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JACOB FELDMAN1 AND CALVIN C. MOORE2

Abstract. Let R be a Borel equivalence relation with countable equivalence

classes, on the standard Borel space (X, &, ¡i). Let o be a 2-cohomology

class on R with values in the torus T. We construct a factor von Neumann

algebra M(R, o), generalizing the group-measure space construction of

Murray and von Neumann [1] and previous generalizations by W. Krieger

[1] and G. Zeller-Meier [1J.
Very roughly, M(R, a) is a sort of twisted matrix algebra whose elements

are matrices (axf), where (x, y) 6 R. The main result, Theorem 1, is the

axiomatization of such factors; any factor M with a regular MASA subalge-

bra A, and possessing a conditional expectation from M onto A, and

isomorphic to M(R, o) in such a manner that A becomes the "diagonal

matrices"; (R, a) is uniquely determined by M and A. A number of results

are proved, linking invariants and automorphisms of the system (M, A) with

those of (R, a). These generalize results of Singer [1] and of Connes [1].

Finally, several results are given which contain fragmentary information

about what happens with a single M but two different subalgebras A,, A2.

1. Introduction. This paper is a sequel to Feldman-Moore [1], hereafter

referred to as FMI, where we developed a general theory of what we called

countable standard equivalence relations and their cohomology. In the

present paper we shift the emphasis and develop the connection of all of this

with the theory of von Neumann algebras. This connection starts with the

Murray-von Neumann [1] group-measure algebra construction, in which one

attaches a factor von Neumann algebra to a pair (G, X) consisting of a freely

acting ergodic countable group G on a measure space (A", %, p). It has been

observed that the von Neumann algebra depends only on the relation RG

generated by the group G. Thus one feels that one should be able to construct

the algebra directly out of a countable standard relation R without mention

of G and whether or not there is a freely acting group. In fact, Krieger [1] did

eliminate the hypothesis of freeness in the group-measure construction, but

by going over to the relation and forgetting about the group we can make the

construction in a rather more transparent and immediate fashion. The von
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326 JACOB FELDMAN AND C. C. MOORE

Neumann algebra M(£) associated in this way to £ appears as the algebra of

matrices over the relation £; the algebra B(%„) of bounded operators on an

n dimensional space is the algebra of matrices over the ergodic relation of

type I„, i.e., the algebra of n X n matrices. Furthermore, Zeller-Meier [1]

showed how to "twist" the group-measure constructions by a two cocycle.

This comes out naturally in our context: given o G H2(R, T) where T is the

circle group, we form the "twisted" algebra of matrices over £, denoted by

M(£, o). Our object is to study these algebras and one of our main results,

Theorem 1, is a reasonably simple necessary and sufficient condition for an

algebra to be isomorphic to one of these. We introduce the notion of a Cartan

subalgebra of a von Neumann algebra, motivated by the example of the

natural subalgebra of M(£, a) consisting of the "diagonal" matrices. Our

result then is that if a von Neumann algebra M has a Cartan subalgebra A,

then M is isomorphic to an M(£, o) in such a manner that A becomes the

diagonal matrices. Our definition of Cartan subalgebras agrees with that

proposed by Versik [1], Since an ergodic relation defines a virtual group, one

sees that our results are related to those of P. Hahn [1], who defines the

regular representation of a virtual group.

The results above pose all sorts of problems about automorphisms and

about conjugacy of Cartan subalgebras, and we have only fragmentary

answers.

2. Construction of the von Neumann algebra M(R, a). We turn to the

construction and elementary properties of the algebras M (R, o) with a E

H2(R, T) where £ is a countable standard relation on (X, &, p) with p(X) -

1. Let v be the right counting measure on £ defined in Theorem 2 of FMI,

and let % = L2(R, v). We observe that the diagonal A of Ac" in £ is a set of

measure one and we let <f>0 be its characteristic function so that <f>0 is a unit

vector in %. We select, by Propositions 7.6 and 7.7 of FMI, a cocycle

representative s of a which is skew symmetric in its three variables. Finally,

let D be the Radon-Nikodym derivative of p with respect to £ as defined in

FMI, so that D E ZX(R, R+).
Definition 2.1. Let a be a complex Borel function on £; we say that it is

band limited if there is an integer n such that for each x and y, \{z:

a(x, z) =£ 0}| + \{z: a(z,y) ¥= 0}| < n. If a is also bounded we say that it is a

finite function or, if necessary to be more precise, a left finite function. (A

function b will be right finite if D(x, y)~1/2b(x, y) is left finite.)

Proposition 2.1. If$ E % - £2(£, v) and if a is a left finite function and b

is right finite, the formulas

La(4>)(x, z) = 2 a(x,y)x¡,(y,z)s(x,y,z),
y~x
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Rb(t)(x,z)= 2 ^(x,y)b(y,z)s(x,y,z)
y~x

define bounded operators on %.

Proof. Let B be a bound for a, and let A (z) = {x: a(z, x) =£ 0). Then by

definition there is an n so that A (z) has at most « elements, and each y is

contained in A (z) for at most n different values of z. The sums above are in

effect finite sums for each fixed x and z; in fact, there are at most n terms, so

there is no convergence problem. Now

f\La(t)(x, z)\2dv(x,y) -/2 \LM(*> x)\2M*)

by making use of the definition of v as right counting measure or equivalently

disintegrating v with respect to projection to the second coordinate. The

integrand above can be estimated above by

2(2K*.J0lhK**)l).

which is no larger than

2W 2 i+tv,*)i2).
* \yt=A(z) I

which by the Schwarz inequality is dominated by

B2n*Z     S    |*CV,*)|2
z y£A(¡)

which in turn, by properties of A (z), is dominated by

BV2W".*),2.
w

We then conclude that La(ip) is in % and \La(ip)\ < Bn\\p\.

In order to treat Ra we have to disintegrate the measure v with respect to

projection to the left factor so that we have to compare right and left

counting measures and the Radon-Nikodym derivative D will enter. Specifi-

cally

f\RbW(z, x)\2dv = [2 \Rb(t)(z, x)\2D(z, x)~xdp(z)
J J    x

<i^\lH^y)D(y,xyx/2b(y,x)
-1

D(z,y)-'dp(z)

since D(z, x) ■ D(z, y)D(y, x); then as before we obtain an estimate for

this of the form
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CV/2 \Hz,y)\2D(z,y)-xdp(z) = CV||uf
J        y

where C is uniform bound for b(y, x)D (y, x)~I/2.   □

For two band limited functions a and ¿ we define a product í7¿(jc, z) =

"2ya(x,y)b(y, z)s(x,y, z). It is clear that ab is also band limited. We define

a*(x,y) =a(y, x) and a+(x,y) =a(y,x)D(y, x).

Proposition 2.2. If a, b are left (right) finite, so is ab, and

LaLb "* Lab{RaRb ~ Rab)-

If a is left (right) finite, a* (a+) is left (right) finite and L* = La» (R* = Ra ).

Proof. These routine calculations are omitted.

Definition 2.2. The operators La, a left finite, form a ""-algebra of opera-

tors L with unit; we denote its weak closure by M(£, s). Similarly the

operators £6 form a *-algebra R with unit; we denote its weak closure by

M(£, s).

Now if <i>o is the characteristic function of the diagonal, then (La<b0)(x, z) =

a(x, z), since s is skew symmetric, and similarly (Ra<bn)(x, z) — a(x, z).

Proposition 2.3. Any left or right finite function is in L2(R, v), and the set of

either is dense. Any right or left bounded function can be written as a finite

linear combination of functions of the form f(x)F(<b)(x,y) where <j> is a partial

Borel isomorphism of some subset of X onto another with T(<p) c £, where F(<b)

is the characteristic function of the graph of4>~x and where f is bounded in the

case of left finite functions or f(x)D(x, <f>~l(x))~x^2 is bounded in the case of

right finite functions. Any such function of either type may be approximated by

ones where D(x, <p ~ x(x)) is bounded above and below.

Proof. The fact that left or right finite functions are in L2 is immediate

from the comment immediately preceding the proposition. We consider a left

finite function and let £ be the subset of £ where it is nonzero. The band

limited condition implies that the inverse image of any point x E X under

projection to either coordinate has at most n points. As in Theorem 1 of FMI,

we can find a countable partition £ = U, £, so the projection to the second

coordinate, called irr, is one-to-one on each E¡. We may also assume that for

i < /, trr(Ej) d irr(Ej), since by a simple but tedious double induction on i

and/ we in effect add to £, the set Ej n v~\Ef). Once this is done it is

evident that there are at most n £,'s. Now we repeat this same argument

applied to each £, and the projection rr, on the first coordinate, to write it as a

disjoint union of at most n sets where m, is injective on each. Then £ is the

disjoint union of a finite number (at most n2) of sets Fj such that tr¡ and irr are

injective on each £y. But then each Fj is the graph of a partial Borel
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isomorphism <j>~x, and since F},c R, Tty) c R. Now it is obvious that any

bounded Borel function a vanishing off £ is a linear combination of func-

tions fj(x)F(4>j)(x,y) as desired. If instead a is right finite, a(x,y)D(x,y)~X/'2

is left bounded and so a has the form indicated. Finally, a function of the

toxmf(x)F(<S>)(x, y) can be approximated in L2 by f(x)F(<b(n))(x,y) where

<b(ri) is the restriction of <J> to the subset of its domain where l/n <

D(x,<j>~x(x))< n.

It remains only to prove that the right or left finite functions are dense in

L2. We do it for left finite functions, and note that any function g perpendicu-

lar to them must be perpendicular to all functions of the form f(x)F(<b)(x, y),

where <f> is a partial Borel isomorphism with domain D (</>). It follows that

g = 0 a.e. on the graph T(<f>-1) and since R is a countable union of such sets,

g = 0 a.e. and we are done.   □

The following variation of the above will be of use shortly.

Proposition 2.4. Every left finite function is a finite linear combination of

functions of the form g(x)F(\p) with g of absolute value one, where u^ is a Borel

isomorphism of all ofX onto all ofX with T(\(/) c R.

Proof. It suffices to show the result for any function of the form F(<j>)

since any bounded function is a finite linear combination of functions of

absolute value one. Assume for the moment that the relation is ergodic and

let A he the domain of <b. Then by Proposition 3.3 of FMI, one sees that <p

may be extended to a Borel isomorphism of X onto X with T(<¡>) c R if R is

finite, and if R is infinite it is easy to see by the same result that we can

partition A = Ax u A2 with <#>, the restriction of </> to A, and find extensions

$,, i = 1, 2, of <t>¡ to Borel isomorphisms of X onto X. If R is not ergodic it is

not hard to extend this result using direct integral decompositions. In any

case, such \}>x and \p2 always exist and it is evident that F(<b) is a linear

combination of functions giF(<b¡) with g¡ of absolute value one.   □

We can now establish some basic properties of the algebras M(R, s) and

M(R, s).

