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SOME REMARKS ON DEFORMATIONS
OF MINIMAL SURFACES

HAROLD ROSENBERG AND ERIC TOUBIANA

ABSTRACT. We consider complete minimal surfaces (c.m.s.'s) in R3 and their

deformations. Mi is an e-deformation of Mo if Mx is a graph over Aio inane

tubular neighborhood of Mo and Mi is e C1-close to Mo. A minimal surface

M is isolated if all c.m.s.'s which are sufficiently small deformations of M are

congruent to M.

In this paper we construct an example of a nonisolated c.m.s. It is modelled

on a 4-punctured sphere and is of finite total curvature. On the other hand,

we prove that a c.m.s. discovered by Meeks and Jorge, modelled on the sphere

punctured at the fourth roots of unity, is isolated.

Introduction. We consider complete minimal surfaces (c.m.s.'s) in it3 and their

deformations. AZi in an e-deformation of AZo if Mi is a graph over Mo is an e tubular

neighborhood of Mi and Mi is e Ciclóse to Ma. A c.m.s. Mo is isolated if all

minimal surfaces Mi, which are sufficiently small deformations of M0, are congruent

to Mo. Many of the classical minimal surfaces in R3 are known to be isolated [2],

however, no example was known of a nonisolated minimal surface. In this paper we

construct such an example; it is modelled on a 4-punctured sphere and is of finite

total curvature. On the other hand, we prove that a c.m.s. discovered by Meeks and

Jorge, modelled on the sphere punctured at the four roots of unity, {1, —1, i, -i},

is isolated. The analogous surface modelled on the sphere punctured at the cube

roots of unity was shown to be isolated in [2]. The question is raised there of

whether deformations of the four puncture case can be realized by deforming the

conformai structure; i.e., changing the cross ratio of the four points. Thus for the

Meeks-Jorge example in question, the answer is no. As we shall see, the conformai

structure of our example that admits deformations does not change either. Perhaps

the conformai structure never changes by small deformations? We wish to thank W.

Meeks and B. Morin for helpful conversations and greatly simplifying suggestions.

I. A deformable surface. Let M be a c.m.s. of finite total curvature, so that

M is conformally equivalent to a compact Riemann surface M punctured at a finite

number of points. An end E of M is said to be bounded if E is a bounded distance

from a plane. If E corresponds to the puncture p and P is the plane orthogonal to

g(p), g the Gauss map, then E bounded means E is a bounded distance from P. If

E is embedded, then it can be expressed as the graph of alogÄ + Ö(|Ä|), where R

is the distance from the origin in P, and this holds for R large. Then E is bounded

if and only if o = 0.

Let (g,u>) be a Weierstrass representation of M and <Ai,02,03 the associated

analytic differentials on M.  We know the real periods of each 4>k are zero on M
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since the coordinate functions, Xk = Re j <pk, are well defined on M. Suppose

in addition, that each tpk has no imaginary periods on M. Let (j>k(t) = e^tpk for

each t € R. Then <f>k(t) are analytic differentials on M which have no periods on

M. Thus Xk(t) = Re J (¡>k(i) are single-valued coordinate functions on M, giving a

c.m.s. M(t) modelled on M. We claim that if each end of M is bounded, then M(t)

is an e-deformation of M for t sufficiently small. We will prove this by showing

that each end of M(t) is a deformation of the corresponding end of M(0) = M;

this suffices since the compact part of M(t), the complement of the ends, converges

uniformly to the compact part of M. Let the end E of M be parametrized by

the disc unity D punctured at 0. Since deforming (i.e., (g,eltu))) commutes with

rotation in R3, we can assume g(0) = 0. Then g has a zero of order n at 0 and w

has a pole of order k > 2. Clearly E is a bounded end if and only if n > k (look at

X3 = Re J guj). Now (g, eltuj) is a Weierstrass representation of M(t) and 0 is still

a pole of order k of eltw so E(t) is bounded as well. Thus x$(t) is bounded in the

punctured disc, hence extends to the origin. Since

xs(t) = cos(i)x3(0) — sin(i)Im / fe

we conclude Im/tfo is bounded in the punctured disc. Thus 23(f) converges to

£3(0) uniformly and it follows that E(t) is a deformation of E.

Thus to exhibit a nonisolated c.m.s. we will find a c.m.s. M of finite total curva-

ture, with bounded ends, all periods of the <pk are zero, and M(t) is not congruent

to M for t t¿ 0. Such an example follows.

