because of the interior estimate [30, Theorem 5.1] (which clearly ex-

tends to positive 9 < 1), it suffices to prove a Holder estimate only at boundary

points. By the usual flattening of dfi near a point y, which we can take as the origin,

we thus reduce our consideration to the half-ball B+ = {x G Rn | |x| < 1, xn > 0},

with boundary condition (1.2) holding on the flat portion, P° = {x G R™ | |x| <

l,xn = 0}. As in [30, Lemma 7.2], we introduce functions of the form

w± = wf = ±Dtu + ev'       (0<e<l),

where / = l,...,n — 1 and v' = |P'w|2 = Yl?=i \Diu\2. By differentiation, we
obtain

-2eC2 + FV'Dhw* + FiDiw± + 2ev'6F ± (FzDlU + Fxl) = 0.
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Using the mean value theorem and conditions (4.1) and (4.2), we can then estimate

from equation (1.1) itself, as in the discussion following Lemma 3.2,

I V/2
(4.6) \Dnnu\<npi    J2   (Dtju)2\      + Mo-

\¿+j<2n J

Now by the ellipticity of P,

n-1

C2 = Y,Fl3DikuDjku>\   J2   {Diju)2,
fc=l i+j<2n

and hence using the condition (4.3), we obtain the differential inequalities

(4.7) -F'DijW* < AC(|P>w±|2 + 1),

where G = C(n,p,po,ßi,0,Mi,e).   Furthermore, by differentiation of (1.2), we

have on P°,

(4.8) |G-Wt<xC

for C = C(n,pi,Mi).  We now choose p in accordance with Lemma 2.1 and for

0< R < g, set

WÊ = Wt%=   sup wf
G(p,R)

where as in §2,

G(p,R) = {|x'| < P,0 < xn < pR},

(R) = G'(p,R) = {|x'| <R,pR<xn< 3pR/2}.

Applying Lemma 2.1 to the functions WfR - w±, we thus obtain

G(2R) JGi2R)
?4R-"*)*)      <C{WtR-W±+R},

where /c = K(n,p) > 0 and G depends on the same quantities as in (4.7). Let us

now set
n-l

W(R) = Yl oscG(p,R) Dlu
1=1

and sum the above inequalities over all of the functions wf. With e chosen suffi-

ciently small, in particular e = 1/lOnMi, we then deduce (similarly to the interior

quasilinear case of Ladyzhenskaya and Ural'tseva described in [9, Chapter 13])

w(4Ä) < C{uj(4R) - _(„) + R},

and hence by the standard argument [9, Lemma 8.23], we obtain for the tangential

gradient D'u = (Diu,..., P„_iu),

(4.9) oscB+ D'u < CRa

for all R < 1, where G and a are positive constants depending on n, p, /io, Mi > Mi, fi.

A Holder estimate for the full gradient at the boundary follows readily from (4.9).
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For, using the boundary condition (1.2) itself, we may infer (4.9) for Dnu restricted

to P°, that is

(4.10) oscBo Du < CRa,

where BR — {\x'\ < R,xn — 0} and G and a depend on the same quantities as in

(4.9). But then the corresponding estimate in BR follows by applying the boundary

weak Harnack inequality [9, Theorem 9.27] to the differential inequalities (4.6) for

the functions

w± — ±Diu + e\Du\2,       1 = 1, ...,n,

used in the interior case [30, Theorem 5.1]. Combining the resultant estimate,

(4.11) oscB+ Du < CRa

with the interior estimate [30, Theorem 5.1] then yields the global estimate (4.5). D

We remark that the use of the boundary weak Harnack inequality [9, Theorem

9.27] can be replaced by elementary barrier considerations. Alternatively we can

proceed directly from the tangential gradient estimate by more elaborate barrier

arguments as in [22, §5]. By using the function p, described at the end of §3, to

effect the boundary flattening and using Lemma 2.2 in place of Lemma 2.1, we see

that Theorem 4.1 remains valid for dfi G C2,n, n E (0,1), with the constants G and

a depending also on r?. Further, the difference quotient argument described after

Lemma 3.1 shows that it need only lie in W2'q(n) for some q > (2 — 9)n. Also it is

evident that the condition on Fx and Fz in (4.3) can be relaxed to

(4.12) Fx,Fz=o(\r\2)    as r -» co

in which case we must take q > 2n. In the case of two variables we may take 9 = 1

in Theorem 4.1 and simply let w = DiU in its proof.

5. Second derivative bounds. Now we obtain bounds on the second deriva-

tive of solutions of the boundary value problem (1.1), (1.2). In the interior of fi,

these follow from [30, Theorem 6.1] so again our main concern is with estimates

near the boundary (although we provide an alternative derivation of the interior

bound). The boundary estimate proceeds in two stages. First we obtain one-sided

bounds on the pure tangential derivatives and then two-sided bounds on (essen-

tially) the pure normal derivatives. The mixed derivatives are estimated through

the boundary condition and then the equation itself can be used to bound all the

derivatives. The tangential estimate is based on the method of §3 as well as Krylov's

idea [11], already used in [27], of introducing new independent variables; moreover,

the dependence of the estimates on various quantities must be displayed explicitly.

The normal estimate is also more complicated here than in [27] although our un-

derlying philosophy is to treat the boundary condition (1.2) as being essentially the

condition 7 • Du — 0. A new idea here is to use a boundary gradient estimate for

the solution of a Dirichlet problem with C1,a boundary data similiar to those given

in [10, 15].

We begin by using Krylov's technique to give an alternative proof of a variant of

the interior second derivative bound in [30, Theorem 6.1] (see also [30, Theorem

7.5]).
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LEMMA 5.1.   LetuE G4(fi) be a solution of F[u] = 0 m fi with \u\ + \Du\ < K
in fi. Suppose that F satisfies the structure conditions:

(5.1) A < /zA;

(5.2) |P(x,0,p,O)|</iOA;

(5.3) IrllPpUP.UP^/üAlrl2;

<5-4> ^X^ = dXdXl^Y^

d2F

<M2A{|r|3|j/|2 + |r||ç|2 + (|y||r| + |ç|)|s|}

for ail X = (x,z,p,r) G T with \z\ + \p\ < K, \r\ > M and for ail Y = (y,w,q,s) G
Rn x R x R™ x Sn where y = (y,w) and p,po,pi,p2 and M are nonnegative con-

stants. Then there are constants C and 9 depending only on K,M,n,p,ßo,ßi

and p2 such that if B = BR(y) C fi and a = oseb D'u < 9, where D'u =

(Diu,..., Dn-iu), then

(5.5) supnR\D2u\ < Ca/R + p0 + M,
B

where r)R(x) = (1 — \x — y\2/R2)2. Further, the estimate (5.5) remains valid if B is

replaced by B D fi for any ball B = Pß(t/) with y En and \D2u\ < M on <9fi fl P.