Proposition 2.5. The algebras M(R, s) and M(R, s) are commutants of each

other and the vector <b0 (defined above to be the characteristic function of the

diagonal) is separating and cyclic for both algebras.

Proof. L4>0 (R<b0) consists of right (left) finite functions viewed as elements

of L2(R, v), so <¡>0 is a cyclic vector for L and R, and hence for M(R, s) and

M(R, s). Then <p0 is separating once we know that these algebras are corn-

mutants of each other. To show this we note the L and R commute and then

invoke the criterion of Rieffel and van Daele [1]; it therefore suffices to show

that % = Ls(<t>0) + iRs(<t>0) is dense in L2(R, v) where L, and R, are the
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selfadjoint elements of L and R respectively. By Proposition 2.3, it suffices to

show that any element of % of the formf(x)F(9)(x,y) is in <¥, where 9 is a

partial Borel isomorphism on X with Y(9) c £ with D(x, 9~x(x)) bounded

above and below.

Since L, • <i>0 consists of (left) finite functions a such that a(x,y) — a(y, x),

and /R, • <f>0 consists of right finite functions of the form ib where

b(x,y) =b( v, x)D(y, x), it is an easy, although tedious, matter now to

display f(x)F(9)(x, y) in the form a + ib. We omit the routine details.   □

Now if £ G M(R, s) then the vector £<J>0 in L2(R, v) completely de-

termines T, and we write a(T) = £</>„. Similarly, if £ G M(£, s) = M(R, s)',

then the vector T<b0 = b(T) determines £ entirely.

Proposition 2.6. If T E M(£, s), a = a(T) is square integrable for right

and left counting measures on R, and is bounded by the operator norm of T.

Moreover, for \p G L2(R, v),

(1) (T^)(x, z) = 2ya(T)(x,yW(y, z)s(x,y, z), so that T = Ra(T) in an ex-

tended sense. Moreover,

(2) a(TxTJ)(x, z) = 2ya(Tx)(x,y)a(T2)(y, z)s(x, y, z), and

a(T*)(x,y)=a(T)(y,x).

Corresponding residís hold for P in M(£, s)' and b(P).

Proof. Clearly a(T) = T<b E L2(R, vr) where v = vr is right counting

measure. But now a(T*)(x,y) =a(T)(y, x) for T E L by Proposition 2.2

and since L is dense, this follows immediately for all T. Then a(T)(y, x) E

L2(R, vr). But this implies that a(T) E L2(R, v¡) where v, is left counting

measure. Now using the fact that M(£, s) commutes with R, it is clear that

formula (1) of the proposition holds for right finite functions \p, and since

a(T) E L2(R, vj it follows that 2y\a(T)(x,y)\2 converges for almost all x.

We can approximate ^ by a sequence of right finite vectors \p(n) so that

$(n)(-, z)^*\p(-,z) in /2(£(z)) for almost all z. It follows that the right-hand

side of (1) for \p(n) converges to the right-hand side for \p for almost all pairs

(x, z). Hence the formula holds for \p. We establish formula (2) in a similar

fashion. It remains only to show that a(T) is bounded by the norm of T. In

fact, if |a(£)|(.x,y) > |£| on a set £ of positive measure, then we may select a

partial Borel isomorphism 9 of X with (9 (x), x) G £ for all x in the domain

A of 9. Now let t//, be the characteristic function of the set A(A) = {(x, x):

x E A), and let vp2 be the characteristic function of {(9(x), x), x E A) times

a(T)(9(x), x)/\a(T)(9(x), x)\. Evidently both \px and $2 nave norms equal to

p(Af'2, and

(£^2) =f\a(T)\(9(x),x)dp(x) >||£||||^||||»P2||,
''A

a contradiction.  Q
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Thus we have realized the algebras M = M(R, s) and its commutant as

generalized matrix algebras where the matrix for T E M is a(T), a bounded

function on R. One cannot hope to say exactly which such functions occur;

after all, one cannot do this even in the special case when the relation R is 1^,

the ergodic relation of type IM. For here, Iw «= S^ x SM for a discrete set

X = S^, and evidently the algebra MQ.^, 1) is BiOC^,), the bounded opera-

tors on a separable Hubert space realized as infinite matrices. The feature of

twisting by a cocycle does not enter here; this is the case more generally for R

hyperfinite, by Theorem 6 of FMI. It is readily verified also that if G is a

freely acting group on X and R = RG, then M(RG, 1) is the result of the

group measure construction of von Neumann and Murray. The identification

is made by noting that (g, x)\-+ (g • x, x) is a bijection from G X A" to RG.

Algebras M(RG, s) for a cocycle s can be identified as the algebras of

Zeller-Meier [1], For non freely acting groups these algebras were constructed

somewhat differently in Krieger [1]. We note that if we change the cocycle s

by a coboundary 8c(x,y, z), where c is skew symmetric (as it must be if the

modified j is to be skew symmetric), then we obtain an isomorphic algebra.

Indeed, if LJ denotes the operator with matrix a using the cocycle t and if we

define a unitary operator C on % by (C\f)(x,y) = c(x,y)\p(x,y), then

CLsaC~x = LC(JX,) where c • a is the pointwise product. Thus CM(R, s)C~x

= M(R, (8c)(s)), so that the isomorphism type of M(R, s) depends only on

the cohomology class o of j and we write M(R, o). Additionally, it is

appropriate to note for later use what happens if 8c = 1.

Proposition 2.7. If c E Z X(R, T) is a one-cocycle, then La i-* Lc.a is a

*-automorphism of M(R, s) = M(R, o) which we shall denote by m(c), and

which is spatially implemented by the unitary operator C, where (C\(/)(x,y) =

c(x,y)$(x,y).

The algebra M = M(R, s) comes with a separating and cyclic vector <p0, so

that one may apply the Tomita-Takesaki construction to obtain the modular

automorphism group $, and anti-unitary J with JMJ = M'. We note what

these objects are in our context:

Proposition 2.8. The modular operator A is multiplication by D, (Ai//)(x, y)

= D (x, y)\p(x, y), and the natural domain of AI/2 is L2(R, vr) n L2(R, v¡), that

is, functions square integrable with respect to both right and left counting

measure. The modular automorphism group $, is given by \¡/t = tt(Z)") with

D" E ZX(R, T) using the notation of Proposition 2.7. The anti-unitary J has the

form Jyp(x,y) = \b(y, x)D~x/2(y, x) and JLJ = Rb where b(x,y) =»
â(y,x)D(y,x)-x/2.

Proof. The operator 5 defined by S(La<bQ) = (La)*<j>Q has the form
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(S\¡>)(x, y) = \f(y, x) according to the formulas above. It is easy to check that

(J\¡/)(x,y) = ip(y, x)D~x/2(y, x) defines an isometry, and that (Aip)(x,y) =

D(x, y)i(x, y) defines a selfadjoint operator. One checks that S = JAX/2

and it follows that the Tomita-Takesaki J and A are given by these formulas.

The statement about the domain of D1/2 follows from the definition of D as

(dvj dvr). The modular automorphism group \¡>, is implemented by the opera-

tors A", which are evidently operators of multiplication by the functions

(x,y)r^D(x,yj'. Now, D E ZX(R, R+), so D(x,yf is in Z'(£, IT). The

final formula for JLaJ is a simple computation,   fj

We will denote by to the state of M defined by the vector <|>0. Now, M has a

naturally defined abelian subalgebra consisting of "diagonal" operators.

Specifically, if a G La3(X), we view it as a function on £, also denoted by a,

by defining a(x,y) = a(x) if x = y and 0 otherwise, so a is supported on the

diagonal A c £; recall that A is a set of positive measure and y|A is equivalent

to p. Then a as a function on £ is clearly left and right finite and so defines

operators La and Ra in M and M'. These are given by (La\p)(x, y) =

a(x)\p(x,y) and (Ra\p)(x,y) = ip(x,y)a(y). Thus {La) forms already an

abelian von Neumann subalgebra A of M, isomorphic to L°°(X); and

similarly {£a} forms a subalgebra of M' isomorphic to Lto(X) which we shall

denote by B.

Recall that the normalizer N(A) of a subalgebra consists of the unitary

operators U in M such that UAU~X = A. Note that N(A) contains the

unitary group U(A) of A, and U(A) is normal in N(A). We denote the quotient

group by W(A), the Weyl group. Recall from Dixmier [1] that an abelian

subalgebra A of M is regular if N(A) generates M.

Finally, if La G M, we know by Proposition 2.6 that a is bounded; so if

E(a) is the restriction of a to the diagonal, then E(a) defines an operator

LE(a) in A-

Proposition 2.9. (1) The subalgebra A of M is maximal abelian, and likewise

the subalgebra B of M'. Moreover, JLaJ = R5 for La E A, so that B = JAJ;

and A and JAJ together generate a maximal abelian subalgebra of B(L2(R)).

(2) The center of M consists of {La: a E 3(£)}, where ê(R),as defined in

FMI, is the invariant functions on R, so that M is a factor if and only if R is

ergodic.

(3) A is a regular subalgebra and its Weyl group W(A) is isomorphic to G(R),

the full group of the relation (the bifections <p on X with p ° <b ~ p and <bx ~ x

a.e.).

(4) The map E(La) = L£(a) is a normal faithful conditional expectation of M

onto A. It satisfies the equation u(E(T)) = w(T) where u is the state defined by

$n,andE(UTU~x) = UE(T)U~xfor U E N(A).
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Proof. (1) The formula JLaJ = R¿ is clear for La E A. Now A and JKJ

can be viewed as subalgebras of the algebra C on L2(R) consisting of

multiplications by all bounded functions on R which we may identify as

LX(R) with A and JAJ sitting inside as functions depending only on the first,

respectively second, coordinate. Since the projections to the coordinates

separate points, it follows (cf. Segal [1]) that the images of A and JAJ in

Leo(R) generate Lco(R) and hence that A and JAJ generate C, which is

maximal abelian in B(L2(R)), proving the last statement in (1). To see that A

is maximal abelian in M, note that if La commutes with A, then La commutes

with JAJ c M' and so commutes with C and hence is in C itself. Then

(La\p)(x,y) = c(x,y)ip(x,y) for some function c. If we take i/< = <J>0, then

La<¡>0 = E(c), the restriction of c to the diagonal, and since <j>0 is separating,

a = E(c) and so LaE A, A is maximal abelian in M, and JAJ is maximal

abelian in M' = JMJ.

(2) Since A is maximal abelian, the center Z of M lies in A and in JAJ.

Now since JTJ = T* for T in Z, Z can be characterized as those La E A such

that La - Ra. This means, however, that a(x)\p(x,y) = \¡/(x,y)a(y) a.e. for

any \b and one sees immediately that this means a is in $(R).

