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DEFORMATIONS OF COMPLETE MINIMAL SURFACES

HAROLD ROSENBERG

Abstract. A notion of deformation is defined and studied for complete minimal

surfaces in R} and R3/G, G a group of translations. The catenoid, Enneper's

surface, and the surface of Meeks-Jorge, modelled on a 3-punctured sphere, are

shown to be isolated. Minimal surfaces of total curvature 47r in R}/Z and R3/Z2

are studied. It is proved that the helicoid and Scherk's surface are isolated under

periodic perturbations.

Let M be a submanifold of a Riemannian manifold N and let Te(M) be a tubular

neighborhood of M in N of radius e. A C*-e variation of M in N is a submanifold

Mx c Te(M) which is a graph over M and is e-C^close to M. This means Mx is

pointwise e-close to M in each fibre of Te(M) and the tangent planes as well. We are

interested in complete minimal submanifolds M of N (abbreviated c.m.s.) and Cl-e

variations which are also c.m.s.'s, and henceforth we always assume M and Mx are

c.m.s.'s. We say M is isolated if for some e > 0, the only e-C1-variations of M differ

from M by an ambient isometry of N. In this paper we shall study this question

when N is R3 or a translation space: R3 modulo a group of translations.

A flat plane in R3 is isolated. This follows immediately from Bernstein's theorem:

a function of two variables on R2 whose graph is a c.m.s. is linear. We shall prove

Enneper's surface, the catenoid, and a certain 3-punctured sphere, discovered by

Meeks and Jorge, are isolated in R3. We prove the helicoid and Scherk's surface are

isolated under periodic deformations, i.e., the helicoid of total curvature Atr in R3

modulo one translation is isolated in this translation space and Scherk's surface of

total curvature Att is isolated in R3 modulo two translations. This Scherk surface is

conformally a 4-punctured sphere and the helicoid a 2-punctured sphere.

We shall study minimal submanifolds of translation spaces. Many of the tech-

niques developed by R. Osserman can be adapted to this context and yield

information about periodic minimal surfaces in R3. For example, we classify c.m.s.'s

of total curvature Art in translation space. In R3, Osserman has proved the catenoid

and Enneper's surface are the only c.m.s.'s of total curvature 4tt. We obtain an

analogous classification in R?/G. In §VI, we describe these surfaces for G = Z.

We study c.m.s.'s M of finite total curvature in translation spaces. We prove a

deformation (i.e., an e-C^variation) Mx of a finite total curvature c.m.s. in a

translation space is also of finite total curvature, and is conformally a compact
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Riemann surface Mx punctured in a finite number of points. The Gauss map gx of

Mx and the analytic differential ux of the Weierstrass representation of Mx, extend

to a meromorphic function gx on Mx and a meromorphic differential ux on Mx. The

degree of gx is the same as the degree of g, the extended Gauss map of the

unperturbed surface M. This reduces the study of deformations of finite total

curvature M to the study of pairs (g, ¿3) on Mx with relations between the poles of g

and the zeros of w and other relations coming from closeness in space and residue

conditions. In general, this study seems difficult.

The Gauss map g of a nonflat c.m.s. of finite total curvature in R3 can miss at

most 3 points of the Riemann sphere S [4]. It is not known if 3 is sharp. Osserman's

proof shows that g can miss at most 4 points for a nonflat c.m.s. of finite total

curvature in a translation space. Four is sharp as Scherk's surface shows. This has

already been observed by Gacksatter [1]; he calls such surfaces abelian (Lawson calls

them algebraic [2]). We show the Gauss maps of deformations of these surfaces have

the same image. Xavier has proved the Gauss map of a c.m.s. in R3 can miss at most

7 points (unless it is flat) [6]. It is not known if 7 can be reduced to 4.

We would very much like to know if the helicoid is isolated in R3. We prove in

§VII that certain deformations of the helicoid do not exist. It seems plausible that

any c.m.s. conformally parametrised by C is isolated.

We originally proved the catenoid is isolated in collaboration with Remi Lan-

gevin. Discussions with Mike Beeson, Bill Meeks, Rich Schoen and Dennis Sullivan

have been very helpful in the preparation of this paper.

Some remarks are in order concerning the definition of an isolated surface. When

trying to understand something, it is natural to study a neighborhood of the object

in question. Complete minimal surfaces are particularly mysterious (alas, their

deformations as well). Weierstrass introduced a deformation of minimal surfaces

(known to specialists as the Weierstrass deformation) and this has certainly proved

useful. The one parameter family of (locally) isometric surfaces joining the helicoid

to the catenoid can be realised as a Weiertrass deformation. However, the conver-

gence here is analogous to the manner by which a family of circles can be made to

converge to a line; certainly no circle is in a tubular neighborhood of the line of

fixed radius. It seems natural to consider neighborhoods defined by tubular neigh-

borhoods of a fixed radius. Ciclóse is perhaps superfluous but our techniques

require this for the time being.