PROOF. For f G Rn, set «$ = £■ Du, Yj = (tl,u^,Dui,D2ui), w = w(x,£) =

Diju(x)C^, r/(x,0 = 1 - |x|2/P2 - Id2, M2 = supBñXBlr?t¡), and M2 =
suPBfiXB, VRW- Without loss of generality we can assume that y = 0, Du(y) = 0

and a < 1. We then set

n-l

(5.6) w = r)w + M2v'/2a2,        v' = ]T \Dku\2.
fc=i

Our first step is to relate M2 and M2. Maximizing over £, we have

Dt(nw) = -2tyw + 2nDijUt:3 = 0,

and hence

(5.7) Cw = rlDlJut:3,    |£|2 = r,,    r,R = 4|£|4

and therefore M2 = M2/4. Furthermore it follows from (5.1), (5.2), that for each

xGfi,

(5.8) \D2u(x)\<(n-l)p sup w + po + M,
líl=i

so that the estimate on 7]r\D2u\ follows from an estimate on M2. We now observe

(see [30, (6.3)]) that

Fl3Di3w = -7(X, K€) - F'DiW - Fzw,

so with B% given by B% = F% - (2/r¡)F13 Djï\, we have

Fi3DijW + BWiW = a~2M2C2 -r]I + w(-Fzr¡ + F'D.r, - Fl3Di3r,)

(5.9) „ .    /      , 2    • • \
- a~2M2 lFzv' + FkDku + -Fl3DinDjkuDku\ ,
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where summation over k runs from 1 to n — 1. In order to control the third

derivatives of u occurring in 7 on the right-hand side of (5.9), we set

Ai3 = -A/Wl + P2|£| |P2u|sign(Piitxi)

so that by (5.4),

I < -2Al3Dl3uç + Xp2(2 + K2)\i\2\D2u\3

for |P2u| > M. Using the remaining structure conditions (5.1), (5.2), (5.3) in

(5.9), together with (4.6) and the definition of a, we then obtain for |P2u| > M

and nw > M2/2, the differential inequality

Fl3Dl3w + 2nA%3Dl3mut:m > M2C2 \ \ - d 11 + —^- +
a2 \       aRM2     (RM2)2) )

where Gi is a constant depending on n,K,M,po,ßi and p2. Moreover if M2 >

3Cia/R, a < l/y/W¡, we have

Fi3DijW + 2r)Ai3Dl3mutm > M2C2/2a2.

Since we are maximizing with respect to x and £ we introduce some appropriate

notation. Namely, we write P¿+n for d/dt]1, i = 1,..., n, and we let o, t be indices

running from 1 to 2n. We need to show that if M2 > Ca/R and a is sufficiently

small, then GaTDarw > 0 for some positive matrix [G"T]. By calculation

2 *
Di+njw = -Dj^wty - 2£lDjW + 2r¡Dijmuí,

Dt+n,3+nw = -2(t?D3rnu(r + Dimure) - 26l3'w + 2r,Dl3u,

so if
(Fi3, a=l,T=j,

G"T = < A13,       o = i,T = j + n or o = j + n,r = i,

{G6'TT,    o,T>n,

for some positive G, then

G°TDaTw = F%3DijW + 7]A13Di3mut:m - Al3DinDjmuim - -Al3ÇD3w

+ -AiJ'ti(Djri)w + -\-Ai3tyDjkuDku + G(-8w - 2nw + 2nAu).
r¡ J ■'.        a¿r¡

We now choose G to make [GCTT] positive; in particular we take G = ^ \A%3\2/\.

Consequently at a maximum point (xo, £o) of w, we have Dw = 0 and therefore

G°TDaTw > M2C2 (^2 - G2 ( 1 + -¿— ) }
\2a2 V       aM2Rj J

provided our previous restrictions apply, where now C2 depends only on n, K and

p2. Finally we deduce G"TD„Tw > 0 at (x0, £o) for M2 > Ca/R, a < 9 if G and

9 are chosen appropriately in terms of the indicated quantities in the statement of

Lemma 5.1, which is thus proved.    D

We remark that conditions (5.1), (5.2) in Lemma 5.1 are precisely (4.1), (4.2)

in Theorem 4.1 but that (5.3) is more general than (4.3).  Condition (5.4) is the
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corrected version of condition F4* in [30] (which is clearly incorrect as presently

written). If we replace D'u by the full gradient Du, which is adequate for our

purposes here, then the condition (5.2) becomes superfluous [30, Theorem 6.1].

However the argument given above is useful in the present context as our one sided

tangential situation boundary estimates are proved by adjustments analogous to the

first derivative situation in §3. Moreover with D'u replaced by Du, and C2 replaced

by ¿2, the above proof extends to embrace nonuniformly elliptic equations, subject

to the more general structure conditions

(5.1)' k\r\2<p£2;

(5.2)' F(x,z,p,0)<poX(x,z,p,0);

(5.3)' \r\\Fp\,Fz,\Fx\<pi£2;

(5.4)' 7(X, Y) < M2{A(|r|3|y|2 + \r\ |*y|2)(AA)1/2(|1?| |r| + |9|)|s|}.

Furthermore if pi (except for the Pp bound) and p2 are sufficiently small, the

estimate (5.5) does not require a restriction on a = oses Du. It is also evident

from the proof of Lemma 5.1 that conditions (5.3), (5.4) (or (5.3)', (5.4)'), need

only hold for rijyiyj > M|y|2 rather than |r| > M as asserted and |P2| may be

replaced by Fz. These observations are also applicable to the study of obstacle

problems.

The pointwise relation (5.8) between the maximum and minimum eigenvalues

of the Hessian [D2u] plays a crucial role in the proof of Lemma 5.1. For our tan-

gential second derivative estimates, the corresponding relation, which is no longer

pointwise, is not proved so readily because £ ranges over a smaller set of directions.

To overcome this difficulty we prove (in Lemma 5.3) estimates on other derivatives.

For now, however, we assume the appropriate analogue of (5.8). When we consider

tangential derivatives, as in the next lemma, we shall identify R"_1 with the set

{£ G R"|£n = 0}. We also recall the definitions of P¿ and BR from §3.

LEMMA 5.2. LetuE C3(B+UB0)r\C4(B+) satisfy F[u) =0 in B+, G[u\ = 0

on dB+ with \u\ + \Du\ < K in B+ and for R E (0,1) set

M+(R)=     sup     rfRDijuCi3/^2,        M2(R) = sup nR\D2u\.
fl+xR»"1 B+

Suppose there are constants p3 and M(R) such that

(5.10) M2(R) < p3M£(R) + M(R)

and that there is a continuous increasing function u with w(0) = 0 for which

|PAi(x)-P'u(0)|<w(|x|),     |P2u(x)| < w(|x|)/xn    forxEB+.

Suppose also that F satisfies the structure conditions (5.1), (5.2), (5.3), (5.4) with

fi = B+ while G satisfies

(5-11) dXi

d2G
- MlX'        dXdXYiYj - M2X'7'

2

for all X = (x,z,p), with x E B°, \z\ + \p\ < K and Y E R2n+1. Then there are
constants Ro E (0,1) depending only on K,p,tio,pi,p2,p3,n,uj andC, depending

also on R and M(R), such that for each R E (0, Po], we have

(5.12) M}(R) < C.
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PROOF. For £ G Rn_1, ai,a2,P positive constants, define v', n, w and M2 as

in Lemma 5.1 (with the supremum in the definition of M2 now over BR x {|£| =

1, £" = 0}). Then set

rj = n + a2M2xn\tl\2,        w — rjw + aiM2v'

and choose Po so small that

a2xnw\t:\-2 < \,    ai(v'y/2<\,        v'<l

for x G PBo, 0 < |£| < 1, and let P G (0, Po]. At a maximum of w, it is readily

seen that nw > M2/2 and that

(5.13) r?P¿fetí£fc = (l + a2M2Xn|£r4)ti}£¿   for i = 1,... ,n - 1,

r, = |£|2 + a2M2x"|£|-2,

so 77/2 < |£|2 < 3r,/2.