(3) To see that A is regular, let <f> be a Borel isomorphism of X onto itself

with T(tp) c R and let / be a function on X of absolute value one, and let

a(f> <f>)(x>y) — f(x)F(tp)(x,y) be a function on R of the type considered in

Proposition 2.4 which is equal to/(;t) if x = <p(y) and zero otherwise. For the

moment, we need not assume that \f(x)\ = 1. Then the operator La(SM has

the form

(La(M)v)(x> z) = v(<?~x{x), z)f(x)s(x, <t>-x(x), z)

and from this it is clear that £a(/<j)) is unitary if \f(x)\ = I. Moreover, by

Proposition 2.6, L^^L^^ = La(hM) where

h(x)=f(x)g{$-x(x))s(x,<b-x(x),(<M)-x(x)),

and it follows that for |/| = 1, Laa<t>)Laig>X)L*U4l) = La(KX) where hix) =

e?fo '(•*))• Since La(gX) is the generic element of A, each LaU^ belongs to the

normalizer N(A) of A, and Lo(/i>) induces the automorphism g{x) h*

g(<r'(*))ofAsL«(A-).

If we knew that N(A) consisted exactly of the set of all La(f^, then

£«(/,« ,-*<i) would define, by the formulas above, a homomorphism of N(A)

onto G(R) whose kernel consisted of precisely the elements of the form

LaUX), i.e., U(A). Thus we would have N(A)/U(A) s G(R) as asserted. It

remains to show that any U E N(A) is of the form Laim. But ULaU* = Lg(a)

where 0 is an automorphism of L^A") which is necessarily of the form

0(a)(x) - a(<b~x(x)) for some Borel isomorphism <j> of X onto itself. How-
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ever, U = Lb for some function b G L°°(£) and so 9(a) = bab*, and a

simple computation shows that

bab*(x, x) - 2 I^.^OO = *(*"'(*))

holds for any a G LK(X). The only way this could happen is for b(x,y) = 0

unless y = <¡>~x(x), and then ¿(x, <t>~x(x)) = f(x) must be of absolute value

one. It follows that It» c £ and that b = a(f, <¡>) so that U = La{f^, and

this proves (3), and a bit more which we state separately in a moment.

(4) The map £ is well defined and evidently £(1) = 1 and we have

E(LaLbLc) = LaE(Lb)Lc when Ltt and Lb are in A, as a result of the formulas

of Proposition 2.6. Also, if b = cc*, then b(x, x) = cc*(x, x) — ~2y\c(x,y)\2

so that £ is positive and faithful. Now if La,n) -> La strongly, then as

a(n) = La,n)<b0, it follows that a(n) -» a as elements of L2, so lAa(n) -» l¡fi in

L2(Ar). Since lAa(«) G L'X>(X) and ||lAa(/j)||M ... is uniformly bounded, it

follows by dominated convergence that £(La(n))-> £(La) strongly. This

establishes the normality of £. The final two statements of (4) follow by

simple calculations.   □

In the course of the proof of (3) above, we proved a more explicit statement

that we will need subsequently.

Proposition 2.10. Every element o/N(A) is of the form La,f<¡¡) with \f(x)\ =

1 and with <b E G(R). The algebra generated by N(A) consists of the Lb with b

left finite.

Proof. The first statement is already proved and the second is a rephrasing

of Propositon 2.4.   □

Note that the operators La(fA¡) are the "monomial" operators, which are

entirely analogous to the monomial matrices in the matrix presentation of

B(%). Proposition 2.10 shows somewhat in retrospect our reason for selecting

out the left (or right) finite functions as basic objects. Finally, we note that

the modular automorphism group {»p,} associated to the state w has the form

of multiplication by £»", and hence v//,(A) = A. It then follows on general

principles from Takesaki [1] that there is a faithful, normal, conditional

expectation £ as in (4) of Proposition 2.9. It is of course useful to have the

explicit form of this £.
Finally, we note that the asymptotic range of the Radon-Nikodym cocycle

D has a natural interpretation (as of course it must) in terms of M(£, a).

Proposition 2.11. The asymptotic range r*(D) coincides with the Connes

invariant S(M(R, o))for any o E H2(R, T).

Proof. If £ = £g with G free and o = 1, this is in Connes' thesis [1] and

for G not necessarily free, but for a = 1, the result is in Ghez-Lima-Testard
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[1]. Thus 2.11 is only a routine extension of known facts. Indeed, by Theorem

3.3.1 of Connes [1] and by part (3) and the last statement of part (4) of our

Proposition 2.9, it follows that X G S(M(R, o)) if and only if for all e > 0,

and for each nonzero projection P in A, there is a nonzero projection Q in A

with Q < P and some U G N(A) such that UQU* < P, and such that the

spectrum of pfxQ in QAQ lies in the interval (X - e,X + e) where pv is the

unbounded operator affiliated to A such that u¡(UAU*) — w(pvA) for A E

A+. However, if we interpret A as LX(X), py is simply a positive function on

X and if we take U = LaUAl) we can identify p by Proposition 2.2 as the

function D(<f>(y), y). This says that X G S(M(R, o)) iff for all neighborhoods

A of X and all sets E c X of positive measure, we can find F c E and

<f> G G(R) so that <b(F) c E and so that D(<p(y),y) E A for almost all

y E F. But by Proposition 8.4 of FMI (cf. also Definition 3.3.3 of Connes [1]),

this is precisely the condition for X to be in r*(D).   □

3. Axiomatization of the M(R, o). Proposition 2.9 identifies in M(R, o), a

particularly nice kind of abelian subalgebra which we call the diagonal

subalgebra relative to the presentation of M as M(R, o). We now axiomatize

these properties as follows.

Definition 3.1. If M is a von Neumann algebra and A an abelian

subalgebra, we shall say that A is a Cartan subalgebra if

(1) A is maximal abelian;

(2) A is regular;

(3) there exists a faithful normal conditional expectation of M onto A.

After introducing this definition and proving the main theorem (Theorem 1

below) based on it, we discovered that Versik [1] had introduced already the

notion of a Cartan subalgebra. His definition is our (1) and (2), plus

., there is a state a of A such that u(AB ) = u(BA)

for alM G A and B E M.

It is not hard to see that this is the same condition.

Proposition 3.1. Condition (3) holds if and only if (3') does. Moreover, the E

in (3) satisfies E(UTU~X) = UE(T)U~X for U E N(A).

Proof. If (3) holds, let u be a faithful normal state on A and extend w to a

state (also denoted by w) on M by u(T) = u(E(T)). Then if A G A,

u(AB) - u(E(AB)) = u(AE(B)) = u(E(B)A) = u(BA).

Conversely, if (3') holds, let \p, be the modular automorphism group

associated to w. Since «//, and w satisfy the KMS condition it follows that

}p,(A) = A for all A E A. It follows by Takesaki [1] that there is a (unique)

faithful normal conditional expectation £ of M onto A satisfying u(E(T)) =
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w(£). The final statement of the proposition is in Theorem 1.5.5 of Connes

[1].   D
Our main result provides as it were, a converse to the construction of §2

and a structure theorem for certain von Neumann algebras.

Theorem 1. Let M be a von Neumann algebra on a separable Hilbert space

%, and having a Cartan subalgebra A. Then there exists a countable standard

relation R on a space (X, ©, p), a E H2(R, T) and an isomorphism of M onto

M(£, o) carrying A onto the diagonal subalgebra of M(£, s). The relation R is

unique up to isomorphism, and the orbit of a under N(R), the automorphism

group of R, is unique.

Proof. The proof of this result is quite long and occupies the remainder of

this section. It is arranged as a series of fifteen propositions, numbered 3.2

through 3.16. Our first remark is that we may take the central decomposition

of M into factors M,, which decomposes A as an integral of maximal abelian

subalgebras A,, of M^,. It is easy to verify that almost all Ay are regular and

that the conditional expectation £ decomposes as a direct integral of Ey's. It

follows that if the theorem holds for factors so that M,, » M(Ry, ay) then a

straightforward but tedious piecing together technique, using directly integral

theory and appropriate measurable choice theorems, allows us to establish the

theorem for general M. Since our interest in the result is mainly for the case

when M is a factor, we omit these details and assume forthwith that M is a

factor. This effects some considerable notational simplification, and ease in

the proof, but in fact our line of proof works in the general case.

For the initial part of the proof we shall assume weaker conditions on A

than being a Cartan subalgebra. Namely, we assume (2) and (3) of Definition

3.1, but in place of (1) we assume that A is abelian and "normal" (see

Fuglede-Kadison [1]), i.e., that A is the center of its centralizer in M, or

equivalently that A is the intersection of maximal abelian subalgebras of M,

or equivalently also that (A V M') n M = A. It is this last criterion that we

shall use. It is also known that normality is also equivalent to the condition

that the direct integral decomposition of the identity representation of a

separable C* algebra N weakly dense in M with respect to A yields factor

representations of N almost everywhere.

The part of the proof of Theorem 1 below, through Proposition 3.10, is

valid with this weaker condition on A, and we carry out the argument in this

fashion.
Let M D A be a factor with such an abelian subalgebra A and fix once and

for all a faithful normal state to on A. We identify A = L°°(X) so that w is

represented by a probability measure on X. Then we extend w to M by

defining u(T) =■ «(£(£)) where £ is the given conditional expectation of M
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onto A. Then by the properties of E, w is a faithful normal state on M. Then

we may realize M on a separable Hubert space with a separating and cyclic

vector <p0 with (T<p0, <p0) = u>(T), T G M. The Tomita-Takesaki theory pro-

duces an unbounded operator A on DC so that A" induces a one parameter

group of automorphisms of M, and an anti-unitary / such that JMJ = M' is

the commutant of M.

We consider the abelian algebras A and B = JAJ which commute with

each other and so generate an abelian von Neumann algebra C. We have two

•-isomorphisms /' andj of A into C, given by i(A) - A and j(A) = JA*J, and

their images generate. Now we may realize C as Lco(R, v) for some standard

Borel space R and measure (class) on R. Let us take v(R) = 1. The corre-

sponding i andj give (by point realization theorems) Borel maps mt and mT of

R into X so that

Î (a)(z) - a(w,(z))   and /(a)(*) - a(»r(*))

for v almost all z E R. Since /(/4) a i(L">(X)) and j(A) atjiL^iX)), and

these generate C » LW(R), it follows that the map triz) = (tt,(z), trriz)) of R

into A" X A- is almost everywhere injective since the algebras generated by the

range of 1 and y respectively consist of functions constant on the fibers of the

maps 77/ and wr. Thus we may in effect assume that R c X X X and the it,, irr

are the projections to the first and second factors. We may assume that the

measure v projects under tr¡ and irr to measures equivalent to the given

measure p.