When this paper was written, we had no example of a c.m.s. in R3 which was not

isolated. Subsequently, the author, in collaboration with E. Toubiana, found such an

example. In principal, our paper describing this example is in the same issue of the

Transactions as the present paper. Robert Bryant has brought to our attention that

this deformable example occurs in his paper on higher critical values of the Willmore

functional (preprint). He was not studying deformations but his examples are very

interesting in the context of deformations.

I. The Weierstrass representation in translation spaces. Let M be a minimal

surface in R3. M admits local parametrisations X:D -* M, D an open subset of C

and X a conformai map with harmonic coordinate functions; such parametrisations
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are equivalent to minimality. Write z = u + iv,  X(z) = (xx(z), x2(z), x3(z)).  X

conformai means Xu ± Xv (Xu means partial derivative with respect to u) and

ll*„ll = ll*oll- Harmonicity means (d2xk)/(du2) + (d2xk)/(dv2) = 0, k =   1, 2, 3.
Let <f>k(z) = (dxk)/(du) - i(dxk)/(dv), so that <¡>k are analytic in D, (i) <¡>2X + </>?, 4-

d>\ = 0 and (ii) |<J>,|2 4- \d>2\2 4- |$3|2 + 0. Clearly if we are given analytic functions

<¡>k in D, satisfying (i) and (ii), then we obtain a parametrised (by D) minimal

surface by defining xk(z) = Re// ¿>k(z)dz, z0 G D, k = 1, 2, 3. The forms <$>k(z) dz

do not depend on the local parameter, i.e., if X: D -* M is a conformai map with

harmonic coordinate functions, then d>k(z)dz = <$>k(z)dz,  z -» z  the change of

coordinates. So a minimal surface determines three global analytic forms <¡>k(z)dz

satisfying (i) and (ii). Moreover the forms have no real periods on M since the

coordinate functions are single valued on M. Conversely, if we are given three forms

on  M satisfying (i), (ii) and the period relations, then we obtain a conformai
x

minimal immersion M -» R   by integration, i.e., xk = Ref4>k(z)dz. Changing the

base point in the integral changes the immersion by a translation. Now (assuming M

is not a flat plane) the data: three analytic forms on M satisfying (i) and (ii) are

equivalent to a pair (g, w), where g is a meromorphic function on M to S, u is an

analytic differential (i.e. an analytic one-form) satisfying: the poles of g are precisely

the zeros of to and the order of a pole of g is one half the order of this zero of w.

The relation is

<t>i = 2^ -S2)"' w

or

<i»2= ^(l+g2)co, g

<í>3 = 8U-

Thus a minimal surface M in R3 is determined by such pairs (g, w), provided the

residue conditions are satisfied for the 4>k, i.e. they have no real periods on M. This

is the usual Weierstrass representation of minimal surfaces in R3. We mention that

the metric on M is given by ds = X\dz\, where X = (1 4- |g|2)|w|/2, and g is the

Gauss map.

Now let G be a group of translations of R3 and let N = R3/G, p : R3 -* N the

projection. Let M be a minimal submanifold of N and Mx be a connected

component of p~x(M). Let (gx, ux) be the pair associated to Mx via the Weierstrass

representation. Since parallel translation in R3 leaves invariant the normals, and gx

is the Gauss map of Mx, g passes to a meromorphic map g:M -* S. Notice that the

forms <j>\ on Mx, k = 1, 2, 3, also pass to the quotient. To see this, let p e Mx,

yeC and £ : D -» Mx be a local parameter at p. So

in D. This does not depend on the local parameter at p, so to check that

<¡>\(p) = <t>\(y(p)) we can choose any local parameter at y( p). We use y ■ £ : D -» Mx

<f>l - i<¡>2'

4>i - i§2 '
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as a local parameter at y(p). Then

,wvinu   (Whip))    M(y(p))\i.
4>k(y(p)) = [-¥u-'-^-j dz.

Since y is a translation, the partial derivatives are the same at p and y(p). Thus ux

passes to an analytic differential to on M. Thus M also has a Weierstrass representa-

tion (g, to) and the poles of g correspond to the zeros of to with the proper

multiplicities as before. However, the coordinate functions xk = Re/0^ need not be

single valued on M. Many examples will be given in §VI; periodic minimal surfaces

in R3 are the most interesting. Any minimal surface in R3 yields a minimal surface

in R3/G by projection, however periodic minimal surfaces may be simpler in the

quotient. Infinite total curvature may become finite, e.g. the helicoid in R3/Z and

Scherk's surface in R3/Z2.

II. Finite total curvature. Let G be a group of translations of R3 and let

M c R3/G be a c.m.s. of finite total curvature. Then there is a compact Riemann

surface M and M is conformally equivalent to M punctured at a finite number of

points px,...,pr [2]. We observe that (as in R3) the pair (g, to) extends to a

meromorphic map g: M -» S2 and a meromorphic differential co on M. To see that

g extends to M, notice that the total curvature of M is the area of its spherical image

under g, counted with multiplicity; hence each value is assumed at most a finite

number of times; cf. [1]. Now M is finitely connected and each end of M is

conformally a once punctured disc. The puncture cannot be an essential singularity

of g since then g would take on values infinitely often in a neighborhood of the

puncture. Therefore g extends to a meromorphic map at the puncture, thus to M.