Now if M2 > P-1 + M(R), then, as in Lemma 5.1, there is a constant «o

depending on K,p,po,ßi,ß2,ß3,n,a2 such that for ai > ao we have

Fl3DijW + 2nA%3D%3kut:k > (ai/2)M2C2

at a maximum of w. Since

Pn„fcu£fc = -=^|    Yl   FlJDl3kue + FWikue+Fz(Du-0 + Fx-n
[ i+j<2n J

we may, by suitable redefinition of A13, assume that Ann = 0. By increasing

«i as needed, we then infer that w cannot attain its maximum where xn > 0 if

M2>1/P + M(P).
We now consider a boundary maximum for w. On P° x Rn_1, we have

G^iW = (GWiriw + riGlDlW + aiM2GiDlv' + a2M2«)|£|-2x.

Since G'At/ = -Gzv' - GXkDku, and w|£|-2 > M2/2 > i it follows that

GiDiw>(a2-C(K,pi,n))M2w\t:\-2x + GiDiW

provided M2 > P_1 + M(R). We now differentiate the equation G[u] = 0 twice in

the tangential direction £ to obtain

(5.14) G¿Dikut:k + GzDu ■ £ + Gx ■ £ = 0,

(5.15)
- GlDiW = G^DikU^Djmur + 2GlzDikut:k(Du ■ £) + 2GX ■ £P¿&w£fe

+ Gzz(Du ■ £)2 + 2(GZX ■ £)(Pu • £) + Gijtft? + G2w.

Now from (5.14) and the first structure condition in (5.11), we have

\Dnkue\ < pi (J2 \D*<k\ + (K+ l)líl )

while from (5.13) we have

a2M2xn|£|-4 < 2a2nwxn\t:\-i < 1.
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Combining these inequalities with (5.15) and the second structure condition in

(5.11) (together with the estimate r\2 < 1 < w2), we therefore infer that

rjGW.w > -C(K,m,p2,n)r,w2\t:\-2x.

Consequently

GlDiW > (a2 - C)M%w\t\-2x > 0

for a2 = C and thus w cannot attain its maximum on P° x Rn_1, and the lemma

is proved.    G

Of course, by virtue of the condition (5.10), we infer immediately a bound on

t]r\D2u\ and, in particular, on |P2u(0)| under the hypotheses of this lemma. By

means of a more careful analysis of its pre of we can improve the form of the estimate

on M£. In particular, if the condition (5.4) is strengthened to

(5.16) ?(X,Y)<p2\(\r\\y\2 + \y\\s\)

(so that F becomes jointly convex with respect to p and r), then the hypothesis

(5.10) can be dispensed with, and the estimate (5.13) is independent of p3 and

M(P). We also note here that the condition (5.11) is merely a one-sided quantifi-

cation of the statement G EC2.

To complete our second derivative estimation, we need to establish (5.10). As a

preliminary result, we derive a bound on GtDinu, which is the correct analogue of

Dnnu for the nonlinear boundary condition. Because of the nonlinearity of G the

method of [27] is inadequate here and in its place we employ a subtle argument

based on the boundary gradient estimates on [10 and 15].

LEMMA 5.3. LetuE C2(B+ UP0) nG3(P+) satisfy F[u] = 0 in B+, G[u] = 0

on B°, \u\ + |Pit| < K, and for R < 1, set

M'(R) =       sup      m^ijuCi^m2.
B°nßHxR"-»

Suppose F satisfies the structure conditions (5.1), (5.2), (5.3) with fi = B+-whik_G^

satisfies

(5.17) x > A>;    |G|,
dG
dXi

ñ2C
<Mi/?o;    g^^YY, >-p2ß0\Y\

for all X = (x, z,p) with x E B°, \z\ + \p\ < K, and all Y G R2n+1. Then, if a and

61 are positive constants satisfying o < 1 and

\D'u(x) - D'u(y)\ <6i\x- y\°   for all x,y E P°,

there exists a constant Ro E (0,1) depending only on o,6i,n,p, and pi, such that

for any R < Ro and arbitrary £ > 0, we have

(5.18) ~ supvrGW^u < eM'(R) + C£
P0   Bo

where Ce depends on e,o, 61, R, K,p,po,pi,p2,M andn.

PROOF. With Po to be determined and R < Ro fixed, we choose y E B° so

that r¡RG%Dinu attains its maximum over P° at y. Setting w = (g + ßv)r]R, where

g(x) = G(x',u(x),Du(x)), v(x) = \D'u(x) - D'u(y)\2 and p is a constant to be
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determined, we shall apply a barrier argument to estimate the normal derivative of

w at y. First we observe that, for i, j = 1,..., n - 1 and x G BR, we have

\Di(nR(x)[Dju(x) - Dju(y)})\ = \DinR(x)[Dju(x) - Dju(y)\ + nR(x)Diju(x)\

<^|x-2,r + M'<|+M'

if SiRq < \. Since g = 0 on P°, it therefore follows that

w(x) < ~p(r,R\D'u - D'^yyyn^v1^2

< pn2T(l/R + M')T62-T\x - y\2°^-°T

for x G BR and any r G (0,1). In particular for r = (4 — 7<r)/(4 - 4rj), o < 4/7, we

have 2ct + t — or = 1 + o¡4 and hence

(5.19) w(x) < pCi(8i,n,R,o)(l + M')T\x - y\1+a/i

for x G BR. We now need a suitable differential inequality for w on BR which we

get by estimating Ft3DijW. First from the structure conditions (5.17), it follows

that
Fl3Dijg > -C(K,pi,p2,n)ß0A(l + \D2u\2),

\Dg\<C(K,pl,n)ßo(l + \D2u\),

so utilizing (5.1), (5.2) (or rather the consequent bound (4.6)), we obtain

Fi3Dl3(r,Rg) > --ßßo(nRC2 + R~2)

where p depends on K,p,po,Pi,ß2,n and M. Furthermore by (5.1), (5.2), (5.3)

Fi3Dt3v = 2C2 - FlDlku(Dku - Dku(y)) - Fzv - Fk(Dku - Dku(y))

> 2C2 - (2¿i|* - y\° + (6i\x - y\°)2)pi(\D2u\2 + 1)A

>fc2-A
if R is chosen sufficiently small, in terms of n, p, po, Pi, ¿i and o. Since \Fl3Djv\ <

2(fiC2)1'2, we infer that

F*3Dl3(r,Rv) > mC2 - GP-2A

and therefore for p = pßo, we have

Ft3Di3w > -G2A

where G2 = C2(K,p, p0,Pi,P2,n, M, R). Next we set (f>(x) = \x - y\1+"^, and

note that 4> E C°(BR)nC2(B^) and \D<i>\ + (xn)1-a/4\D2(j)\ < $ for some constant

$ = $(n,<r). Hence for

W = <f> + 4p(l + $)(xn - (xn)1+ff/4)/<r,

we have F%3DijW < -A in BR. Finally we set

p* = (-flCi(i + M'y + c2)ßo

and note that w = 0 on dBR n B+, w > 0 in P+. Hence

Fl3Dtj(w - p*w) > 0   in P¿,

w - M*w < 0   on 5(PB n P+)
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so the maximum principle implies that w < p*w in BR. Therefore, in particular,

Dnui(y) _ p*Dnw(y). Upon computing Dnw(y), we see that

(5.20) Dnw(y)<C(l + M'yßo.

Now using the fact that v, Dnv, and g vanish at y, we obtain

(5 21) Dnw(y) = m(GiDinu + GzDnu)(y)

>VRGlD>nu(y)-ßiKßo.