We also note that the map A\-+JA*J is a *-anti-automorphism of B(%)

which carries A onto B and B onto A. It thus carries C onto itself and since C

is abelian, it is a "-automorphism of C. It is therefore by general theory

induced by a point map 0 of R onto itself, preserving the measure class of v.

It is obvious, however, that in terms of the coordinates on R as a subset of

X X X, 0(x,y) = (y, x). This shows that the flip 0 on X XX carries R onto
itself a.e. and preserves the measure class of v. The outline of the argument is

more or less clear at this point: we have to show that R is a countable

standard relation on (A", %, p), that v is equivalent to the counting measure,

that the algebra C has uniform multiplicity one so that % = L2(R, v) with C

acting as multiplication operators, and finally, we have to produce a cocycle

s E Z2(R, T) so that M becomes naturally isomorphic to M(R, s).

Now the normalizer N(A) of A in M operates on A as a group of

automorphisms; moreover, N(A) acts on B = JAJ c M' trivially so that

N(A) acts as an automorphism of C. Thus if U G N(A), U determines a Borel

automorphism <¡>(U) of the space A* which leaves the measure p quasi-

invariant. The unitary U also determines a Borel automorphism $(i/) of

R C X X X which by our remarks above is of the form $(U)(x,y) = (<b(U)
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• x, y). In a like manner any V E N(B) normalizes C by operating trivially on

A and so defines a Borel automorphism \p( V) of X and one of £ of the form

¥(V)(x,y) = (x, rp(V)y). Thus if an element C of C is viewed as an element

c of £"(£, v),

d(x,y) = c(<b(U-x)(x),t(V-x)(x)),

where d corresponds to (UV)C(UV)*.

Now let G and H be subgroups of N(A) and N(B) respectively, with

G D U(A), H D U(B) so that G/U(A) and H'/U(B) are countable and so that

G and H are strongly dense in N(A) and N(B). It is possible to choose such

groups, as M is realized on a separable Hubert space. Let G = G/U(A) and

H = H/U(B) so that G and H are countable groups. Because of this counta-

bility, we may choose the point maps <¡>(U), U EG, and \¡/(V), F G H, so

that up to null sets they depend only on the coset mod U(A) of U or

mod U(B) of- V respectively, and so that <> and \p define homomorphisms of G

and H respectively into Borel automorphisms. Thus G and H act as count-

able Borel transformation groups on X, preserving the class of p, and G x H

acts on £, preserving the class of v. We write the last action as (g, h)(x,y) =

(gx,hy).

Proposition 3.2. The subalgebra of C of G invariants is B, and the

subalgebra of H invariants is A. Hence the action of G X H is ergodic.

Proof. Since A n B c M n M', which is the scalars, the last statement

follows from the first two, and by symmetry, it suffices to consider the G

invariants. Let C G C be fixed by G. Then by definition UCU* = C for all

U EG. Then by continuity this is true for U E N(A), but since the algebra

generated by N(A) is weakly dense in M (A is regular), this says that C

commutes with M, so in fact, C E M'. But since CGC, which is generated

by A and B, C is in the algebra M V B generated by M and B. But since A is

normal in M, B is likewise in M', so by one of the criteria for normality,

(M V B) n M' = B and it follows that C G B as desired.   Q

Proposition 3.3. The abelian algebra C has uniform multiplicity m on %, so

that % may be realized as L2(R, v, %n), the space of square integrable %¡

valued functions on R with C acting as multiplication operators, where %> is a

fixed m dimensional Hilbert space.

Proof. Let £ = U £„ be the partition of £ into subsets so that the

characteristic function of £„ is the projection £„ onto the summand of

multiplicity n. Then if W E N(C), WP„ W* — Pn and in particular this is true

for W = UV, with U E G and V E H. It follows that £„ is a G x H-
invariant set. By the proposition above, R = Rm a.e. for some m.   □
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Now the measure v on R c X X X can be disintegrated by the projections

77, or trr to the first or second coordinates. The disintegration of v with respect

to itr gives base measure ponX and fiber measures ßy on X, and similarly,

disintegration with respect to 77r yields p as base measure on X and fiber

measures yx on X, so that v = fxßydpiy) and v = fxyxdp(x). When we speak

later about disintegration of a measure by a map, it is this construction to

which we refer.

Proposition 3.4. Almost all of the jiber measures ßy, y G X, (resp. yx,

x EX) are quasi-invariant and ergodic under G (resp. H).

Proof. It clearly suffices to consider the fiber measures ß on A". Since v is

quasi-invariant under the action of G on R c X X X and since projection

commutes with the action, the disintegration products ß axe almost all

quasi-invariant by Proposition 2.6 of Auslander-Moore [1]. If they were not

almost all ergodic under G, there would be a set of positive measure E c X

and a nontrivial //"-invariant set in the measure algebra 9H(j8) for y G E.

We now want to select, for each y in a subset of positive measure in E, a

G-invariant set Z c X so that {(x,y): x E Zy) defines a v-measurable

subset of R. This is a tedious construction which we only outline. First we

may pass to a subset of E and assume that the measure algebras ^(ßf) are

all isomorphic, say to 9H(/3) where ß is a fixed measure on X. Then we claim

that we can find a function 0(x,y),y E E, so that for almost ally G E, 0y:

xt-+ 0(x,y) is a Borel isomorphism of X onto X so that (0y)+ßy ~ ß and so

that 0(x,y) is jointly Borel in x andy. We then form \py(g)(x) = 0y(g0~x(x))

for g E G, so that for almost all y, g>-^\py(g) defines an action of G on A"

which leaves ß quasi-invariant and so that *}>y(g)(x) is jointly Borel in x andy

for each g G G (recall that G is countable). Then we form the set F =

{(y, a): a G 9H(jß), $y(g)a = a for each g G G}. It is not hard to verify

that F is a standard Borel space, and then by the measurable choice theorem

(cf. Proposition 2.13 of Auslander-Moore [1]), we may find a function/on E

so that (y, j(y)) G F for almost all y E E, and we let Z'y be a Borel set of

class j(y) with %(g)Z; = Z'y. Then the choice Zy = 0f\Z'y) provides the
required choice. Then the set {(x,y): y G E, x G Zy) is G-invariant and

measurable and as G is countable, we can replace it by a G-invariant Borel

set equal to it almost everywhere. The characteristic function of this set must

be in B s Lca(X) by Proposition 3.2, and this means that Zy has to be null or

conull for almost all y, contrary to choice.   □

We now turn our attention to the separating and cyclic vector <p0 such that

w(T) = (T<b0, <b0) = u(E(T)) = (E(T)<b0, <f>0). Let S = 7A1/2 be the polar de-

composition of the conjugate linear map associated to M and <¡>0 by S(T(<b¿))

= T*(<bo) for T E M.
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Proposition 3.5. For A G A, (JAJ)<b0 = A*($n).

Proof. It is clear that 5 (4>0) = <i>0 and S*(<b0) — 4>0, and so /<p0 = <i>0 and

A1/2(<|>0) = <f>0. However, since A is the centralizer of the state to by condition

(3') associated with Definition 3.1, it follows by the KMS condition that A"

commutes with A. Since <f>0 and A(<b0) for A E A are in the domain of A1/2,

ax/2A<¡>0 - A(Ax/24>0) = A<b0. Thus JAJ(4>0) = JA(<b0) = JAl/2A(<f>n) -

S(A<p0) = A *(<bn) as desired.   □

But now if we realize A E A sz LC0(X) as multiplication by a(x) on

% = L2(R, v, %n), then JA*J is realized (by the definition of/ above) as

multiplication by a(y). Now if <¡>0 is realized as an L2 vector valued function

<í>0(x, y), we find the following

Corollary. a(x)$n(x,y) = a(y)<f>n(x, y) for v almost all (x,y) E R, for

each a E L°°(X).

Proposition 3.6. The function <b0 vanishes a.e. off the diagonal A(X) c X X

X, and in particular the diagonal A(X) has positive v measure.

Proof. For any Borel subset £ of X, let <//(£) = (£ X £) u (£c x Ec). If

a = fE is the characteristic function of E,fE(x)^>n(x,y) =* fE(y)<t>o(x,y) a.e. If

(x,y) G £ X Ec, we obtain from the above <b0(x,y) = 0 a.e., and similarly

<f>o(x'y) = 0 a.e. on Ec x E. Thus </>„ is supported on \p(E). Now let E¡ be a

countable separating family of Borel subsets of X. Since <i>0 = 0 a.e. outside

rp(E¡), <b0 = 0 outside fl ¡*P(E¡), which is just the diagonal A(X).   □

Proposition 3.7. The fiber measures ßy of Proposition 3.4 give positive

measure to the singleton set {y) for p almost ally. Similarly, yx({x)) > Ofor

almost all x.

Proof. It suffices by symmetry to consider the ß . If ßy({y)) = 0 for v in

a set £ of positive measure, let A G A be the operator of multiplication by the

characteristic function a of the set £. Then (a<b0)(x,y) = 0 unless x = y E E;

that is, unless (x,y) E A(£). But KA(£)) = /'Eßy({y}W(y) by definition of

disintegration, so A(£) is a null set, and A<j>0 = 0. But t>0 is separating for

M D A, and so this is impossible.   □

Proposition 3.8. For almost all y, ßy is a purely atomic measure which gives

positive mass to exactly the points of the G orbit ofy, and similarly for yx.

Proof. For almost ally, ß is quasi-invariant and ergodic.The atomic part

of ßy is an invariant set, so as ßy has an atomic part, it is purely atomic.

Quasi-invariance implies that ßy({x)) > 0 iff ßy({g-x)) > 0 so ßy gives

positive mass to a union of orbits and by ergodicity it must be concentrated

on one orbit, namely Gy.   □
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Proposition 3.9. (1) Ij G and G, are subgroups oj U(A), both dense, and

such that both G = G/U(A) and G, = G,/U(A) are countable, then the G and

G, orbits oj almost all points are the same, so that the relations RG and RG

coincide up to v-null sets. Furthermore, p is quasi-invariant under G.

(2) We may take the set R to be RG (or Rq ) above and the measure v is

equivalent to a counting measure.

Proof. For (1) we note that the measure v on R is independent of any

choice of G, and Proposition 3.8 shows that v determines Gy for almost ally,

independently of G. It has already been noted that p is quasi-invariant under

G.

For (2) we note that Proposition 3.8 also says that the section R(y) = {x:

(x,y) ER) of R at y coincides with Gy up to ßy sets of measure zero for

fi-almost ally. But this says that R = RG up to a set of v measure zero so that

we may take R = RG. Since the disintegration of v over projection to the

second factor yields measures ßy which give positive mass to precisely the

points of the class R(y) of y with respect to R, it follows that v is equivalent

to right counting measure, since their common null sets E c R consist of

those E such that {x: (x,y) E E) is void for /¿-almost ally.   □

Thus we have established our first major objective; that is, to show that R

can be taken to be a countable standard equivalence on (X, 'S», p) with v

equivalent to a counting measure. For convenience at this point, we replace

finite v with right counting measure on R, which we continue to denote by v.