Now the analytic differential to also extends to a meromorphic differential on M,

having a pole at least of order one at each puncture (Scherk's surface in R3/Z2

shows that the poles need not be of order 2 at the punctures as in R3).

Let D be a punctured disc, representing an end of M, D = {z e C/0 < \z\ < 1}

and the puncture is the origin. Write to = f(z)dz, f analytic in D. Then the metric

on M in D takes the form ds = X\dz\, where X = |/|(1 4- |g|2)/2. We can assume

the origin is not a pole or zero of g (by eventually making a preliminary rotation of

M and replacing G by the conjugate group). Then completeness of M implies

fy\f(z)\ \dz\ = oo for every path y tending to the origin. Then / has a pole at 0, at

least of order one [4]. Thus u also extends to M.

III. Deformations of finite total curvature surfaces. Let M0 be a c.m.s. in R3/G

and let M be an e deformation of M0. Orthogonal projection of M to M0 is a

quasiconformal homeomorphism. Thus if M0 is conformally parametrised by C then

so is M, e.g. the helicoid, catenoid and Enneper's surface. This idea applies to finite

total curvature minimal surfaces and we discuss this now.

Suppose M0 is of finite total curvature, so that M0 is conformally equivalent to a

compact Riemann surface M0 punctured at a finite number of points px,..., pr We

claim that the same holds for deformations M of MQ. First we shall prove that M is

also conformally a compact Riemann surface M punctured at r  points (M is
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homeomorphic to M0). Let F0 be an end of M0; F0 is conformally a once

punctured disc and g0 extends across the puncture. Let F be the corresponding end

of M; we need to prove F is also conformally a once punctured disc. After a

preliminary rotation of M0 (hence of M and G) we may assume g0 has no poles in

F0, nor g in F. An open subset A of C is called hyperbolic if A admits Green's

functions, or equivalently, if log(l 4- |z|2) has a harmonic majorant in A [4];

otherwise A is called parabolic. Clearly an open subset of a hyperbolic set is

hyperbolic. Now g0 and g are open maps, hence g(E) is hyperbolic since g0(E) is

contained in the complement of a closed disc (which is hyperbolic) and g(E) is close

to g0(E), hence g(F) is an open subset of a hyperbolic set. Therefore it suffices to

prove:

Lemma. An end of M, whose spherical image is hyperbolic, is conformally a once

punctured disc.

Proof. Let E = [z ^ C/0 < r < \z\ < 1} and ds = X\dz\ be the induced metric

in F. We know, by completeness of M, that for all paths z(t) in F such that

lim,_,|z(r)| = r, we have fz(t)ds = oo. Thus by [4], we have r = 0 provided we can

find a harmonic h(z) such that logX(z) < h(z) in F. Here is how we find h(z). We

know X = |/|(1 4- |g|2)/2, and since g(F) is hyperbolic, there is a harmonic h0 on

g(E) such that

log(l+|g(z)|2)<Ä0(g(z))    forzeF.

Now X < X = i\f\eh«(g(z)) so

logA<log|/r + /i0(g(z)).

Since g has no poles in F, we have f(z) ¥= 0 in F. Thus h(z) = log|/(z)|2 4-

h0(g(z)) is a harmonic majorant of log X in F and r = 0.

Now to prove M has finite total curvature it suffices to prove g extends to M [2].

Let F be a punctured disc end of M. If the puncture were an essential singularity of

g, then g would take on almost every value in a neighborhood of the puncture.

However g(E) is contained in a small disc of S since it is close to the image of the

unperturbed end. Thus the puncture is a removable singularity.

Next we shall prove the degree of g: M —> 5 is the same as the degree of g0:

M0 —> 5. Suppose the degree of g0 is /, so that the preimage of a point of S is /

points of M0, counted with multiplicity. Let z e S be a regular point of g0, so that

g0~1(z) consists of / points kx,...,k, and each kj has a disc neighborhood Z)y

mapped homeomorphically onto a disc neighborhood D of z. We choose z so that

no /c; is a puncture of M0. Let ¿>. be the disc on M obtained by orthogonal

projection of D} onto M. For e sufficiently small, g^Z),-) can be made close enough

to g0(3D/) so that gbj contains z. Hence each DJ contains one preimage of z and

degg > degg0. Now consider F = M0 - U/_j intZ)-. Since g0F is far from z, we

can make g(M — U'-_i int ZX) disjoint from z for small perturbations. Hence

degg = degg0.
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IV. Some isolated minimal surfaces. Robert Osserman has proved that Enneper's

surface and the catenoid are the only c.m.s.'s in R of total curvature 47r [4], Now we

know that a deformation of a finite total curvature c.m.s. has the same total

curvature since the Gauss maps have the same degree. Therefore Enneper's surface

and the catenoid are isolated. For completeness we prove directly that these surfaces

are isolated.