The desired estimate follows from (5.20) and (5.21) by recalling the choice of y and

noting that for any 9 > 0, we have (1 + M)T < C(t, 9) + 9M'.    D

Note that the above proof uses the Holder continuity of Du in a crucial way,

whereas only continuity is required for Lemmas 5.1 and 5.2. The hypotheses of

Lemma 5.3 may be weakened slightly in that A can be replaced by Fnn in (5.1) and

A|r|2 by £2 in (5.3). Note also the second derivative conditions in (5.11) and (5.17)

involve opposite inequalities. Intersecting (5.11) and (5.17) yields the structure

condition

(5.22) |G|,
dG
dXi

< MiX,
d2G

<M2X.        i,j = l,...,2n + l,
I dXiXj

for all \z\ + |p| < K, which simply quantifies the hypothesis G G G2(r').  To see

this, we observe that (5.22) implies |<91ogx/d-X¿| < p2 for \z\ + \p\ < K, and hence

supx < C(n, K, diamfi, /x2)inf x,

so that (5.17) holds with ßo = inf x and appropriate pi,p2.

It is now a simple matter to infer our second derivative estimates.

THEOREM 5.4. LetdnEC4 and let u E G3(fi) n G4(fi) be a solution of the

boundary value problem (1.1), (1.2) with \u\ + \Du\ < K in fi. Suppose that F and

G satisfy the structure conditions (5.1), (5.2), (5.3), (5.4), and (5.22). Then for any

CE (0,1),

(5.23) sup|P2u| <C(K,p,po,pi,p2,n,o,n,M,[Du]a.çi).
n

Furthermore if (b.3) is replaced by (4.3), we have

(5.24) sup|P2u| < C(K,p,p0,Pi,P2,n,n,9,M).
Q

PROOF.  From the last statement in Lemma 5.1, a standard flattening of the

boundary argument, and the remarks following Lemma 5.3, it follows that we need

only verify (5.10) under the other hypotheses of Lemmas 5.2 and 5.3. Moreover if

we set
M±=    sup   (±r,RDt3uC^)/\î\2,

B°xR"

m'±=  sup (±VRDijueé)/\t:\2,
BOxRn-l

then (5.8) will imply (5.10) provided we show that

(5.25) M+ < Gi + (1 + e)M'+ + eM'_

for all e > 0, where Ci is a constant depending on s and the quantities in (5.23).
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To prove (5.25) we choose y E B° and £ G R" with |£| = 1 so that

M+ = riR(y)Dt3u(y)Cc:3.

Now if we define vectors c and ç by fn = Ç n = 0,

ç^c-cg'/x, r = (c/x)(íi + n    i=i,...,n-i,
then |f|, |x?| < C(pi) and Dtf£& = Dl3u?c3 + DíjuV& + ((D2Gi/X)Dtnu
so that

(5.26) M+<M'+ + DijufG3 + C2 + eM'+ + eML,

where C2 is the constant of Lemma 5.3. Since çn = 0, we have

DijuVG3 = -GzDu--c~Gx-ç< G(mi)|?|x < Cí>i).

Inserting this estimate in (5.26) gives (5.25). This proves the estimate (5.23). The

last assertion in Theorem 5.4 then follows by combination with Theorem 4.1.    D

We close this section by pointing out that the regularity hypotheses in Theorem

5.4 can be relaxed. First, similarly to the situation in §3, we need only assume

¿>fi G C3,c" for some a > 0. Moreover, all the results in this section remain valid

for u G G2(fi).

To verify this last assertion, we first use standard difference quotient arguments

[9, §§6.4 and 17.5; 1, §11] along with the V estimate [1, Theorem 15.1] to infer that

u E W3'q(n) n V^io'c (fi) for all q > 1. This regularity clearly suffices for Lemmas

5.1 and 5.3. In Lemma 5.2 we replace w by

wh(x, £) = [u(x + h£) + u(x - /i£) - 2u(x)]/h2.

The argument of Lemma 5.2 is then modified according to the discussion after

Lemma 3.1, taking into account that w —► û; in W1,q.

Note that for n = 2, Lemma 5.3 and the gradient estimates of Von Wahl [33],

directly imply (5.23), (5.24) with 9 = 1 for <9fi G G3 and without the second

derivative condition (5.4).

6. Holder estimates for second derivatives. We arrive now at the final

stage of our series of estimates. Assuming that we have bounded u along with its

first and second derivatives, we estimate the Holder norm of the second derivatives.

In outline, the derivation of this estimate is similar to that of the second derivative

bounds in §5. A partial estimation of pure tangential derivatives is accomplished

by a modification of known methods for estimating all pure second derivatives for

the Dirichlet problem [9]. On combination with a full estimate on the quantities

GlDijU, (j = 1,..., n), we deduce the complete bound for D2u. A new complication

is that our one-sided estimate involves the behavior of the second derivatives in a

neighborhood of the boundary, while initially the two-sided estimate is valid only

on the boundary. This difficulty was overcome in [27] by conversion to a divergence

structure situation. Here we proceed under more general hypotheses by using the

Schauder interior estimates, although the elimination of the hypothesis (6.3) below

would be of some interest. As the nontangential derivative bounds can, unlike

the case in Lemma 5.3, be dealt with independently of the one-sided tangential

derivative bounds, we consider them first.
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LEMMA 6.1. LeitiGG1'1(P+UP°)nG4(P+) be a solution of F[u] = 0 in B+,
G[u] =0 on B°, with \u\ + \Du\ + \D2u\ < K in B+ and suppose there are positive

constants a < 1 and ßo such that, for fi = B+, F and G satisfy the structure

conditions

(6.1)

(6.2)

(6.3)

A</iA;     \FP\,\FZ\,\FX\ < pi\;

d2F

dXxXj

1ÔP

XdX

Y>Y3<p2X{\y\2 + \q\2 + (\y\ + \q\)\s\};

(6.4)

(6.5)

<M3;

<9G
dX < M2/3o;

d2G

dXidXi
< P2ßo;

\r\ < K} and for all Y = (y, q, s) G

Gn > ß0;

Gl(0) = 6tn

for allX eTk = {(x,z,p,r) | xG Q,\z\ + \p\
Rn+1 x R™ x Sn.  Then there are positive constants n depending only on n and p

and C depending also on K, n, a, p, pi,p2, p3 such that for any R < 1

(6.6) oscB+ Dinu < CRn,        i = 1,..., n.

PROOF. Let us define, similarly to the proof of Lemma 5.3,

g(x) = g(x', xn) = ^G(x', u(x), Du(x))
Po

and set of3 = Fi3/X, L = ai3Dij. Then

\Lg\ < C(K,n,pi,p2)    in P+, g = 0,    on P°.