Let M be the sphere punctured at the four points 01,02,03,00, where the a^

are the cube roots of -1/2. Let

1      z 1   (z3 - l)2
9{Z) = ~2T^-Ty        U=4(z3 + 1/2)2 dz-

We claim (0, w) is a Weierstrass representation of M satisfying the conditions de-

sired.

In fact, this example is part of the following family, all of which admit deforma-

tions:

, ,        1_z__ _ Y[Zi=i(z-°i? ,
9{z}- 2(z-bi)(z-b2)(z-b3y    ""nLiC*-*)2

where the o's and 6's satisfy

ai t¿ ay,    bi t¿ bj,    i ^ j   and    o¿ ̂  bj,

61 + 62 + h = 0,    2a\ = -bib2b3,

o2 = e2"/3oi,    o3 = e4^/3oi.

We now prove that each of these surfaces is not isolated. First observe that

g'(z) = w(z - ai)/it(z - bi)2

and dg vanishes at each pole of w, so each end is bounded (each pole is of order

two).
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Next observe that <f>i,<l>2,<f>3 have no periods; to see this it suffices that <j, goj,

and g2oj be exact. We have

V - 2bz2 - Aa\z - o2/3l
UJ =

1 ,
gu = -d

a

z2 + b/3]
^ = -¿dü

where b = 6162 + 6163 + 62^3 and a = \~\i=1(z — ai).

The reader can verify that this is a c.m.s. We will now prove the associate

surface M(t) = (g, eltu)) is not congruent to M. Assume the contrary; for each t,

let M = Rt(M(t) + T(t)), where T(t) is a translation and Rt is an affine rotation.

The vectorial rotation defined by Rt (that is, leaving the origin fixed) permutes the

ends {0,g(ai),0(02),0(03)} since M and M(t) have the same limiting normals at

the ends. There are only a finite number of such vectorial rotations so, for some

sequence tn —► 0, we have a rotation R and translations Pn such that

M = (RPn)(M(tn) + T(tn)) = R(M(tn) + Pn + T(tn)).

Therefore, the surfaces M(tn) + Pn + T(tn) are the same for each n.

Now each of these surfaces has the same Gauss map g. The order of g on M is

three and near each end the order is two (g' = 0 and g" ^ 0 at each end). Thus

for each end p¿, i — 1,2,3,4, there is one and only one point z¿ in M such that

ffte) = g{Pi), *i ¿Pi-
Let K be a compact set in M obtained by removing an open disc about each

Pi and with 2¿ G K for i = 1,..., 4. We know that on K, we can choose the

parametrizations X(t) of M(t) close to a parametrization X(0) = X of M for

t sufficiently small, i.e., for e > 0 there exists t > 0 such that for all z G K,

d(X(z), X(t)(z)) < e. Thus for t, s close to 0 we have

(I) d(X(t)(z),X(s)(z))<e   on if.

Let p be an end and zq G K such that g(zr}) — g(p). We know that M(t) and M(s)

differ by a translation V(t,s):

(II) M(t) = M(s) + V(t,s).

Hence there is z'0 G M such that

X(t)(z0) = X(s)(z>0)+V(t,s).

The surfaces M(t) and M(s) have the same Gauss map so g(zo) = g(z'0). Thus

z'0 = zq or z'¿ = p. But X(s)(z'0) G M(s) so z'0 = z0 and X(t)(z0) = X(s)(z0) +

V(t,s). Then (I) implies ||V(i,i)|| < e.

Now for z in K, z near zo, the point 2' such that X(t)(z) — X(s)(z') + V(t, s) is

near zq or near the end p. It is not hard to see it must be near zq; we leave this to

the reader. Since g(z') = g(z), this implies z1 = z.

Thus X(t)(z) = X(s)(z) + V(t, s) on an open set of M. By analytic continuation

the equality holds on M. Then (pk(t) = 4>k(s), k = 1,2,3, and ui(t) — u(s). Hence
eltuj = e%sui. As f and s are arbitrarily near 0, we have t — s — 0. This proves the

surfaces M are not congruent to their associate surfaces M(t).
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II. An isolated surface. Let M be the sphere punctured at the n roots of

unity. Meeks and Jorge have discovered examples of a c.m.s. modelled on M, of

finite total curvature. Their Weierstrass representation is

g(z) = zn-1,        0J = dz/(zn-l)2.

When n = 2 this gives the catenoid; in general this surface is rotationally symmetric

and has n catenoid type ends. In [2] we proved the surfaces n = 2 and n — 3 are

isolated and the question was raised whether deformations for n = 4 could be

obtained by changing the conformai structure; i.e., moving the punctures to change

the cross ratio. We shall now prove this is not possible. The technique is the same

as that we used for n — 3 and offers little hope of understanding n > 4.