The Weierstrass representation of Enneper's surface M0 is (g0,w0), where M0 is

parametrised by C, g0(z) = z, to0 = dz. Now if M is a deformation of M0, the

conformai type of M is also C and M is given by a conformai immersion X: C -> M

with harmonic coordinate functions. The limiting value of the normal to M at its

unique end is the same as that of M0, i.e. (0,0,1), so g(oo) = oo and after

reparametrising M by composing X with a Moebius transformation S -» 5, leaving

oo fixed, we may suppose g(z) = z (since g: 5 -» S is a bijective meromorphic map

leaving oo fixed, so of the form az + b). Now to is an analytic differential on C with

no zeros or poles and to extends to a meromorphic differential on 5. Therefore

to = cdz for some c e C. It is a remarkable fact that for c = e'e the surfaces

[g(z) = z, to = dz} and [g(z) = z, to = cdz) are congruent in R3; they differ by

rotation by 6/2. So for general c e C, g(z) = z, to = cdz differs from [g(z) = z,

to = dz} by a rotation followed by a homothety. Hence for M we must have c = 1

and M = M0.

Next consider the catenoid M0. M0 can be described by a conformai embedding

X0: S - {0, oo} -» R3 with g0(z) = z, to0 = dz/z2. Let M be a deformation of M0.

M is also conformally a 2-punctured sphere so we have a conformai embedding X:

C - 0 -» M with harmonic coordinate functions. The values of the Gauss map g are

the same as g0 at the punctures 0, oo, thus, after reparametrising, g may be taken to

be g(z) = z. Now to is a meromorphic differential on S with no zeros in C, and

analytic in C, hence to = cdz/zk for some ceC and integer k. We have ds = X\dz\

= |to|(1 4- |g|2)/2. By completeness of M at 0 we have k > 0 and by completeness

at oo we have k < A. A residue calculation shows k i= 1. Indeed, if k = 1, then

Res(</>, 0) = c/2 and Res(</>2,0) = ic/2. Since xx and x2 are single valued on M we

conclude c is both real and pure imaginary, hence c = 0, a contradiction. A similar

residue calculation shows k ¥= 3. So to = cdz/z2. Now x3 = Refzcdz/z is single

valued so Res((>3,0) = c must be real. Thus M differs from M0 by a dilation and

since they are close in space we have c = 1. Therefore M is a catenoid.

Meeks and Jorge have discovered interesting examples of finite total curvature

c.m.s.'s which are modelled on an «-punctured sphere [3] for any integer n. The

Weierstrass representation of this surface is g(z) = z"_1, to = dz/(z" - l)2, where

M = S punctured at the n roots of unity. For n = 2, this gives a catenoid (rotated

from our previous discussion). In general, this surface is immersed and has n

embedded "catenoid type" ends.

Theorem. The c.m.s. M0: g0(z) = z2, to0 = dz/(z3 — l)2, is isolated.

Proof. Let M be a deformation of M0. M has total curvature 877; the Gauss map

M -» 5 is a rational map of degree 2. So g(z) = R(z)/S(z), R and S polynomials
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and maxdeg{F, S} = 2. Since three punctured spheres are all conformally equiva-

lent, we can parametrise M by S - {1, ax, a2}, ak the cube roots of unity. We know

g takes the same values as g0 at the punctures, so g(l) = 1, g(cxx) = a2, g(«2) = ax.

There are five cases to consider: 1. g is a polynomial of degree 2; 2. R is constant

and deg S = 2; 3. deg F = 2 and deg S = 1; 4. degF = 1 and deg S = 2; and 5.

deg F = degS = 2; this is the difficult one. Let to = P(z)dz/Q(z), P, Q poly-

nomials.

1. Clearly g(z) = z2 since g takes the prescribed values at 1, a,, a2. We know to

has zeros (in M) only at the poles of g so P(z) is constant. Moreover oo is a regular

point of M so a zero of to of order 4. It follows that degß(z) = 6. In R3, it is a

general fact that o) has a pole at each puncture (where g takes a finite value) at least

of order 2 [4]. Therefore

cdz
to = -

(z - l)2(z - axf(z - a2f

for some c e C. Now x3 is a single valued function on M and a calculation of

Res(<i>3,1) shows c is real. Therefore M differs from M0 by a dilation and since they

are e close we have c = 1, M = M0.

We leave case 2 to the reader.

3. A calculation yields g(z) = (z2 - a2)/(-a2z 4- 1) for some a e C, « ¥= +1.

Hence the zeros of to are precisely the points ß = I/a2 and oo and each is of order

2 since they are simple poles of g. Thus P(z) = c(z — ß)2 and degree Q(z) = 6.