It then follows from Krylov's boundary Holder estimate [12, Theorem 4.1], in par-

ticular inequality (2.14) in §2, that there is a constant n = n(n, p) E (0,1) for which

the function v, given by v(x) = g(x)/xn, satisfies

(6.7) oscB+ v < CRP    for all P < 1,

where now G depends on K,n,pi,p2 and p. Next we observe that the interior

second derivative Holder estimate [30, (6.16)] implies that for a further constant

£ = e(n,p) E (0,1), we have |P2u|*.B+ < G whence by condition (6.3)

\al3\*aE,B+ + \Lgya£.¡B+<C

where now and henceforth C depends on K,n,p,pi,p2,p3 and a, and the interior

norms are as defined, for example, in [9, Chapter 4] or [30, §2]. Now we can apply

the Schauder interior estimate [9, Theorem 6.2] to conclude, in particular, for any

ball Px = BR(y) with B2 = B2R(y) C P+ and any n E (0,1],

(6.8) R-^Dg^.B, + [Dg}o-Bl < C (^\g\o-,B, + R

The combination of (6.7) and (6.8) readily yields a local boundary estimate

(6-9) [Dg]^   < C,
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where n = n(n,p) E (0,1) [24] (see [9, Theorem 8.29]); however for our immediate

purposes we need only use the gradient bound on (6.8) to deduce for any point

y E B+4R = \yn,

\Dg(y)\ < G   - sup Iff
\K BR{y)

+ R) <C\y\n

by (6.7), provided we normalize v(0) = 0. Writing

ßoLPg = GnDinu + (G3 - 83nGn)D%3u + GzDiU + GXi,

the desired result then follows from the conditions (6.3), (6.4).    G

Note that since F G G2, A is automatically in G0,1 and also by virtue of the

discussion preceding the statement of Theorem 5.4, the conditions (6.4) may be

replaced by the hypotheses

(6.4)'
dG

dp
<MX,

dG

dz

dG

dx
< mix;

d2G

dX%X,
<ß2X,

while the condition (6.5) may be achieved through a linear coordinate change:

xi -> xi - xnGi(0)/Gn(0),        i < n, xn -> xn.

For equations in two variables, Lemma 6.1 (without the restrictions (6.2), (6.3))

follows from Morrey's Holder estimate [9, Theorem 13.4] and, when adjoined to

the corresponding interior estimate [9, Theorem 17.11], it implies a global second

derivative Holder estimate which we return to later in this section. In the general

n-dimension case there are n(n -1)/2 > 1 second derivatives not directly controlled

via Lemma 6.1. To get appropriate control over these other derivatives we modify

the proof of [30, Theorem 6.1] using our boundary weak Harnack inequality, Lemma

2.1, and in this way obtain the global Holder estimates.

THEOREM 6.2. Let u E C3(U) n G4(fi) be a solution of the boundary value

problem (1.1), (1.2) with \u\ + \Du\ + \D2u\ < K in fi, and suppose that F and
G satisfy the structure conditions (6.1), (6.2), (6.3), (6.4)'. Then there are pos-

itive constants r¡ = n(n,p) < 1, Gi = Ci(K,n,p,pi,p2,p3,a,n) and C2 =

C2(K,n,p,pi,p2,diamn) such that:

(6.10) [D2u\n,u < Ci;

(6.11) [P2u]^n'<G2[dist(fi',5fi)]-"

for any fi' CC fi.

PROOF. The Evans-Krylov interior estimate (6.11) is contained in [30, Theorem

6.1] so that we need only estimate the Holder norm near ¿>fi which we may assume

has been locally flattened with (6.1), (6.2), (6.3), (6.4) holding. Now for (x, £) G
B+ x Rn_1, with |£| = 1, we set h(x, £) = DijUty^3 and note that by appropriate

adjustment of u, we may assume without loss of generality that 0 < h < 1. As in

Lemma 6.1, we see that for any such £, the function h satisfies

/

-FijDijh < XC

\

Y^    \Dijku\ + 1
.  i+j<2n
V    k<n
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Now let £i,..., £m be unit vectors including e¿, (e, ± e3)\/2, i,j = 1,..., n — 1,

where Ci,..., en_i denotes the canonical basis in Rn_1. Set

M

hk(x) = h(x,t:k),    k = l,...,M,        v' = J2(hk)2,        ai3=Ft3/X
k=l

and for e E (0,1) to be chosen later, set

wk = hk + ev',       k = l,...,M.

If we write E = {£i, • • •, £m}, then we obtain (similarly to the interior case [30,

(6-7)])
-a%3DijWk < p   in P+, — Gp • Dwk < Pi    on P°

for Ji = C(K,n,p,pi,p2,M)/e2 and px = C(n,K,p,pi,p2,M)(l + e). Thus we
are in a position to apply the weak Harnack inequality, Lemma 2.1. To do this we

set, for R < ±, p = l/(4np),

Eñ = G(p,R) = {|x'| < P,0 < xn < pR},

G' = G'(p,R) = {|x'| <R,pR<xn < 3pR/2}

and, for s = 1,2, k = 1,..., M,

M

WJfï = supwk,    M¿s) = sup/ifc,    mks) = inf hR,    u'(sR) = V] oscEsR hk.
S.R E,R Esfi ¿Tj

Applying Lemma 2.1 to the functions W^ ' — Wk, we infer that there are constants

G and k depending only on n, p such that

{«-"L»í* - ""*»" ) * £ c(<2' - <" + ^+ThR).

Noting that

W{2) -wk> M{2) - M{k1] - 2eKJ(2R),

wk] - wk1] < Mk] - Mk1] + 2£Pw'(2P),

we infer that

(6.12) (r-71 f (M™ - hk)K\      <Ci(MJc2)-M{k1) + Ksoj'(2R) + pR2 + pxR)

for some Gi = Ci(n,p). Next we conclude from Lemma 6.1 that

(6.13) oscB+ Dinu < p2Re

for some 9 = 9(n,p) and ~p2 = ~fl2(a,K,n,p,pi,p2,p3). We now connect (6.12)

and (6.13). By the Motzkin-Wasow lemma [9, Lemma 17.13], there are positive

constants A*,A*,iV and unit vectors ft,...,£w depending only on n and p, and

functions ak, k = 1,...,N, with A* < ak < A* such that

ai3 =J2ak&&
fc=i
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moreover, we can take these vectors to include e¿ and (ei±ej)/^/2 for i,j = 1,..., n,

i < j, where e, is the ith standard basis vector and fjv = en. We now choose

M = N - 1 and, for k = 1,..., N - 1, we set

& = Sb/kfcl.

,fi til* 0fc = 9k(x) = h(x,^k) = \c'k\2hk + 2$kk\ÍDjnU + (cZ)2Dnnu,
^■U> I  /|2_

Çk = Çk- Kfcl ft*;,

ffN = ffjv = Mx> ?iv) = PnnW.

Since 0 < |f¿| < 1 for jfc < iV, it follows from (6.14) that

(6.15) \gk(x) - gk(y)\ < 4p2Re   for x,y E G',k = 1,.. .,N.

Now setting, for s = 1,2,

AT

G*0 = supfffc,    f/£s) = inf fffc,    w(sP) = V oscSaK £fc,

E.H E<R fc=l

we conclude from (6.12), (6.14), and (6.15) that

(p-|G(G[2)-fffc)K)lK

< CiKeu>(2R) + C2(n,p)(G{k2) - Gk1] + pR2 + PiR + ß2R6)-

The desired Holder estimate (6.11) now follows from this inequality in the same

way that [30, (6.15)] follows from [30, (6.9)].    D
We remark that it follows from linear regularity considerations, or in particular

[23, Theorem 6], that the estimate (6.11) is valid for all r¡ < 1 with constant Gi

depending in addition on n. We also note that the regularity hypotheses in Theorem

6.2 can be relaxed. First of all, by virtue of Lemma 2.2, we need only assume that

<9fi G C3'6 for some S > 0 and, as in §5, u E G2(fi). More significantly, by invoking

the regularity technique of [31] with variable directions, it suffices to only assume

uEC1'1^).

The combination of Theorems 2.4, 3.3, 4.1, 5.4 with Theorem 6.2 now yields

the global estimate, Theorem 1.1, asserted in the introduction. Furthermore by

virtue of our previous remarks concerning the two variable case, we may eliminate

all dependence on the second derivatives of F in this case, so that Theorem 1.1

holds for F G Gx(r) (even C°^(T)) satisfying FI, F2, F3 with dfi G G3. The
assumptions on the boundary data may also be relaxed but this aspect shall be

postponed for a further investigation.