Then v disintegrates over projection into the second factor with base measure

p, and with fiber measures which we still denote by ßy, so that ßy(F) = \F\.

The fiber measures yx obtained by disintegrating with respect to projection to

the first coordinate are of course expressed in terms of the Radon-Nikodym

D of p with respect to the relation, specifically yx({y)) = D(x,y)~l =»

D(y,x).

Now let G(R) be the full group of the relation, the set of classes of Borel

isomorphisms 0 of X to itself such that T(<¡>) c R with two being identified if

they agree almost everywhere. Proposition 3.9 assures us that for any U in

N(A), the automorphism A (-» UAU* of A viewed as L'X'(X) is induced by a

Borel isomorphism 0(U) sending a to a(0(U)~x • ), with 0(U) G N(R). In

fact, U r-* 0(U) is a group homomorphism. Similarly, any V G N(B) induces

an automorphism p(V) of B viewed as Lto(X), sending b to b(p(V)~l • ).

In view of the definition of the identification of B with A, using the

anti-unitary J, it follows that p(JUJ) = 0(U) and so p(V)E G(R) also. The

following allows us to analyze the structure of N(A) and N(B) acting on

% - L2(R, v, OCo).

Proposition 3.10. For each U E N(A), there exists a Borel map a(U)jrom
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£   into   the   unitary   group   U(%0)   of   %0   so   that   (U\p)(x, y) =

a(U)(x,y)$(9(U)-xx,y) for ^ E %. For each V E N(B), there is a Borel

map b(V)from R into \}(%j) so that

W)(x,y) = b(V)(x,y)t{x, p(Vyxy)D(p(Vyxy,y).

Proof. If U E N(A), we define a unitary operator U' on H by (U'\p)(x,y)

= yf/(9(U)~x • x,y). Then U' evidently normalizes C, the algebra generated

by A and B. Moreover, U does also, and by definition, U and U' induce the

same automorphism of C Then W = UU'~X centralizes C and therefore has

the form (W\p)(x,y) = a(U)(x,y)4>(x,y) for a Borel function a(U) from £

into U(%n). Then U = WU' has the desired form.

If we are given V E N(B), we define

(V'4>)(x,y) = D(p(V)-xy,y)4,(x,p(Vyxy)

and verify that this is unitary. The argument proceeds exactly as in the first

part.   □

The next step is to establish the basic fact that %¡ is one dimensional.

Here, of course, we must assume that A is a Cartan subalgebra rather than

the weaker hypothesis we have been using up until now. Thus from now on,

we assume in addition that A is maximal instead of being a normal abelian

subalgebra.

Proposition 3.11. If A is a Cartan subalgebra, then 3Cg has dimension one.

Proof. Let <i>0 be the separating and cyclic vector of Proposition 3.6,

represented as a function <b0(x, y) concentrated on the diagonal. Let <#>0(x) =

<b0(x, x); this is a unit vector since for every A E A, corresponding to

a E LM(X),

fa(x)dp(x) = a(A) - (Aï0, <b0) =ja(x)\<bn(x)\2dp(x)

and it spans a one dimensional subspace %>(x) of %n. By Proposition 3.10,

for any U E N(A), (U<b0)(x,y) = 0 unless x = 9(U)y and then

(U$n){9(U)y,y) = a(U){9(U)y,y)<b0(y)

for some unitary operator valued function as indicated.

Since A is regular, the linear combinations of the vectors U(<f>n), U E N(A),

must be dense in %. Now let 5CA be the subspace of functions in %

supported on the diagonal and let £A be the orthogonal projection onto 3CA,

which is, of course, just multiplication by the characteristic function of A.

Then P^UQn) is a function which is zero off the diagonal, and at (y,y) takes

the value IE(y)a(U)(9(U) -y.y^oiy) where IE is the characteristic function

of a set £ c X and where 9(U)y = y for y G £.
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Thus let us consider a U E N(A) such that 0(U)y = y on a set E of

positive measure. Let Q be the projection in A of the form Q\b(x,y) =

IE(x)\p(x,y) for xp G %. It is clear from Proposition 3.10 that U and Q'

commute where Q' is any projection in A with Q' < Q. Moreover, UQ in

fact commutes with A. To see this it suffices to show that UQ commutes with

any projection in A. But if P E A, P = (1 - Q)P + QP; we have already

noted that UQ commutes with QP as QP < Q. Moreover, it is clear that UQ

times (1 - Q)P in either order is zero and so, in fact, UQ commutes with A.

But now A is maximal abelian so QU = UQ E A and therefore QU\}/(x,y) =

a(x)\p(x, y) for some a E LM(X). But on the other hand,

QWix,y) = IE(x)a(U)(0(Uyxx,y)rf/(x,y) = a(U)(x,y)^(x,y)

for x E E and zero otherwise. By comparison we see that for x E E,

a(U)(x,y) is, first of all, a scalar multiple of the identity and secondly is

independent of y.

The first of these two facts tells us that (P¿U<¡>0)(x, x) = a(x)<b0(x) for

some scalar valued function a(x), and hence (P¿U<¡>0)(x, x) E ^(x). But

linear combinations of the PA(U<b0) axe dense in 3CA = L2(A, %>) and every

such vector is of the form a(x)<p0(x). The only way this can happen is for

OCfj = %>(x) to be of dimension one.   □

In the course of the argument we have established a fact that will be useful

later and which we state separately.

Proposition 3.12. IjU E N(A) and0(U)x = xfor x G E, then a(U)(x,y)

is independent of y for x G E, and QU = UQ is in A where Q is the projection

in A corresponding to E.

We have now achieved a substantial portion of our goal in that we now

have % realized as L2(R, v) for a countable standard relation R on (X, $, p)

with A operating as multiplication operators in the first variable and B =

JAJ as multiplication operators in the second variable. Moreover, operators

in N(A) and N(B) have a form roughly of the right kind. What remains now is

to refine the form of these operators and to produce a two cocycle j so that M

is realized as M(R, s) on % = L2(R, v). The separating cyclic vector <f>0 can

be realized as <¡>0(x), a complex valued function of absolute value one. For

simplicity we can adjust by a phase factor and assume that <b0(x) = 1 so that

<í>0 is the characteristic function of the diagonal.

Now let us, as earlier, fix a group G with U(A) c G c N(A) with G/U(A)

countable and G dense in N(A). Let us select for each coset g E G = G/U(A)

a representative U(g) so that U(g~x)= U(g)~x and U(e) = 1. Then G

operates on X so that R = RG and gx = 0(U(g))x, in the notation above.

We let D be the set of all U(g). Then if (x,y) G R, there exists U G D so
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that 9(U)~lx = y, although this U may not be unique. In any case, the set of

pairs (x,y) with 9(U)~xx = y is a Borel subset of £, and we may find a

partition {A(U): U E D} of £ into disjoint Borel sets so that 9(U)~xx =y

for (x,y) E A(U),A(l) = A, and A(U~X) is the flip of A(U).

Proposition 3.13. (1) // we define c(x,y,z) = a(U)(x, z) for (x,y) E

A(U), then c is a well-defined Borel function on R2 and satisfies c(x, x,y) = 1,

and c(x,y, z) = c(y, x, z)~x a.e.

(2) If {A'(U): U E D'} is any partition of R, indexed by elements U in a

countable set D' c N(A) such that for (x,y) E A'(U), 9(U)~xx = y, and if

c'(x,y, z) = a(U)(x, z)for (x,y) E A'(U), then c'(x,y, z) = c(x,y, z)k(x,y)

for some function k.

Proof. On the Borel set A2(U) - {(x, y, z); (y, z) E A(U)) c

£2, c(x,y, z) is a Borel function of the three variables. It follows that c is a

Borel function, as this is a countable partition. Since a(I)(x, z) = 1 and

A = ^l(l), it follows that c(x, x,y) = 1. Moreover, it follows from Proposi-

tion 3.10 that a(U~x)(y, r)"1 = a(U)(9(U)g, z), and the second statement

of (1) is an immediate consequence of this and the fact that A ( U ~x) is the flip

ofA(U).
For (2), we consider the A ( U) n A'( V). For (x, y) in this set, 9 (U)~ xx = y

and 9(V)~xx = y and so 9(UV~x)x = x, and it follows by Proposition 3.12

that a(UV~x)(x, z) is independent of z. If we expand this in terms of a(U)

and a(V), we find that a(U)(x, z)a(V)(x, z)~x is independent of z. But this

says that for (x,y) E A(U) n A'(V), c(x,y, z)c(x,y, z)~x is independent of

z, and hence this holds globally for all x,y. If we call this function k(x,y),

then (2) follows,   fj

Proposition 3.14. The function c(x,y, r)c(y, z, r)c(x, z, r)~x is for almost

all (x, y, z) E R 2 independent of r.

Proof. For each triple (U, V, W) of elements of D let £(i/, V, W) -

{(x,y, z): (x,y) E A(U), (y, z) E A(V) and (x, z) E A(W)). Then the sets

E(U, V, W) form a partition of the set £2. Moreover, it is evident that

9(vyx9(uyx(x) = 9(wyx(x) = z

and so 9(UVW~x)x = x. Then by Proposition 3.12, a(UVW~x)(x, r) is

independent of r for almost all x for which (x,y, z) E E(U, V, W). Again if

we expand this, we find that it says that

a(U)(x, r)a(V)(9(U)~xx, r)a(W)(9(W)9(UVyxx, /•)"'

= c(x,y, r)c(y, z, r)c(x, z, r)~x

is independent of r for almost all x such that (x,y, z) E E(U, V, W).   □
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We denote the function in the statement of the above proposition by

t(x,y, z). Note that if in place of c we consider a function c'(x,y,z) =

c(x,y, z)k(x,y) as in (2) of Proposition 3.13, then the conclusion of 3.14 is

still valid and we denote the resulting function by

t'(x,y, z) = c'(x,y, r)c'(y, z, r)c'(x, z, r)~x.

Proposition 3.15. The function t is a two cocycle, that is, it is in Z2(R, T). It

is also a normalized cocycle, and moreover, its class o E H2(R, T) is indepen-

dent of the choice of the A(U) above, and hence depends only on (M, A) and the

isomorphism of A with LCC(X).

Proof. If the function c itself were independent of its third variable, then

the definition of / would be simply (Sc)~x and hence 8t = I as 82 = I.