Since to has poles at least of order 2 at each puncture, we have

to = c(z - ßf/(z3 - l)2.

We will prove this is impossible by doing the residue calculations at z = 1. Since x,,

x2 are single valued functions on M we have fyu = /Y«g2, where y = [z/\z - 1| =

.2}. These equations yield:

(I) cß(\ -ß) = p(l - ß)(l + ß).

Now x3 single valued on M means gto has real residues. A calculation at z = 1

yields c(l - ß) is real. Combining this with (I) we conclude ß = 1 4- ß or c(l - ß)

= 0. Both are clearly impossible.

4. We have g(z) = (az 4- b)/(z - a)(z - ß). The equations g(l) = 1, g(ax) = ct2,

g(a2) = ax, imply a = 0 or ß = 0, and a = 1 - aß, b = 2aß - a - ß. This gives

g(z) = 1/z which contradicts degQ = 2.

Finally we must treat case 5, deg R(z) = degS(z) = 2. Let a, ß be the poles of g,

i.e. the roots of Q. An easy calculation shows

g(z) = (aßz2 + z -(« + ß))/(z - a)(z - B).

Clearly a, ß are not cube roots of unity so to has double zeros at a and ß and no

others. Also to has poles at the punctures at least of order 2 hence degQ(z) > 6.
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Since oo is not a zero of to, we have deg Q(z) = 6 (deg P(z) = A). Hence

amH>-n-ßf*.
{z'-lf

We now list the residue calculations, and we leave the calculations to the

courageous reader. The x,, x2 well-defined functions are equivalent to /to = /tog2

on all loops.

Equations (I) and (II) are this integral equation at z = 1 and ax respectively:

(I) c(l - a)(l - ß)(l - aß) = -c(l - ä)(l - ß)(ä + ß+äß),

(II)

c(ax - a)(ax - ß)(a2 - aß)ax = -c(äßax 4- a2 -(ä 4- ß))(äßax +(ä + ß)a2).

We use related equations obtained as follows. Expand g(z) and to = f(z)dz in

power series at z = 1 :

g(z) = g(l) 4- g'(l)w + o(w2),        fx(z) =/,(l) +fi(l)w + o(w2),

where

(  t     \ C(Z  ~  ^i2   ~  Pf A 1fx(z) = —-j1-—    and    w = z - 1.
(z - a,) (z - a2)

Then

*, = i(l - g2) = t(/(D + 4^ + o(l))(-2g'(l)w + 0(w2))
w

and

Cl = Re j" ̂  = -ReÍAÍlJg'ílJlogw 4- o(w)),

so xt single valued implies fx(l)g'(l) is real, i.e.

c(l - o)(l - ß)(2aß - 1 +(a + ß))

is real. A similar calculation with <j>2 = if (I + g2)/2 shows /i(l)g'(l) +/{(!) ¡s Pure

imaginary, and this easily implies c(l - a)(l - ß)(l 4- a + ß) is pure imaginary.

The x3 residue condition at z = 1 is c(l - a)(l - /8)(1 4- a 4- ß) is real. Thus

c(l - a)(l - ß)(l + a + ß) = 0, hence a 4- ß = -1 since neither a or ß is 1 and

c *0.

Now consider </>3 near ax. We have

* =fg = (^ + ^ + °(1))(ö2 + g'(ai)M + °("2))'

where u = 2 — av h(z) = c(z - a)2(z - ß)2/(z - l)2(z - a2)2. Then since

Res(<>•,,<*!) is real we conclude: h(ax)g'(ax) + h'(ax)a2 is real. This yields

c(a¡ — a)(ax — ß) is pure imaginary. Now substitute this last relation into (II) and

use the fact aßa2 4- ax 4- 1 = (ax - a)(ax - ß)a2 to obtain 2a2 = aß + aß. This

is a contradiction and completes the proof of the theorem.
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V. The image of the Gauss map.

Proposition. Let M0 be a periodic minimal surface in R3 having a fundamental

domain of finite total curvature (nonzero) and let M be a deformation of M0, periodic

for the same group. Then the Gauss maps of M and M0 have the same image, the

complement of at most A points.

Proof. Considering the quotient spaces and §111, we know degg0 = deg g and g,

g0 have the same limiting values at the punctures. Therefore g0(M0) = g(M). Now

the proof follows Osserman's argument [4]; cf. [1]. We rotate M (and conjugate G)

so that g takes finite nonzero values at the punctures and each pole of g is simple.

Let qx,...,qk e S be the points missed by g, so g'x{qi,..-,qk} c {px,...,pr}. Let

N = deg g and at pj let g assume its value with multiplicity 1 4- a}. Then
r r

F ■ TV <   Z (1 + aj) = r +   I dj.
7-1 7 = 1

Let ß = g'(z)dz and n = the total order of branching of g = # zeros of ß. At a

simple pole of g, ß has a double pole so #poles of ß = 2N. By Riemann's relation:

2N - n = 2 -2S,

S = the genus of M. Now Yfj^xaj is the order of branching at px,...,pr, hence

< n. Thus
r

K ■ N < r +   £ aj < r + n,

7-1

and since n = 2( N + S — 1) we have

(I) K • N - r < 2{N + S- 1).