7. Existence results. Various existence theorems, such as Corollary 1.2, may

now be deduced from the estimates of §§2 to 6. We shall present separately the

quasilinear and fully nonlinear cases as the existence theorems for the former only

require G1'" estimates. Moreover our first existence result below for the case of

a quasilinear equation with a quasilinear boundary condition follows directly from

the Leray-Schauder theorem, familiar from the corresponding Dirichlet problem.

For the cases of quasilinear or fully nonlinear equations with general nonlinear

boundary conditions, the nonlinear method of continuity or some related technique

must be used to prove the basic existence theorems although the Leray-Schauder
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theorem can then be used to remove those hypotheses introduced for purely func-

tional analytic reasons. Various of these problems with fully nonlinear boundary

conditions will be discussed.

We begin by recalling the a priori solution bounds from [18, Lemmas 3.1, 3.2]

which we formulate here for fully nonlinear equations. Throughout this section we

shall assume that the boundary value problem

(7.1) F[u] = F(x, u, Du, D2u) = 0   in fi,        G[u] = G(x, u, Du) = 0   in dfi

is elliptic on T and oblique on T' so that A and x are positive wherever they are

defined.

LEMMA 7.1. Let <9fi G G2 and nonnegative p G G2(fi) satisfy Dp = 7 on <9fi.
If there are nonnegative constants Mo and mi such that

(7.2) zF(x, z, Dw, D2w) < 0,

(7.3) zG(x, z, Dw) < 0

for ail \z\ > Mo andw = —(signz)mip, then any solution of (7.1) obeys the estimate

(7.4) |u|o;n < Mo + mi|p|0;n-

PROOF. We only prove the upper bound for u; the lower bound is proved

in a similar fashion. Set v = vq — mip, where vo is a constant chosen so that

sup(u - v) = 0, and let xo be a point in fi where u = v. If xo G <9fi, then

G(x0, v0 - mip(xo), -mi7) = G(x0, u(x0), Dv(x0)) > G(x0, u(x0), Du(x0)) = 0

so we must have

v0 < M0 + mip(xo) < M0 + mi|p|0.

If xo G fi, we have

F(xq,vq - mip(xo), -Dw(xq), -D2w(xq)) = F(xo,u(x0),Du(x0), -miD2p(x0))

> P(xo,u(x0),Pw(xo),P2u(x0)) = 0,

so that again vq < Mo + mi\p\o- Combining these two cases with the obvious

inequality u < vo completes the proof.    □

It is a simple matter to construct p E G2(fi) with Dp = 7 on dfi whenever dfi G

G2. An interesting feature of the above proof is that no monotonicity assumptions

with respect to z are made on P or G. Note also that (7.2) and (7.3) are modelled

on the linear problem

Au-u = f(x)   in fi,        Du ■ 7 = g(x)   on dfi.

An estimate of |u|o based on the linear problem

Au = f(x)    in fi,        Du • 7 — u — g(x)    on <9fi,

is also possible. For this case we recall [18, Lemma 3.1] (in its obvious fully non-

linear form).
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LEMMA 7.2.   Suppose there is a nonnegative constant pi such that

(7.5) (signz)F(x,z,p,0) < piX(l + \p\)

for all x, z,p E fi x R x R™, and a nondecreasing function Mo such that

(7.6) (signz)G < 0   for \z\ > M0(|p|)

and (x,z,p) G fi x R x R". IfuE Gx(fi) flG2(fi) is a solution of (7.1), then

(7.7) Mo;n<G(/ii,M0,fi).

All of our existence results will be stated using Lemma 7.1, the corresponding

formulations based on Lemma 7.2 being left to the reader. The following regularity

result, taken from [23], will also be employed throughout this section.

LEMMA 7.3. Let <9fi G C2-a for some a E (0,1) and suppose that F E G1,Q(r),

G G G1'a(r'). Then any solution u G G2(fi) o/(7.1) automatically lies in G2'a(fi).

For quasilinear F we need only F E G0,1(r).

Lemma 7.3 follows from the intermediate G1,a(fi) estimates of [21] for solutions

of linear problems with Ga(fi) coefficients in G2'a domains. Let us now deal first

with the quasilinear case.

Quasilinear equations. We first consider the quasilinear problem

Q[u] = a%3(x,u, Du)DijU + a(x, u,Du) = 0   in fi,

G(x,u, Du) = 0   on <9fi,

for the special case when G is also quasilinear, that is,

(7.9) G(x,z,p) = b(x,z)-p + g(x,z),

where bl and g are real valued functions on dfi x R.

THEOREM 7.4. Let <9fi G C2'a for some a E (0,1) andai3, a E C1 (fixRxRn),

b1, g E C1'a(dn X R) and suppose that the following structure conditions hold for all

(x, z,p) E fi x R x Rn, some positive function X on fi x R x R™ and nondecreasing

functions p,po,Pi on R:

(7.10) aijtitj > A|£|2    /ora//£GR";

\a*3\<p(\z\)X;     |a|<M|2|)A(l + |p|2);

(7.11) (l-r\p\)\aP3\,\ai3\,K3\<pi(\z\)X;

(1 + \p\)\ap\, \az\, \ax\ < pi(\z\)X(l + \p\2).

Suppose also that 6 • 7 > 0 on <9fi x R and that (7.2), (7.3) hold.  Then the problem

(7.8), (7.9) has a solution u E G2'a(fi).

PROOF. For 6 E (0,1) to be chosen, define a map T: G^fi) x [0,1] -> G1-6^)

by letting u = T(v,o) be the unique C2,aS(Q) solution of the problem

o(a%3(x, v, Dv)Díju + a(x, v, Dv) + v - u) + (1 - o)(Au - u) = 0   in fi,

b(x, v) ■ Du + og(x, v) = 0   on dfi.

It follows from [9, Theorem 6.31] that T is well defined, that u = T(u, a) implies u E
C2'a(U), and that u = T(u, 1) if and only if u is a G2'a(fi) solution of (7.8), (7.9).
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A standard argument, similar to the one in [9, §11.4], shows that T is compact,

and the boundary point lemma implies that T(v,0) = 0 for all v G G1,Ä(fi). Thus

the Leray-Schauder fixed point theorem in the form [9, Theorem 11.6] reduces the

solvability of (7.8) to the establishment of uniform G1,fi(ïî) estimates for the fixed

points of T(-,o). These fixed points are all solutions of

Qa[u\ = oQu + (1 - o)(Au - u) = 0   in fi,

Go-[u] = b(x,u) ■ Du + og(x,u) = 0   on dfi,

and Qa,G„ satisfy the hypotheses of Lemma 7.1 with the same mi as in the hy-

potheses of this theorem and Mo replaced by max{Mo,mi|Ap|o}. Next conditions

(7.11) imply that FI and F3 hold for P = Qa while in addition the quasilinear

structure gives F2. Also G2 and G3 are automatically satisfied for Ga because of

the quasilinearity of the boundary condition. It therefore follows from Lemma 7.1

and Theorems 2.3, 3.3, and 4.1 that any solution of u = T(u, a) obeys the estimate

|u|i,«¡n _ G for some constants G and 6 E (0,1) independent of u and a. Using

this 8 in the definition of T completes the proof.    D

Note that (7.2) will hold for any positive mi if

lim (signz)a(x, z,p)/A(x,z,p) = -co
|*|-»oo

uniformly on bounded subsets of fi x R" while (7.3) will hold for the operator (7.9),

for any positive mi, if

lim (sign z)g(x, z)/b(x, z) • 7 < 0
|a|-»oo

uniformly on dfi. Moreover we need only assume a13,a E G0,1(fi x R x R"), and

if also only b,g E C0,1(n x R), then a simple approximation argument yields a

solution u E G^H) n C2'ß(U) for all ß E (0,1). When the boundary condition

is not quasilinear, even if the differential equation is, the Leray-Schauder approach

is no longer immediately applicable. In its place we use the nonlinear method of

continuity [9, Theorem 17.30].