However, the same argument that shows that 82 = 1 applies to t as defined

above and shows that 8 (t) = 1, so that t is a cocycle. Recall from the proof of

Proposition 7.6 of FMI that a two-cocycle is normalized if it vanishes

whenever any two of its variables are the same. The fact that t(x,y, z) = 1 if

x = y ory = z follows from the fact that c(U, U,W)=l in Proposition 3.13

and the vanishing for x = z follows from the fact that c(U, V, W) =

c(V, U, W)~x, also in Proposition 3.13.

If we make different choices of the sets A(U) and set D c N(A) as

described in (2) of Proposition 3.13, we obtain a new function c'(x,y, z)

which differs from c by a function k(x,y) of the first two variables. Then

evidently t' = s(8k)~x is cohomologous to t.   □

Now let k(x,y) = c(x,y,y)~x and let c'(x,y, z) = c(x,y, z)k(x,y) so that

c'(x> y>y) — 1 f°r almost all pairs (x, y). Then if we form

t'(x,'y, z) = c'(x,y, r)c'(y, z, r)c'(x, z, r)

which is independent of r and is a cocycle equivalent to t, we may then for

almost all triples (x, y, z) evaluate this by taking r = z in which case we see

that c'(x,y,z) = t'(x,y,z) is itself a cocycle, not necessarily normalized,

however.

Now let V E N(A), and let E{U) = {x: (x, 0(v)~xx) E A(U)). Then as U

runs over D, E(U) is a partition of X, and 0(U)~xx = 0(V)~xx for x G

E(U) so that 0(UV~x)x = x for x G E(U). Then by Proposition 3.12,

a(UV~x)(x, z) is independent oizioxx E E(U) and this means that we may

write a(V)(x, z) = a(U)(x, z^^x) for x E E(U), where bv(x) is a function

on EiU) of absolute value one. If we let b(x) = bv(x) for x E E(U), then

a(V)(x, z) = c(x, 0(V)~xx, z)b(x) and we define

à(V)(x,y) = b(x)k-x(x, 0X (Vyx-x)

for y = 0(V)~X • x and zero otherwise. Then
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a(V)(x, z) = ä(V)(x, 9(Vyx- x)t'(x,9(Vyx ■ x, z)

so that

( V$)(x, z) = a(V)(x, z)^(9 (Vyx-x,z) = ^â( V)(x, y)^(y, z)t'(x, y, z).
y

Thus the operator V has the proper form to be in one of our twisted matrix

algebras. It will be helpful to bring this into the form of §2 by replacing /' by

a normalized cocycle equivalent to it. To do this we let d be a function of

absolute value one on £ which is one on the diagonal, and form the unitary

operator Ud of multiplication by d. Then instead of M, we consider the

algebra UdMUd~x which contains A= Ud\Ud~x as a Cartan subalgebra.

What this amounts to doing is modifying the identification of the Hubert

space % with L2(R, v) which we chose implicitly, immediately following

Proposition 3.11. Since d = 1 on A, this does not change the representation of

the distinguished separating and cyclic vector <b0 as the characteristic function

of the diagonal. The calculation of Proposition 2.7 and the method of

Proposition 7.7 of FMI for selecting a normalized cocycle equivalent to t'

show that we may select d so that s = t'Sd is normalized and so that

(UdVUd-xt)(x,y) - 2 {dä(V))(x,y)t(y, z)s(x,y, z)
y

for V E N(A). (In fact, we could choose d(x,y) to be a square root of

t'(x,y, x)~x.) But now we may as well replace M by UdMUd~x and having

done so, we obtain the following:

Proposition 3.16. We may identify % with L2(R, v) and find a normalized

cocycle s in the cohomology class o of Proposition 3.15 so that any V in the

normalizer of A can be written as

(V^)(x, z) = 2 à(V)(x,y))(y, z)s(x,y, z)
y

for a Borel function ä(v) which has absolute value one for y = 9(V)~X • x and

vanishes otherwise.

Now let M0 be the algebra generated by N(A); that is, linear combinations

of elements of N(A). Then by Proposition 2.4 it follows immediately that M0

consists of precisely the operators of the form

(LJ)(x, z) = '2a(x,y)x¡,(y, z)s(x,y, z)
y

where a is a left finite function on £. Moreover, M0 is weakly dense in M by

hypothesis. On the other hand, we have a von Neumann algebra M(£, s) by

the construction of §2 which contains a weakly dense subalgebra L (Defini-

tion 2.2) which is identical to M0. Thus M = M(£, s) = M(£, a). Quite
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evidently, R is determined by the pair (M, A) as it was constructed directly.

The cohomology class o depended only on a fixed identification of A with

L°°(X). The ambiguity of o within its N(R) orbit will be discussed in the next

section on automorphisms.

4. Automorphisms. We have studied the structure of a pair (M, A) where A

is a Cartan subalgebra, and now it is natural to turn to the question of

automorphisms of such a pair. As usual, let Aut(M) be the full group of

automorphisms of M and let Out(M), the outer automorphism group, be the

quotient group of Aut(M) by the subgroup Inn(A) of inner automorphisms.

Further, let Aut(M, A) be the group of automorphisms of M sending A into

itself, and let Out(M, A) be its image in Out(M). This can be described as

those classes of outer automorphisms of M for which the image of A has the

form UAU~X, U E M. Recall that G(R) denotes the full group of R; that is,

(classes of) Borel automorphisms 0 of X with T(0) c R. Also, N(R) denotes

the normalizer of R; that is, (classes of) Borel automorphisms 0 such that

0 X 0(R) C R. Finally, Out(Ä), the outer automorphism group of R, is the

quotient N (R)/ G (R).

If H"(R,A) is any cohomology group with a trivial /?-module A, then

N(R) acts on H"(R, A) and in fact on the cocycle group Z"(R, A) by

(0- c)(X(¡,... ,x„) = ci0~x ■ x0,... ,0~x- xn)

for c E Zn(R,A). The action on cohomology results by passing to the

quotient. Recall that we showed in Proposition 7.5 of FMI that if 0 E G(R),

then 0-c~c so that G(R) operates trivially on H"(R,A). Now let a G

H2(R,T) and let N(R,o) be the subgroup of N(R) fixing o and let

Out(R, o)/G(R) be its image in Out(R). If 0 E N(R, o) and if s G a is a

normalized cocycle, then there is a function d(0) on R2 with values in T so

that

s(0-x(xo), 0-x(xx),0-x(x2)) = {8dyxix0, xx, x2)six0, xx, x2).

Since 0 • s and j are both normalized it follows that d(0)(x, x) = 1 and that

d(0) is skew symmetric. For simplicity, let d(id)(x,y) = 1. Finally, let c E

Z X(R, T) and we define a map $(c, 0) on the set of all left finite functions by

(<t>(c,0)a)(x,y) = c(x,y)d(0)(x,y)a(0-x(x),0-x(y)).

Proposition 4.1. The map La\-* L^c9)a is a *-automorphism of h which

extends to a *-automorphism ofM(R, s), also denoted by <b(c, 0). It is spatially

implemented by the unitary operator U^c¡e) defined by

(U,c,9)V(x,y) = c(x,y)d(0)(x,y)Di0-x(y),y)X/\(0-xx,0-xy).
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Proof. This is a straightforward calculation: note that the factor

D(9~ x(y), y)x/2 is necessary to make U(c9) a unitary operator.   □

Now let G(s) consist of all pairs (c, 9), c E Z'(£, T), 9 E N(R, a). We

define a multiplication on G(s) by

(cx,9x)(c2,92) = {cx9x(c2)d(9x,92),9x92)

where 9x(c2) is the natural action of 9X on c2 E Z '(£, T) and where

d(9x,92)(x,y) = d(9x92)(x,y)d(9x)(x,yyxd(92)(9x-x-x,9x-x-y)-\

The following extends results of Singer [1] and gives us the structure of

Aut(M, A) for M - M(£, s).

Theorem 2. The set G(s) is a group and (c, 9)v-> <i>(c, 9) is an isomorphism

ofG(s) onto Aut(M(£, s), A).

Proof. It is clear that $(c, 9) sends the diagonal algebra A c M(£, s) onto

itself and so <f>(c, 9) E Aut(M(£, s), A). The product structure on G(s) was

concocted exactly so that <f> is multiplicative, as a simple calculation verifies.

Moreover, <p is injective, for if we apply <b(c, 9) to an element La of A,

a E LK(X), we obtain La. where a'(x) = a(9~\x)) and so if <b(c, 9) - 1, it

follows that 9 - 1 and hence that d(9) = 1 (by our choice). Then

(<p(c, l)a)(x,y) = c(x,y)a(x,y) for left finite a, and since we can find a

countable number of left finite a so that the sum of their absolute values is

never zero, it follows that c(x,y) = 1 a.e. Thus <p is injective and it follows

that G(s) is a group.

It remains to show that tf> is surjective. Let a E Aut(M(£, s), A). Since

M(£, s) has a separating and cyclic vector, the automorphism a is spatially

induced by some unitary U which by the arguments in Connes [2] we may

take to commute with J. Note that the U,c$) of Proposition 4.1 commutes

with J. Now as a(A) ■* A, a induces an automorphism 9 of Lm(X) so that

a(La) = La. where a'(x) = a(9~lx). Now as UM(R,s)U~l - M(£,s), the

same is true for the commutant; and as U commutes with /, U also

normalizes B « JAJ and C, the algebra generated by A and B. Now for

b E L">(X),

URbU-x = UJL-aJU~x = JUL-aU~xJ = JLSJ = Rb.

where a\x) = a(9 ~xx). Finally, as C « L°°(£), Í/ induces a Borel automor-

phism 9 of £ so that UMCU~X = Af- where Af- is multiplication by c G

L°°(£) and c(x,y) = c(9~x(x,y)). But f? is determined completely by what

happens on A and BcC; and it follows that 9 has the form 9(x,y) =»

(9(x), 9(y)). This shows that 9 X 9(R) c £ and hence 9 EN(R). Then we

form the automorphism ß = a<b,~xx9). If we can show that ß =* <p(cl) for some

c G Z '(£, T), then a = <t>(C,e)>we are done.
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Now ß has the property that the induced automorphism of A is trivial. We

may as before spatially implement ß by a unitary V commuting with /. Now

V commutes with A and hence with B = JAJ and therefore with the algebra

C they generate. But as C is maximal abelian, V G C, and so V — Me is

multiplication by a function c of absolute value one on R, which is skew

symmetric as VJ = JV. Then for any left finite a, McLaMfx = Lb for some

left finite b. When we write this out, it says that for any a there is a b so that

c(x, z)c(y, z)~xa(x,y) = b(x,y) almost everywhere. Thus a(x,y)(b(x,y))~x

» d(x,y) is independent of a, and setting y = z, we see that c(y,y)c(x,y)~x

= d(x,y) a.e. so that c(x, z)c(y, z)~xc(x,y)~x = c(y,y) a.e. Then if we put

x = z, and use the skew symmetry of c, we see that c(x, x) => c(y,y) is

constant. Since c is skew symmetric, this constant is either ± 1. If it is +1, c is

a cocycle. If it is — 1, it is clear that — c is a cocycle and since Mc induces the

same automorphism ß as A/_c, we may replace c by — c in this case and

assume that c is a cocycle. Then ß = <p(c ,>.   □

Theorem 3. The group Aut(M(/î, o), A) is an extension of the normal

abelian subgroup ZX(R, T) by N(R, o). If o ** I, the extension is a semidirect

product.