Now w has a pole at each puncture pj of order v¡ (by completeness), so by

Riemann's relation:
r

Y, Vj - #zeros of to = 2 - 25,
7 = 1

SO

r

(II) r <   £ HXj - 2 -. IS + 2N>
7 = 1

Combining (I) and (II) we have K < 4.

VI. The total curvature A-n minimal surfaces in R3/Z. Consider N — R3/Z as R3

modulo one vertical translation and let M c N be a c.m.s. of C(M) = the total

curvature of M = Ait. The helicoid is an example and the projection of the catenoid

and Enneper's surface are others. We will now describe how such M are obtained in

general and exhibit new examples of periodic minimal surfaces in F3, invariant

under a vertical translation.

Let (g, to) be a Weierstrass pair associated to M. Since g: M -» 5 is bijective we

know M is conformally a ÄT-punctured sphere. We observe that K < 4. First

perform a preliminary rotation of M (and conjugate G) so that g takes finite

nonzero values at the punctures. Then g has one simple pole in M and no others in
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M. Riemann's relation for to is: #poles of co — #zeros of to = 2. Completeness of

M implies u> has poles at the punctures, and we know # zeros of to = 2, hence

# poles of to = 4 and K < 4. Therefore M had at most 4 punctures before we

rotated. Now we consider each case K = 1, 2, 3, 4.

When K = 1, M is parametrised by a conformai map X: C -» M with harmonic

coordinate functions and X lifts to a conformai map X: C '-* R3 which parametrises

a c.m.s. M. The Gauss map of M is also injective so C(M) = Aw and M is a

catenoid or Enneper's surface. Thus M is the projection of one of these surfaces.

Consider now K = 2. We parametrise M by C* = C - 0 so 0 and oo correspond

to the punctures. Suppose first that g has a pole at oo. We can reparametrise M by

composing X with a Mobius transformation leaving 0 and oo fixed so that

g(z) = z 4- a for some a e C. Now to is a meromorphic differential on S, analytic

on C* and having a pole at 0, and no zeros in C. Therefore u = cdz/z" for some

integer n > 1 and c e C*. The metric on M is

ds= -^—(l +\z2 + 2az4-a2|).
2|z|

By completeness of M we know that fyds = oo for every path y tending to oo. This

clearly implies n < A.

Let us first look at n = 1, so g(z) = z + a, u = cdz/z. We have

<t>x = ¿(1 - z2 - 2az - a2),    <j>2 = fy(l + *2 + 2^ + *2)>

<f>3 = c(z 4- a) dz/z.

The coordinate functions xx = Ref<t>x and x2 = Re/«j>2 are single valued on M,

hence the residues of <f>x and </>2 at 0 are real. This implies c(l - a2) is real and

c(l 4- a2) is pure imaginary. It is natural to ask that

x3 = ReJ<i>3 = Re I c + caj dz/z

be multivalued on M (otherwise the surface exists in R3) hence the residue of <j>3 at

0 should have a nonzero imaginary part; i.e. Re(2wac/) + 0. Hence the conditions

c(l - a2) real, c(l 4- a2) imaginary and Re(acz) ¥= 0 determine all minimal surfaces

in R3/Z of the type considered. For example, take c = 1, a = i. We obtain

,2

xx = Re log z —-— iz ,

x7 — Re —"t~ — i.
\ 4 /

x3 = Re(z 4- z'logz).

To obtain the lifting M of M to F3 we use the conformai covering map ez:

C -» C - 0 and

C -»      M c F3

e: I I P

X
C-0      -» M
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x1(z) = Re|z- e-— -iez\,

so the coordinate functions xk of X are given by xk(z) = xk(ez) and g = g(ez),

to = (e")*to. Hence M is the surface parametrised by

,22

T
I ie2z

x2(z) = Rel-^- - e-

x3(z) = Re(ez + iz).

Writing z = u + iv, we obtain

e2"cos2t!        „ .
x, = u —-1- rstnt),1 4

e2"sin2i>        „ .
x-, =-e siny,2 4

x3 = e"cosi> — v.

Notice that replacing v by v 4- 277 and keeping u fixed, changes x3 by -277 and

leaves jclt x2 fixed. Thus M is a periodic surface, invariant by the vertical

translation by 277.

Next consider n = 2, so g(z) = z 4- a, w = cdz/z2. Letting T denote the unit

circle in C we have

1  <¡)x = -ac2<rri,        j  c¡>2 =
•T /p

-acTT.