THEOREM 2.1. The c.m.s. Mo, modelled on the sphere punctured at the 4 roots

of unity and defined by

g0(z) = z3,        uj0 = dz/(z4 - l)2,

is isolated.

PROOF. We proved in [2] that if M0 is a c.m.s. conformally equivalent to a

compact Riemann surface M, punctured at m points, and if Mj is a deformation of

Mo, then Mi is conformally equivalent to M punctured at m points (not necessarily

the same points) and the total curvature of Mi equals the total curvature of Mo.

Now suppose M is a deformation of our example. Then M is conformally equiv-

alent to the sphere punctured at four points, and we can assume the points are

{zq, 1, —l,t}. Assume 2o ^ co; this case will be discussed later.

Let (g, oj) be a Weierstrass representation of M; g is a rational map of degree

three since the total curvature of M is that of Mo. Write

, . _ az3 + bz2 + cz + d

Q(-Z) ~ az3+ßz2+1z + 6'

We assume 6 ^ 0; this case will be treated later. So normalize by 6 = 1. We know

w has a double pole at the points zr,, 1, —1, i, the point oo is regular for w, and w

has a zero of order 2k at each pole of g of order k. We write

_ e(az3 + ßz2 + 1z + l)2

(z-zo)i(z-l)*(z+l)*(z-i)iaZ-

We know the limiting normals of an end of Mo and M are the same, so g(l) = 1,

g(-l) = -1, g(i) = -i, g(zo) = i. Write

_1_      Az + B      Cz + D     Ez + F     Cz + H

(z-z0)2(z-l)2(z + iy(z-i)i ~ (z - z0)2 + (z - l)2 + (z + l)2 + (z - ¿)2 '

Let Xk, k = 1,2,3, be the coordinate functions of M and yk those of Mr,; Xk =

Re / <pk and yk = Re / ipk, <f>k and V'fc are the differentials obtained via the Weier-

strass representation. We know the real periods of the <f>k and ipk are zero, since Xk

and yk are well defined functions on M and Mo respectively. From this we obtain

three equations:

(1)    -G(-ai -b + ci + d) + (Gi + H)[i(-3a + 2iß + 7) - (-3o + 2bi + c)} = 0,

(2) -E(-a + b-c + d) + (F-E){3a-2ß + ~i-(3a-2b + c)} = 0,
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(3) c(a + b + c + d) + (C + D)(3a + 2/3 + 7 + 3o + 26 + c) = 0.

Equation (1) results from Re(¿Res((/>i,¿)) = 0 and Re(-Res(<fo,i')) = 0. Equation

(2) follows from Re(¿Res(<fo, -1)) = 0 and Re(i'Res((fe,-l)) = 0; equation (3)
from Re(iRes((fc, 1)) = 0 = Re(i'Res(03,1)).

Now g(l) = 1 so near the puncture 2=1, the end of M is a graph over the

(x2, X3) plane and a calculation yields

Xi(z) = Ä"log|x3 + ix2\ + 0(\x3 + ix2\)    as z -* 1,

where K = -e(C + D)(a + b + c + d)[3a + 2/3 + 7 - (3a + 26 + c)]. The same

calculation for Mo at this end yields

Vi(z) = Ö2 loSlx3 + ix%I + 0(\x3 +ix2\)    as z -> 1.

Since M and M0 are e close, the coefficients of log \x3 + ix2\ must be the same.

This yields equation (4):

(4) -e(C + D)(a + b + c + d)[3a + 2/3 + 7 - (3o + 26 + c)] = 6/32.

The same calculations at the punctures -1 and i yield two more equations:

(5) -e(F - E)(-a + b - c + d)(3a - 2/3 + 7 + 3o - 26 + c) = 6/32,

(6) -e(Gi + H)(-ai -b + ci + d)[i(-3a + 2ßi + 7) + (-3a + 2bi + c)} = 6z'/32.

A calculation shows

(1 - 2t)(l - zp) - 2t (l-zo)(-l + 3i) + 2t

8(1 -zo)3 ' U 8(1 -zo)3
-(l + 2i)(l + zo)-2i (1 + zp)(-l - 3i) - 2t

8(l + zo)3 ' 8(1 +ab)3
p _ i(i - zp) - 1 3(¿-¿q) + 2¿

2(¿-2o)3    ' 4(¿-2o)3      '

To the above six equations one must add the four equations c(l) = 1, g(-l) = —1,

g(i) = —», 0(20) = i- Now we have ten equations in nine unknowns. These equations

have no solution. For completeness we show why this is so.