Proof. The first statement is simply a rephrasing of Theorem 2. If o = 1,

we may always take d(0) = 1 and hence the factor d(0x, 0^ in the definition

of G(s) = G(l) may be taken to be 1. Then evidently G(l) is a semidirect

product.   □

Theorem 4. The group Out(M(R, o), A) is an extension of the abelian

normal subgroup HX(R, T) by Out(R, o). If o « 1, the extension is the semidi-

rect product.

Proof. The first statement is simply a matter of seeing when <f>(c, 0) is

inner and given by some unitary U E M(R, s). But then U is in the normal-

izer N(A) of A. But by proof (3) of Proposition 2.9, we know that N(A)

consists of operators of the form Latf<>), \f\ = 1 on X, <j> E G(R), and this

unitary evidently induces the automorphism $$(/),+) so that <£(c>9) is inner if

and only if c E B \R, T) and 0 G G(R), and the first statement follows. The

second statement is an immediate consequence of the second statement of
Theorem 3.   □

It is appropriate at this point to treat the final item in the proof of Theorem

1 about the uniqueness of o in M(R, o). We want to know that the pair (M,A)

with A a Cartan subalgebra determines o up to its orbit under N(R) in
H2(R, T). To see this consider M, = M(Ä,$,) with Cartan subalgebra A, »

¿"(A") and M2 - M(R, sj with Cartan subalgebra A2 a L">(X), and

suppose that a is an isomorphism of M, onto M2 which carries A, onto A2.
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The isomorphism of A, onto A2 determines an isomorphism ß of LM(X) onto

L°°(X), which is determined by a point map y E N(R) so that ß(f)(x) =

f(y~x ' x). Now o must map N(A,) onto NiAj), and if L'a is the operator in M,

with matrix given by the left finite function a, it is easy to see, as in the proof

of Theorem 2, that a(La) = L2(a), where

a(a)(x,y) = d(x,y)a(y-x(x),y-x(y))

for some function d. But then a is multiplicative, and one sees that the only

way this can happen is for d(x,z)sx(y~x(x),y~x(y),y~x(z)) to equal

d(x,y)d(y, z)s2(x,y, z). This says, of course, that s2 is equivalent to the

transform of sx by y E N(R). Thus if o, is the class of s¡, a2 = y • o, so that

the N(R) orbit of a is uniquely determined.

We conclude with one other fact about automorphisms. Let Z denote the

centralizer of A in Aat(M), M = M(£, s); that is, the automorphisms fixing

A elementwise. Then of course Z s Z'(£, T) and it is not hard to see that

the usual topology on automorphisms of pointwise convergence in the pre-

dual of M coincides with the standard topology on Z'(£, T) in Moore [1] of

convergence in measure. Now suppose that A is an abelian locally compact

group with dual group Â. Let y G ZX(R, Â) and let a E A be viewed as a

character of Â; that is, a group homomorphism of Â into T. Let a(y) be the

image of y in Z '(£, T). One expects that <j>y: a h» a(y) is a homomorphism of

A into Z'(£, T) — Z; one is correct, and the converse is true:

Theorem 5. The map <f>y is a continuous homomorphism of A into Z;

conversely every such continuous homomorphism is of the form <f>y for a unique

yEZ\R,A).

Proof. The map <f>y is clearly a homomorphism. If an -» a in A, then an -* a

pointwise on A and so an(y)(x,y) = a„(y(x,y)) converges to a(y)(x,y) =

a(y(x,y)) and hence surely an(y) -» a(y) in measure.

For the converse consider the polonais group U(A, T) of classes of Borel

functions from A (identified via Haar measure on A) into T. Then Â viewed

as characters on A is injected into U(A, T). It is a consequence of standard

facts in Fourier analysis that the image is closed: it consists of those/which

are homomorphisms almost everywhere, i.e., f(axaj) = f(ax)f(a2) for almost

all pairs. Then U(R,A) is injected into U(R, U(A, T)) and the subgroup

Z'(£, Â) is injected into Z'(£, U(A, T)); by the above, the range may be

characterized as those s such that s(x,y) is for almost all (x,y) G £ a

homomorphism almost everywhere. But now by the Fubini theorem in Moore

[1], U(R, U(A, T)) can be identified with U(A, U(R, T)), and a moment's

reflection shows that the subgroup Z'(£, U(A, T)) is then identified with the

subgroup U(A, Z'(£, T)) of functions on A taking values almost everywhere
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in Z X(R, T). But now the generalized direct integral theorem, Theorem 1 of

Moore [4] says that the set of j G ZX(R, U(A,T)) so that s(x,y) is a

homomorphism, i.e., s(x,y) G Â viewed as a subgroup of U(A, T), corre-

sponds under this identification to the elements in U(A, ZX(R, T)) which are

homomorphisms.

All of this says that the natural map of ZX(R, Â) into U(A, ZX(R, T)) by

vi-»<i>y where <by(a) = a(y), is injective, with image equal to the (continuous)

homomorphisms from A to Z X(R, T).   □

As a special case of this, we see that the one parameter groups in

Z = ZX(R, T) are indexed by the elements of ZX(R, R). If D is the Radon-

Nikodym cocycle for instance, then log(-D) G ZX(R, R) and the correspond-

ing one parameter group of automorphisms is the modular group of M

associated to the state w. In this connection it is timely now to give the proof

alluded to in Remark 2 after Theorem 8 of FMI. More precisely, we prove

the following fact:

Theorem 6.IfcEZ X(R, R) and is essentially bounded, then it is trivial.

Proof. By the above, exp(itc(x, y)) defines a one parameter group <b, of

automorphisms in Z. However, </>, is evidently norm continuous as the

infinitesimal generator Mc is bounded. Then by Kadison-Ringrose [1], <p, is

inner, so that <¡>,(W) = U,WU* for a one parameter unitary group in M. But

Ut is in the centralizer of A, as <p, G Z and so Ut is in A. Thus there exists a

real valued Borel function d on X so that U, = Lexp^ild). By previous calcula-

tions, this says that <b, is also determined by the one-cocycle exp(it(d(x) —

d(y))). By injectivity in Theorem 2, exp(il(d(x) - d(y))) = exp(itc(x,y))

almost everywhere for each t. By a standard argument we deduce that

c(x>y) = d(x) — d(y) almost everywhere.   □

Theorem 8 of Greenleaf [1] states that if G is locally compact separable and

amenable, but not necessarily discrete, and acts on a Borel space X leaving a

measure p quasi-invariant and has a uniform bound for the Radon-Nikodym

derivatives, (dg • p/dp), then there is an equivalent invariant measure. We

stated that in a subsequent paper the result would be established in general

without the hypothesis of amenability. The result above does just this for G

discrete. For general G, one could form the continuous analogue of our

construction of M(R, 1) using R = RG. We could then apply the same

argument using the Kadison-Ringrose result. The technique of course proves

that any bounded cocycle is trivial.

5. Different Cartan subalgebras. We have studied the structure of a pair

(M, A) with A a Cartan subalgebra and the automorphisms of such a pair.

We now turn to the question of different Cartan subalgebras in a given M

and conjugacy questions. First, a piece of terminology; a Cartan subalgebra A
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of M will be called hyperfinite if the resulting relation £ which is determined

by the pair is hyperfinite. In that case, H2(R, T) = 0 by Theorem 6 of FMI,

so M = M(£, 1) - M(£) is determined by £. If £ is also ergodic, so that M

is a factor, M is called a Krieger algebra or a Krieger factor.

Now if A, and A2 are two Cartan subalgebras of a von Neumann algebra

M, one says that A, and A2 are inner conjugate if there is a unitary U in M

with UAXU~X = A2; one says that they are conjugate, or (if necessary to be

more precise), outer conjugate, if there is an automorphism <f> of M with

«A,) = A2.
It is of course too much to ask that all Cartan subalgebras be inner

conjugate. In fact, we point out the following fact, which is undoubtably

known to others.

Theorem 7. The hyperfinite II, factor M has two hyperfinite Cartan subalge-

bras which are conjugate but not inner conjugate.

Proof. According to Connes [4], Out(M) is a simple group. Let A be a

hyperfinite Cartan subalgebra, so that M = M(£) where £ is the unique

ergodic hyperfinite relation of type II,. If every outer conjugate of A were

also inner conjugate to A, then in the language of Theorem 4, Out(M, A) =

Out(M) is an extension of a normal abelian group HX(R, T) by another group

Out(£). But both of these groups are maifestly nonzero so Out(M) is not

simple.   □

One does have one very beautiful positive fact due to Krieger [2], which in

the present language becomes the following statement:

Theorem 8 (Krieger). Any two hyperfinite Cartan subalgebras of a von

Neumann algebra M are conjugate.

Proof. The situation can be immediately reduced to the case of a factor by

direct integral theory. If A, and A2 are two such algebras, then M » M(£,) ¡a

M(£2) for two hyperfinite ergodic relations. Krieger's result is then that £, is

isomorphic to £2 and this is just another way of saying that A, and A2 are

conjugate.   □

Other than the above, the state of knowledge is rather abysmal. For

instance, we do not know if an algebra M could have Cartan subalgebras A,

and A2 with A, hyperfinite but A2 not hyperfinite. There is one further

example of some interest. Connes [3] produces an algebra not anti-isomorphic

to itself, or equivalently not isomorphic to its opposed algebra. This example

is of the form M(£, a) and since the opposed algebra of M(£, o) is evidently

M(£, o~x), we see that Connes' example cannot have any Cartan subalgebra

B for which M = M(R', 1) for the relation £' associated to B and the trivial

cohomology class 1.
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The remainder of this section is devoted to a study of inner conjugacy of

Cartan subalgebras. The main result gives three equivalent conditions for this

to happen at least for algebras of purely infinite type. The situation is

analogous to our comparison in Theorem 3 of FMI between isomorphism of

relations and the weaker condition that they define the same virtual group.

We make the following definition in which B(%) is the algebra of all

bounded operators on an infinite dimensional Hubert space, and A(%) is the

subalgebra of infinite diagonal matrices, i.e., a Cartan subalgebra of B(%).