Since x,, x2 are single valued on M we have ac is real and pure imaginary, thus

a = 0. Notice that /rcf>3 = 2t7z'c, so if this surface is to exist genuinely in R3/Z we

must have Im(c) ¥= 0. Now a calculation yields:

xx = -reos v cosh w + ssinusinhu,

x2 = -s cos f sinh u — r sin v cosh«,

x3 = r« — sv,

where c = r + is, z = u + iv. For r = 0 this is a helicoid and for s = 0 a catenoid.

For c = e'*, 0 < 6 < 77/2, we obtain the usual deformation of the helicoid into its

associate surfaces. Whenever s ¥= 0, the surface is invariant by vertical translation by

277; changing v by 2t7 does not change xx, x2.

The case n = 3 is impossible since then fr4>i = -2nic and Jr4>2 = -277c; there-

fore c would be both real and imaginary, hence 0.

To complete the study of two punctures it remains to consider the case when g

takes a finite value at oo. We reparametrise M by C - 0 so that

,  v      az + b
g(z)=7TT'

so that g has a simple pole at -d. We know to = (P(z)/Q(z))dz, where F has a

double zero at -d if d # 0 and Q can vanish only at 0. Suppose first that d = 0 so

to = cz"'dz for some integer /w. If m > 2, then dtk, k = 1, 2, 3, are analytic at 0, so

M is parametrised by C and we know by the previous case what M is, the projection
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of a catenoid or Enneper's surface. Suppose m = 0. Then calculating residues of 4>x

and <j>2 at 0 and using the fact that xx, x2 are single valued we conclude abc is real

and imaginary, hence a = 0 or b = 0. Clearly b # 0 since g is injective, hence

£7 = 0. The residue of </>3 at 0 is cb so \m(cb) = 0 if x3 is to be multivalued;

otherwise M is the projection of a catenoid since Res^) = Res(c>2) = 0, so M lifts

to F3, parametrised by C - 0 and of total curvature 477. A calculation yields

xx = Re(|-(ez4-/3V0),

*2 = Re(f(e*-/3V*)),

x3 = Re(c/3z).

These are the "associate type" surfaces of the helicoid (the helicoid is c = i, b = 1).

Now suppose g(z) = b/z, to = czdz. Then Res«/^ = -cb2/2 and Res(<f>2) = icb2, so

cb2 is real and imaginary, hence b = 0 which is impossible.

Next we study d # 0. Since g is analytic at 0, to must have a pole at 0 by

completeness of M. Also o> has a double zero at -ti since g has a simple pole there.

So co = c(z 4- d)2dz/z" for some c G C - 0 and n > 1. We have

2z"

Completeness at oo implies n < 4. If n = 1, then calculating residues of <f>,, </>2 at 0

yield c(d2 - b2) is real and c(d2 + b2) is imaginary (using the fact that x,, x2 are

single valued). We want x3 to be multivalued which yields Im(cbd) * 0. Such

surfaces are easily realised, e.g.,d2 = b2 and c imaginary. When n = 2 the analogous

calculations yield c(d — ab) real, c(d + ab) imaginary and Im(c(tJ 4- da)) # 0. For

n = 3, c(l — a2) real, c(l + a2) imaginary and Im(ac) # 0; e.g., a = 1, c imagin-

ary. This completes the study of two punctures.

We will not treat the 3- and 4-puncture case in detail; we will make some general

remarks and give some examples. Consider the 3-puncture case. Since there is only

one conformai structure on a 3-punctured sphere, we may parametrise M .by

S - [8X, 02,63}, where 0k are the cube roots of unity. Now g(z) = (az 4- b)/(z 4- d)

and we suppose d ¥= -6k, k = 1, 2, 3. Then co has a double zero at -d and a pole at

each 6k, so

co = (c(z + d)2)/{(z - exr(z - e2r(z - e3r).

Since oo is a regular point of M and u is not zero there we have «14-«24-n3<4,

so there are several cases to consider (we will not do it). In order that M exist, one

must choose a, b, c, d so that the residues of <¡>x, <f>2 are real at each puncture and

the imaginary parts of the residues of <¡>3 at each puncture must generate a nontrivial

cyclic group. If we assume oo is a pole of g, the situation is simpler. Then

g(z) = az + b and

u = (cdz)/{(z-8xr(z-62y>(z-63)">).

Now oo is a regular point of M, so letting u = 1/z, u(u) must have a double pole at

1 +
az 4- b

z + d
\dz\
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0. This yields nx + n2 + n3 = A. One can analyse this situation completely. For

example taking a = 1, b = 0, c real and nx = 2, «2 = «3 = 1, a (tedious) calcula-

tion shows this surface exists in R3/Z.

When M is a 4-punctured sphere, the conformai structure may change. One can

check the following example exists:

g(z) = z,       c = Ai,   and    co = -.-—7--r,——rr¡—~rr,
6V   ' (z - \)(z - i)(z + l)(z 4- 1)

M is S -{1,-1,/,-/}.

Can every conformai structure be realised? Let z0 e C and g(z) = az + b, co =

cdz/(z — z0)(z0 4- l)(z0 - /)(z0 4- /). Can one choose a, b and c so that M = S -

{z0, -1, /, -/} exists?