LEMMA 7.5. Let a,6 E (0,1) and <9fi G C2'a. Suppose that aij',a
E G^fi x R x Rn), G G C1'a(dn x R x R"), aP3,ai3,ap,az E GÄ(fi x R x Rn),

GP,GZ E C1's(dn x R x R") and that (7.10) holds together with

(7.12) ai3 =0,    az<0   tnOxRxR",        Gz < 0    ondfixRxR".

Then, if for some ip E G3(fi) and some ß G (0,a) the set E = {u E C2'ß(UJ \
Q[u] = oQ[ip\ in fi, G[u] = oG{if\ on ¿)fi for some o E [0,1]} ta bounded in G1(fi),
the boundary value problem (7.8) has a unique solution u E G2'a(fi).

PROOF. From [9, Theorem 17.30] and Theorem 4.1 we obtain the unique solv-

ability of (7.8) in C2'0(Tl) and hence in G2-a(fi) by virtue of Lemma 7.3.    G

The smoothness assumptions on Q and G may in practice be weakened through

approximation (see also the discussion after Corollary 7.7). Functions tp can also

generally be chosen to satisfy G[ip] = 0 on <9fi (see [19, Theorem 2]). We can now

prove an existence theorem for quasilinear equations under the natural structure

conditions.
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THEOREM 7.6. Let <9fi G C2'a for some a E (0,1). Suppose that aij,

a E G1(fi x R x Rn) satisfy the natural conditions (7.10), (7.11) while G E

G1,a(n xRxR") satisfies G2,G3, that is

|G(x,2,p')|<Mo(M)x(i + b'l)   (p' = P-(p-ih);

( ■   J (l + |p|)|Gp|,|G,|,|Gx|<Mi(N)x(l + |p|).

Then if (7.2), (7.3) hold for some Mo and mi, the boundary value problem (7.8) has

a C2'Q(fi~) solution.

PROOF. This time we define a map T: G2(fi) x [0,1] -> G2(Ü) by letting
u = T(v, t) be the unique G2'a(fi) solution of

T(al3(x,v,Dv)DijU + a(x,v,Dv) + v - u) + (1 - t)(Au- u) = 0   in fi,

t(G(x,v,Du) + v-u) + (1-t)Du--) = 0   oudn.

We must first show that T is well defined. Assuming temporarily that G satisfies

the smoothness conditions of Lemma 7.4, we apply Lemma 7.4 to (7.14) with \p = 0

and fixed (v,t) E C2(fi~) x [0,1). The set E corresponding to (7.14) is bounded in

Gx(fi) by virtue of Lemma 7.1 and Theorems 2.3, 3.3, because A > 1 - r. Hence

T is well defined on G2(fi) x [0,1). To see that T is well defined for r = 1, we
observe that (7.14) has at most one solution if r G [0,1] and that for fixed v,

the functions T(v,t) are uniformly bounded in C2'a(n) for t E [0,1] and hence

T(v, 1) = limT_>i T(v,t). It then follows from Lemmas 7.1, 7.3 and Theorems 2.3,

3.3, and 4.1 that T is compact, and an argument similar to that in Theorem 7.4

completes the proof.    D

By further approximation of the boundary function G (for example by means of

mollification), we may further reduce the smoothness of G in Theorem 7.6.

COROLLARY 7.7. Suppose all the hypotheses of Theorem 7.6 hold except that G
is only assumed in G0,1(fi x R x Rn) (with (7.13) holding for the weak derivatives

of G). Then the boundary value problem (7.8) has a G^^fi) il G2(fi) solution for

some ß > 0.

More generally we can conclude, in the absence of conditions (7.2), (7.3) in

Theorem 7.6 and Corollary 7.2, that the problem (7.8) is classically solvable if

the family of fixed points of the problems (7.14) is a priori bounded in G°(fi).

Other families may also be substituted. An important feature of Theorem 7.6 is

its applicability to problems which are not uniquely solvable (cf. [9, Chapter 17;

14, Chapter 10; 16, 19], etc.). For example, let / G GX(R) and g G G1'Q(R)
satisfy f(z) = g(z) = 0 for \z\ < 1, -f(z) = g(z) = z/\z\ for |z| > 2. Then all the

hypotheses of Theorem 7.6 are satisfied for the problem

Au + f(u) = 0   in fi,        Du ■ 7 + g(u) = 0   on dfi

provided dfi G C2,a, and any constant in the interval [-1,1] solves this problem.

Note that Theorem 7.6 extends Theorem 7.4. Also Theorem 7.6 includes [18,

Theorem 2] provided we rewrite conditions (7.11) in terms of the operators 6 and

8' from §3. As a special example we consider the problem

Q[u] = Au-u = 0   infi,        G[u] = Pu-7 + g(x,tt)(l + |Pti|2)1/2 =0   on dfi.
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A straightforward calculation shows that the hypotheses of Theorem 7.6 are satisfied

if a G G1'" (dfi xR) and

sup   lim   g(x,2)sign;z < 1.
an |z|-»°o

Using [18] we would need more smoothness of g, dfi, and, more significantly, the

inequality gz < 0.

Before moving on to fully nonlinear equations we digress to point out that the

conditions GZ,GP E C1,ô(n x R x Rn) in the statement of Lemma 7.5 may be

removed at the outset by applying the method of continuity argument with the

weighted Holder space P2+^ (^) fr°m [8] in place of G2'^(fi) and the intermedi-

ate Schauder theory of [21] in place of [9, Theorem 6.31]. A key observation here is

that a solution u E P¿¿_/3)(fi) of Q[v] = oQ[u\, G[u\ = oG[i>} will lie in G2'^).

The weighted Holder spaces can also be used to replace the assumption ifi E G3(fi)

with ij) G P3 , in which case [8, Theorem 2.5 and 19, Theorem 2] shows that

ip can be chosen to satisfy G[ip\ = 0.

Fully nonlinear equations. For fully nonlinear equations, we combine the

method of continuity [9, Theorem 17.28], Theorem 6.3 and Lemma 2.3 to obtain

the following result.

LEMMA 7.8. Let dfi G C4 and suppose that for some a E (0,1), we have

F E C2,a(T), G E C3'a(T') with F concave with respect to the r variables. Suppose

also that X extends to a positive function on T and

(7.15) Fz < 0    onT,        Gz<0    on V.

Then if for some tp E C4(fi) the set

(7.16)
E = {uE G2'Q(fi) I F[u] = oF[dj\ in fi, G[u\ = oGty] on dfi for some o E [0,1]}

is bounded in G2(fi), the problem

(7.17) F[u] = 0   in fi,        G[u] = 0    on dfi

has a unique solution u E G2,a(fi).