Replacing C, D, E, F, G, H by their values and using the values of g at the

punctures, equations (1) through (6) become

(D a(-32o + i) + b(3izo + 1) + c(zo + i) + d(izo + 3) + 2zo - 2i = 0,

(2)        a((l + 3i)zo + 1 + i) + 6((1 - 3i)zo + 1 -1) + c((-l + t)zo - 1 - 0

+d((l + í)zq + 1 + 3t) + (-2 - 2i)zo - 2 - 2t = 0,

(D      a((l - 3i)zo - 1 + i) + 6((-l - 3i)zo + 1 + ») + c((-l - t)2ö + 1 - i)

+d((-l + ¿)2ö + 1 - 3i) + (-2 + 2i)zo + 2-2i = 0,

a(2z$ - iz% - zo) + b(-iz^ + z%) + c(-izl + z0)

+ d(-¿2o + 1) - Zo + t2o + zo - i = 0,

0 ,   _6   „ (a + 6 + c + d)((-l + 2t')a + 6 + c + d - 2 - 2t) = \i,
V*-      Zo) L

® (1 1   12 (~a + b-c + d)((l + 2i)a + 6 - c + d + 2 - 2t) = -^z',
(1 ~r 2o J Z

^ —-777(-ai — b + ci + d)(-a - ib - c + id - 2) = --¿.
—   7s, \¿ 'A

©

(i-^o)2
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Equations ©, (2), (3) and © give a linear system with four complex unknowns

a, 6, c, d and one complex parameter zq- When we resolve this system we get

—i
a = —

zo
6=¿20-l

zo
c = l

d = 0

(X)      With 20 ̂ ü.il.j.ííl^S.

Suppose 2o is not one of these complex numbers. Using (X), equation (6) becomes

0 = -\i. (This because —ai - 6 + ci + d = (-1 — (z2o - 1) + ízq)/zo = 0.) This

shows that if 2o ^ ±z, ±l,z'/3, z(3 ± \/5)/2, then the equations ©-©, © admit

no solutions.

Now we must see what happens if the other case occurs. But 20 cannot be i, 1 or

-1 because 20 is the fourth end of M. So we must only see 20 = —i, i/3, i(3± \/5)/2.

(1) Let us assume 20 = —i. Equations ©, ©, (3), © give

© az + 6 + d - i = 0,

(2) 2a + 6(-l-z) + d(l + z')-2 = 0,

© -2a + 6(-l + z') + d(l-z') + 2 = 0,

© o»l.

We get a = 1, 6 = d = 0. Using that, equations © and © give

© e(c + l)(c-3) = -3,

© e(c-l)(c + 3) = -3,

and so c = 0 and e = 1. Thus we get finally if 20 = —i, a = e = 1; b = c = d = 0.
This implies a = ß = 7 = 0. But this means that g — go, oj — ujo and then

M = M0.

(2) Let us assume 20 = i/3. Equations ©, ©, ©, © give

© ci + 2d - i = 0,

© 2oz' + 6(3 - i) + c(-2 - 2z') + d(l + 5z') - 2 - 4i = 0,

© 2az + 6(3 + i) + c(2 - 2») + d(l - 5z) + 2 - 4z = 0,

© - 2az - 6 + 3z'c + 9d - 5z = 0.

This system gives: a = -3; b = 4î; c = 1; d = 0. Using that and equation © we

get a contradiction.

(3) The last case is 20 = z(3 ± \/5)/2 or, equivalently: 2q = 3z2o + 1, and this

implies 2q = —820 + 3z. Using that, equation © becomes

©       a(-14z0 + 5z) + 6(llz20 + 4) + c(420 - i) + d(-z20 + 1) + 620 - 3z = 0.

Equations ©, ©, © and @ give: a = -i/z0; b — izQ - l/20; c = 1; d = 0, with

20 = z'(3 ± \fb)/2. But we again get a contradiction to equation ©.

So if 20 ^ 00 and 6^0, the only solution is 20 = — z; o = e = 1; 6 = c = d =

a = ß = 7 = 0; this means g = go, w = wq and so M — Mq .
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Let us assume now 20 = 00. M is then modelled on the sphere punctured at 00,

1, -1, i. The homography T of S2, T(z) = -I/2, maps (00,1, —l,t) to (0, -1, l,i)
respectively. Thus we can assume M is modelled on S2 - {0, —1, l,z'}.