VII. Some isolated periodic surfaces.

Proposition. Let M0 be the usual helicoid in R3: g0(z) = +iez, cö0 = e~zdz.

Then M0 is isolated among complete minimal surfaces invariant under vertical transla-

tion by 277.

Proof. Let M0 be the projection of M0 to R3/Z, so that C(M0) = Aw, M0 is a

2-punctured sphere and g0(z) = iz, œ0 = dz/z2. A deformation M of M0 invariant

under vertical translation by 277 gives a deformation M of M0 in R3/Z. M is also

conformally a 2-punctured sphere and the Gauss map g of AZ is bijective. We

parametrise M by C - 0. The limiting values of g and g0 are the same at the

punctures 0 and 00 so we can parametrise M so that g(z) = iz. Now to is a

meromorphic differential on 5 with no zeros in C - 0 and a pole at 0, hence

to = cdz/zk for some c e C, k > 1. The metric on M is

so by completeness of M at 00 we have k < 3. If k = 1, then <j>x = c(l + z2)/2z

and <¡>2 = ic(l - z2)/2z. Hence Res(c¡>1(0) = c/2 and Res(cf>2,0) = it/2. Since xx =

Re/^[, x2 = Re/</>2 are single valued functions on M, c is both real and imaginary,

so c = 0, a contradiction. A similar reasoning shows k = 3 is impossible, and

to = cdz/z2.

We have Res(<i>3,0)= -c2t7 so Re(c) = ±1. Now lift A/ to M c F3 by the

conformai covering ez: C -» C — 0. This yields g = g(ez), cö = (ez)*u and a

calculation shows (writing c = a + ib)

xx = acosusinhw — b sin v cosh«,

x2 = bcos vcoshu 4- tzsinfsinhw,

x3 = -(bu 4- av).

Considering the trace of AZ in the plane x3 = 0 it is clear that b = 0 since M is a

deformation of AZq.1 Thus AZ is also a helicoid.

1 The surface is a homothety of an associate surface of the helicoid and is not embedded for b * 0.
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Proposition. The surface M0:g0(z) = z, co0 = Aidz/(z4 - 1) (modelled on S

punctured at the Ath roots of unity) is isolated in R3/Z.

Proof. Let AZ be a deformation of M0. The total curvature of AZ is 477 so g is

bijective. Since g at the punctures misses precisely the 4th roots of unity 1, -1, /, -/,

g is a conformai equivalence between M and S — {1, -1, /, -/} = S0. Hence we may

parametrise AZ by S0 so that g(z) = z. Then co is a meromorphic differential on S

with no zeros in C and poles at {1, -1, i, -i}, so

cdz

u' (z-i)"'(z 4-ir(z-,y>(z+ /)"<•

Since oo is a simple pole of g, it is a double zero of co, hence nx + n2 + n3 + n4 = A.

Thus co = cdz/(z4 - 1). We have the residue at <i>3 at each puncture is +c/4, and

since AZ is invariant by vertical translation by 277, the real part of 77/c/2 = ±277, i.e.

Im(c) = ±4. Now Res^j,/) = z'c/2 and xx is single valued on AZ so c is pure

imaginary. Hence AZ = AZ0.

Similar arguments apply to other 477 total curvature minimal surfaces in transla-

tion spaces; e.g. Scherk's surface, g(z) = z, co = 2dz/(z4 - 1), is isolated in R3/G,

G the group generated by translation by (277,0,0) and (0, 2t7, 0).

We have a partial result concerning deformations of the helicoid which are close at

oo.

Proposition. Let M be a deformation of the helicoid M0 satisfying:

1. AZ is parabolic,

2. M is transverse to every horizontal plane x3 = constant,

3. the curve M C\ [x3 = constant) makes a bounded angle with M0 C\ [x3 =

constant}, the bound independent of the plane x3 = constant.

Then M is a helicoid.

Proof. Let a: AZ -» F be the angle which the curve AZ n (x3 = constant} makes

with the vector (1,0,0). A priori, a is a local function on AZ but since M is simply

connected and AZ is transverse to every horizontal plane, we can extend a to a

continuous (unbounded) function on AZ. It is a general fact that a is a harmonic

function on AZ [5]. Now AZ is a minimal surface so x3 is also a harmonic function on

AZ. Therefore x3 - a is a harmonic function on M which is bounded by condition 2.

But by condition 1, AZ is conformally parametrised by C, so x3 - a is constant.

Hence for x3 = constant we have a = constant, i.e., AZ n {x3 = constant} is a

straight line. Therefore AZ is a helicoid.

Remarks. 1. If e is small enough, then M is certainly parabolic since the

orthogonal projection is a quasiconformal homeomorphism and AZ0 is conformally

parametrised by C.

2. It is elementary that for any minimal surface AZ there is a positive function

e(x) on AZ such that any deformation of AZ which is e(x)-close to AZ, is equal to AZ.
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