Standard linear theory improves the solution in Lemma 7.8 to lie in G3'5(fi) PI

G4-Q(fi) for all 8 E (0,1) and moreover dfi G G4-Q implies u E C4'a(fi). Although

the hypotheses of Lemma 7.8 are easily weakened to conform with those in Lemma

7.4 (e.g. dfi G C3'a, F E C2, Fr,Fp,Fz E G1'"), this greater generality makes

the statements of resuslts much more cumbersome. Therefore we leave it to the

reader to supply refined versions of our theorems. We are now in a position to

prove Corollary 1.2.

THEOREM 7.9. Let dfi G G4, F G G2(r), G G C2(r') and suppose that F

satisfies the structure conditions F1-F5, that is

(7.18) A<MA,    |P(x,2,p,0)|<u0A(l + |p|2),

(7.19) |PP|, |P2|, \FX\ < /_iA(l + |p|2 + \r\),

(7.20) IPrpIj |Prz|, |Prx| _ P2X,

\Fpp\, \Fpz\, \Fpx\, \FZZ\, \FZX\, \FXX\ < p2X(l + \r\),        Frr < 0,
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in T, where po = M)(M)> Mi = Mi(l2l)> M2 = Pi(\z\ + \p\) are nondecreasing, and

G satisfies G2,G3, that is (7.13).
Suppose also that

(7.21) supP2<0,        suPG2<0.
r r'

Then the boundary value problem (7.17) has a unique solution u E G2'a(fi) for all

a G (0,1).

PROOF. When P G G2,Q, G G G3'Q, and A,x are bounded away from zero, the

result follows easily from Theorems 2.3, 3.3, 4.1, 5.3, 6.3 and Lemmas 7.1 and 7.8.

The general case may then be achieved through approximation by boundary values

of the form

P£[u] + £Au = 0   in n£,        G£[u] + eDu ■ 7 = 0   on dfi£

for sufficiently small s > 0, where fi£ = {x G fi | d(x) > e} and Fe and GE are

appropriate mollifications of P and G on fi x R x R™ x S™ and fi x R x R",

respectively.    G

Next we observe that the condition (7.21) can be relaxed through a procedure

analogous to that in Theorem 7.6 with, instead of (7.14), the problems

t{F(x,v,Dv,D2u)+v-u} + (1-t)(Au-u) =0   in fi,

t{G(x, v, Du) + v - u} + (1 - t)Du -7 = 0    on dfi.

We thus obtain the following generalization of Theorem 7.9.

COROLLARY 7.10. Let dfi G G4, F G G2(r), G G G2(r') and suppose that

(7.13), (7.18), (7.19), (7.20) are satisfied and that (7.2), (7.3) hold for \z\ > M0 and
some mi > 0. Then problem (7.17) has a solution u E G2'Q(fi) for all a < 1.

Our estimates are also applicable to problems involving Bellman operators al-

though in this case we cannot make assertions on the regularity of solutions as

strongly as before.

THEOREM 7.II. Let dfi e G4, let {Fk} be a sequence of operators with Fk E

C2(T) for each k and let G E ^'(fixR x Rn). Suppose that (7.13), (7.18), (7.19),
(7.20) hold for Fk,G with piPo,Pi,P2 independent of k and also

(7.23) supPfc z < 0,        supG2 < 0.
r,fc r'

Then the problem

(7.24) F[u] = inf PfeM = 0    in fi,        G[u] = 0    on dfi
k

has a unique solution u E G2'Q(fi) f) G1,Q(fi) for some a E (0,1). Moreover if

G E C^fîi x R x Rn), then u E G^iïï).

PROOF. The operator F in (7.24) may be approximated through mollification

as in the case of the Dirichlet problem [9, §17.5] and the operator G approximated

as for Corollary 7.7. The first assertion of the theorem then follows from Theorems

2.3, 3.3, 4.1 and the interior estimates in Theorem 6.2 while the second assertion

depends also on Theorem 5.4.    □
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We remark that the condition on dfi in Theorem 7.11 can be relaxed by approx-

imation to dfi G C2'ß for some ß E (0,1) (with dfi G C3<ß to imply u E G1,1^)).

The conditions (7.23) may also be generalized as in Corollary 7.10, with a possible

loss of uniqueness. It is also interesting to note that the boundary condition G in

Corollaries 7.7, 7.10 embraces Bellman type conditions of the form

(7.25) G[u] = inf (or sup ) OM = 0   on dfi,
fc   V       k J

where Gk E C2(V) satisfy (7.13), (7.23) uniformly in k.

For equations in two variables, our remarks at the end of §§4, 5, and 6 show

that condition (7.20) can be dispensed with in Theorem 7.9, Corollary 7.10, and

Theorem 7.11 with the operators F,Fk only required to lie in G0,1(r).

Finally we point out that the existence Theorems 7.9, 7.11 themselves can be

used to relax global smoothness hypotheses in our estimates through appropriate

modification of the boundary value problems which cause the given solution u to

become unique. In particular we find that Theorem 4.1 holds for u E G1(fi)flG2(fi)

whence u E G1,a(fi) and by virtue of Lemma 5.1,

supd°_1|P2u(x)| < oo.

By modifying the proofs of Lemmas 5.2, 5.3 (similarly to Lemma 2.2) we then

deduce Theorem 5.4 also for u E C1(fi) fi G2(fi). In this case we may create a new

boundary value problem with unique solution u by suitable truncation of G and

replacement of P by

F = P(x, u(x), p, r) + A(u(x) - z)

for sufficiently large A. As a result, Theorem 1.1 will be valid for arbitrary classical

solutions.

Supplementary remarks (January, 1986). Since this paper was submit-

ted for publication in 1984, there have appeared further developments [39, 40]

which lead to improvements of our second derivative estimates and the consequent

existence theorems for fully nonlinear equations. In particular it was shown by

Trudinger [40] that condition (6.3) is not necessary in Lemma 6.1 and Theorem

6.2 so that the global estimate (6.10) is independent of p3. It then follows that the

second derivative bounds in Theorem 5.4 may be alternatively deduced through the

interpolation argument of [30, 41] and moreover that if G G G1'1(fi x R x Rn)

in the Bellman existence result, Theorem 7.11, then the solution u E G2'Q(fi) for

some a > 0, depending only on n and p. But the hypotheses of these results may

be even further reduced by adaptation of the perturbation argument invoked by

Safonov [39] for the Bellman Dirichlet problem. As a result, the condition (6.2)

in Theorem 6.2 (and subsequently, by interpolation, condition (5.4) in Theorem

5.4) may be replaced simply by the concavity of F with respect to r. This shows

that the natural condition F4 can be dispensed with altogether, both here and in

the Dirichlet problem [30]. Also the assumed boundary smoothness can be re-

laxed to dfi G C2'ß, G E G^fi xRxR") for some ß > 0, with the Holder
exponent n in Theorem 6.2 depending additionally on ß. Taking account of these

developments, we see that in our final existence result, Theorem 7.11, we need only
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assume dfi G C2'ß for some ß > 0 with the structure condition (7.20) reduced to

the concavity condition, Frr < 0 and when G G C1,ß(n x R x Rn), the solution

u G G2'a(fi). Further details will appear in the lecture notes [42].

To conclude these remarks we also mention related recent work of Lieberman

[35] and Lieberman and Korevaar [34] on gradient bounds for nonuniformly ellip-

tic quasilinear equations, Nadirashvili [38] on Holder estimates and Madjarova [37]

and Lieberman [36] on the two variable case. Also despite the fact that our tech-

niques in §5 can be replaced by interpolation, they are nevertheless important as

they extend to embrace nonuniformly elliptic equations or obstacle problems where

second derivative Holder estimates are not feasible; (see for example [40]).
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