The Weierstrass representation of M is

1 \ _ az3 + bz2 +cz + d e(az3 + ßz2 + 72 + l)2

9[Z'~  aZ3 + ßz* + 72 + 1'      W~  22(2+l)2(2-l)2(2-i)2

As M is C1-close to Mo, we must have

g(0) = %(-i) = i,       g(-l) = go(l) = 1,

0(1) = go(-l) = -l,      g(i) = go(i) = -i-

This gives
d=l,

- a + b- e±4 = -a + B - n +1,

a + 6 — c + d — —a - ß - 7 - 1,

- ai - b + ci + d = -a + ßi + 7 - z.

At last

(C)
d = z,        a — -ic - 2i,

ß = -a- c —1,        7 = -6 + z'c + z.

In the same way as before (i.e., 20 ¿ 00), we get six equations:

(1) C(a + 6 + c + z) + (C + D)(3a + 26 + c - (3a + 2/3 + 7)) = 0,

(2) E(-a + 6 - c + i) + (F - £)(3a - 2/3 + 7 + 3a - 26 + c) = 0,

(3) -G(-ai - b + ci + *') + (Gz + iî)(z'(-3a + 2ßi + 7) - (-3a + 26z + c)) = 0,

(4) -e(C + D)(a + 6 + c + z)(3a + 2/3 + 7 + 3a + 26 + c) = 6/32,

(5) e(F - E)(-a + 6 - c + z)(3a - 2/3 + 7 - (3a - 26 + c)) = -6/32,

(6) ei(Gi + i/)(-az - 6 + ci + z')(z'(-3a + 2/3z + 7) + (-3a + 26z + c)) = 6/32,

with

l-4z -l + 5z

(D) ^ = Z^'  r"*^,

Using (C) and (D), equations © and © become

© a(l + z") + 6(1 - i) + c(-l - t) - 1 + 3z = 0,

© o(l - i) + 6(-l - z) + c(-l + i) - 1 - 3z = 0.

But

® © + ©=>a-fez-c-l = 0,
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© © - © => ai + 6 - ci + 3z' = 0

and

© + » x © =► 4 = 0.

This shows that equations ©-© admit no solution, so 2o cannot be oo.

At last, let us assume 6 = 0. Then,

, , _ az3 + 6a2 + cz + d _ e(az3 + ßz2 + 72)2

g[Z)~~c7z3+JzT+Íz~'      W ~~  (Z - Zo)2(z - 1)2(2 + 1)2(2 - z')2

We have g(l) = 1, g(-l) = -1, g(i) = -i, g(zo) = i.

g(l) = 1 <* a + 6 + c + d = a + ß + 7,

g(-l) = -l<»-a + 6-c + d = a-/3 + 7,

g(z') = —* <» -az — b + ct + d — —a + ßi + 7,

g(2o) = zi O 02q + 620 + c2o + d = z'a2o + ißz\ + ¿720.

These equations yield

,  .     \ a = ai + 6,    /3 = a + c,    7 = -az + d,

[    '      j©     a(22g-Z2g-2o) + 6(-2g+2§) + c(-z'2g+2o) + d(-Z2o + l) = 0.

Using (E) and Re[zRes(</>j-,9)] = 0, j = 1,2,3, where 6 = 1,-1,z, we get three
equations:

© a(-320 +1) + 6(3z20 + 1) + c(z0 + i) + d(iz0 + 3) = 0,

©       a(20(l + 3z) + 1 + z') + 6(20(1 - 3z") + 1 - z') + c(20(-l + z) - 1 - z)

+d(20(l + z') + l + 3z') = 0,

©      a(20(l - 3z) - 1 + z) + 6(20(-l - 3z') + 1 + z') + c(20(-l - z) + 1 - z)

+d(20(-l + z) + l-3z) = 0.

With ©, we get a linear system with four complex unknowns, a, 6, c and d. The

determinant D is

D = -8izo(zo - l)(zo + l)(2o + z)(2o - z-)2.

Thus, if D t¿ 0 the only solution isa = 6 = c = d = 0, but this means g = 0 and M

is part of a plane and then M cannot be C1-close to Mo-

Let us assume D = 0. Here D = 0 only if 20 = 0 or 20 = —».

(1) 20 = 0. But © => d = 0 and this implies that the order of g is 2 and not 3

because
C ï _ az  + bz  +cz    - az  +bz + c

9(Z> ~ az3 + ßz2 + 72 ~ az2+ßz + i'

(2) 20 = -*'. Equations ©, ©, © and © become

ai + 6 + d = 0,

2a-6(l + z') + d(l + z') = 0,

-2a-6(l-z')+d(l-z)=0,

a = 0.

This gives a = 6 = d = 0, but d = 0 is not allowed as in the case 20 = 0.

Thus 6 cannot be zero and Mo is then isolated.
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