Definition 5.1. Let M be a von Neumann algebra and A, and A2 two

maximal abelian subalgebras. We say that A, and A2 are (inner) coconjugate

if there is an (inner) automorphism <i> of M ® B(%) which carries A, ® A(%)

onto A2 ® A(%).

We first show that this implies conjugacy if M is purely infinite.

Proposition 5.1. //M is purely infinite then two subalgebras N, and N2 are

(inner) coconjugate ij and only if they are (inner) conjugate.

Proof. Let M be purely infinite and let A be maximal abelian. We can

then find an infinite sequence of orthogonal projections P¡ in A with sum /

and isometries U¡ EM with initial projection / and terminal projection P¡. If

M E M, we let My = UfMUj where each My E M, and we view the matrix

(My) as an element of M <8> B(%). It is elementary that «p: M -» (My) is an

isomorphism of M onto M ® B(%). Moreover, since P¡ E A and A is abelian

it is clear that c>(A) = A ® A(%).

Now if we are given A, and A2 we construct maps <p, and $2 of the kind

described above from M onto M ® B(%). Then if 0 is an automorphism of

M ® B(%) which sends A, 0 A(%) onto A2 ® A(%), then ^ = <¡>f x0<bx is an

automorphism of M carrying A, onto A2. This shows that if A, and A2 are

coconjugate, then they are conjugate. If A, and A2 are inner conjugate so that

we may take 0 inner and given by a unitary W with a matrix (Wf) with

Wy E M, then one can easily construct a unitary in M which implements u>,

namely 2(/ ViWilUf where U¡ ate the partial isometries used to define <#>, and

Vj axe the partial isometries used to define <b2.   □

In order to state our theorem we must introduce one more concept. Let A

and B be abelian von Neumann algebras and let F he a positive normal map

from B to A which takes / to /. Now, let A s L°°{X), B a L°°iY), and let u

be a probability measure on X defining LIX>(X). The following structure

theorem for such maps F must be known and we omit the simple proof.

Proposition 5.2. Given F, there exists a unique probability measure t on

X X Y with disintegration products rx with respect to projection to X, which are

probability measures on Y so that F(f)(x) » ff(y)drx(y) for almost all x.

Conversely, every such r determines an F.
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Definition 5.2. Let £ be as above; we say that £ is discrete if tx is an

atomic measure for almost all x.

Definition 5.3. Let M be a von Neumann algebra with Cartan subalgebra

A and let B be an abelian subalgebra. We say that B is discrete over A if the

restriction to B of the conditional expectation £ of M onto A is discrete. (We

have noted earlier that £ is uniquely determined by A so that this depends

only on A.)

Theorem 9. Let A, and A2 be Cartan subalgebras of the von Neumann

algebra M. Then A, and A2 are inner coconjugate iff A, is discrete over A2 and

A2 is discrete over A,.

Proof. We reduce to case of a factor by direct integral decompositions. We

observe also that A, is discrete over A2 iff A, ® A(%) is discrete over

A2 ® A(%) since the positive map of A, <8> A(%) into A2 ® A(%) is just

£ ® / where £ is the positive map of A, into A2. Thus we may assume that

M is an infinite factor and then by Proposition 5.1, our assertion is that A,

arid A2 are inner conjugate iff the discreteness condition holds.

First suppose that A2 = UAXU* and by Theorem 1, write M - M(£, s)

with A, as diagonal subalgebra. Then the unitary operator U is of the form Lu

for a function u on £. Then if A E A, is represented by a G L"°(X), the

operator UAU~X = Lb where

b(x,z) = *2a(y)(u(x,y)ü(z,y)s(x,y,z)).
y

Then the conditional expectation of Lb is the function b(z, z) E Lœ(X). Thus

A, s Ln(X); and if we identify A2 with LM(X) via conjugation by U, the

positive map from A2 to A, can be viewed as the map £ from La>(X) to

L°°(X) given by

{F(a))(z)-2a(x)\u(z,x)f.
X

Thus the disintegration products tx of the measure t of Definition 5.1 are

atomic measures giving mass \u(z, x)\2 to all points z in the equivalence class

of x. Thus A2 is discrete over A, and by a symmetric argument, A, is discrete

over A2.
Now suppose that the discreteness condition is satisfied, and let A, =

L°°(X¡, p¡) with p¡ probability measures on X,. We realize M as M(£„ sx) for a

relation £, on Xx and let Jx be the conjugate linear "J" arising from this

construction. Let B, = 7iA2/„ which is a Cartan subalgebra of M' and

isomorphic to A, and LX(XX). Now we let D be the abelian algebra generated

by B, and A2. As in the proof of Theorem 1, we may identify D with LM(S, X)

where S C Xx x X2 with B, consisting of functions constant in the right
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coordinate and A2 of functions constant in the left coordinate, and where X is

some measure in S projecting to p¡ on A,. Now, as A, is also isomorphic to

L°°(XX), restriction to A2 of the conditional expectation Ex of M onto A, gives

a positive map F from L°°(X2) to Lc0(Ar,) and hence by Proposition 5.2 we

have a measure t on AT, X A"2 and disintegration products tx, x E Xx. The

first step is to connect r and X.

Proposition 5.3. The measure r is absolutely continuous with respect to X.

Proof. Let <p, be the separating and cyclic vector for M associated with its

presentation as M(RX, sx), and co, the corresponding state. If d G LK(S) and

Md is the corresponding operator in D, then the map d\-+ (M^x, <p,) defines a

measure p on S, absolutely continuous with respect to X. We claim, in fact,

that p = t. To see this it suffices to consider functions d of the form

b(xx)a(x2) which represent operators Rb = MbE B, and Ma E A2. Then

Jb(xx)a(x2)dp = (MaJxLbJx<bx, <bx) = (MaLb<bx, <p,)

since 7,^, = <¡>x and since JxLb<bx = Lb<bx. Then

iMaLb<bx, <bx) = co(A/aLé) = <o(£(A/a4)) = <o(£(A/fl)L¿)

= ¡[ja(x2)drx^b(xx)dpx(xx)

= fa(x2)b(xx)dT(xx,x2)

by definition of tX| and t.   □

Now we can proceed to repeat the arguments given in Propositions 3.2, 3.3

and 3.4 in the course of the proof of Theorem 1, but applied to the measure X

on 5 c A", X A"2. We produce countable groups Hx and G2 of Borel automor-

phisms of A", and X2 from the normalizers N(B,) and N(Aj) respectively so

that, in fact, Hx generates the relation Rx on A",, and G2 generates the relation

R2 on A"2 (with M = M (R2, s2)), and so that when we disintegrate X with

respect to projection to Xx we have fiber measures Xx (x G A-,) which are all

ergodic for G2 and similarly for projection to the right coordinate.

But now t < X so that tx < Xx for almost all x. Since rx is atomic, it follows

from ergodicity of Xx that it is also atomic, and indeed is equivalent to a

counting measure on a certain G2 orbit or, equivalently, an R2 equivalence

class in X2.

Proposition 5.4. For almost all x, Xx is equivalent to a counting measure on

an R2 class in X2 and Xx ~ Xx. when (x, x') E Rx. Similarly, if Xy, y E R, are

the disintegration products of X with respect to projection to the second factor,

then Xy is equivalent to a counting measure on an Rx equivalent class in Xx and

Xy~Xyif(y,y')ER2.



356 JACOB FELDMAN AND C. C. MOORE

The statements about Xy follow in exactly the same way by making use of

the hypothesis that A, is discrete over A2.   □

The set S c Xx X X2 has the property that measure theoretically any

section Sx(xx) at a point xx E Xx is countable and is an equivalence class of

£2, and that any horizontal section S2(xj) at x2 E X2 is countable and an

equivalence class of £,.

Proposition 5.5. The set S contains the graph of a map from Xx to X2 which

is an equivalence of Rx with R2.

Proof. By standard cross section theorems we may find maps $, from Xx

to X2 and <b2 from X2 to Xx so that (xx, <bx(xx)) E S and (^2(xj), xj) E S.

Then (xx, <bx(xx)) E S and (<¡>2(<j>x(xx)), <t>x(xx)) E S and so x, ~ <t>2(^>x(xx)) for

almost all x and similarly x2 ~ (bfâ^xj)). But this means precisely that £,

and £2 are Mackey equivalent in the sense of Theorem 3 of FMI; and as they

are both infinite, they are, by the Corollary of Theorem 3 of FMI, isomorphic

by means of a map y with the property that y(x) ~ <bx(x). This says that

Y(<b) c S as desired.   □

Just as in the proof of Theorem 1 we obtain that the algebra D has uniform

multiplicity so that % = L2(S, X, %j) for a Hubert space %>. %> of course

will turn out to be one dimensional so that D is maximal abelian on %. Let

us further select X so that its disintegration with respect to projection to Xx, \x

are counting measures on X2; that is, Xx gives each point in £2(y(*)) mass

one where y is the fixed isomorphism of £, onto £2 supplied by Proposition

5.5.
Now let t>2 be an element of % = L2(S, X, %j) which vanishes off r(<J>)

and with <p2(x, y(x)) a unit vector in %¡.

Proposition 5.6. The vector $2 is separating and cyclic for M.

Proof. We show that it is cyclic for M and M'. Let %x - (M • fyjy and let

£ G JXAXJX = B,; £ corresponds to an element denoted by b in L°°(XX) so

that (B<b2)(x,y) - b(x)<b2(x,y). But if we let a(y) = b(y~x(y)) E L^Xj), a

represents an element A of A2 and

(A<t>2)(x,y) = a(y)<$>2(x,y) = b(y-x(yj)$2(x,y) = b(x)<b2(x,y)

since <p2(x,y) = 0 unless x = y~x(y). Moreover, if T EM, and B E B,,

BT(4>2) = TB (<í>2) = £4(<i>2) G M<f>2. Thus Mt>2 and hence its closure SC, is

invariant under B,, and so the projection £, onto %x commutes with B,.

Since it also commutes with M, it is maximal abelian in M'. Consequently

(£,i^)(x,y) = IE(x)(x,y) where IE is the characteristic function of some set

£ C Xx. But since £,</>2 = <p2 and <b2(x, <b(x)) is a unit vector, we must have
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E = Xx a.e. so 3C, = % and <b2 is cyclic. A symmetric argument interchang-

ing B, and A2 shows that <b2 is also cyclic for M'.   □

Now let us consider the vector state <o2 of M' defined by u2(M) =

(M<f>2, «pj). For B E JXAXJX = B,, and the corresponding function b,

(B<¡>2, <p2) = fb(xx)<b2(xx, x2)dX(xx, x2)

= fb(xx)l    2     |<¡>2(*i,*2)|) dpxixx)
\x1~y(xx) I

= fb(xx)dpx(xx) = (B<bx, <p,) = ux(B)

where <p, is the separating and cyclic vector for M used in the construction of

M = M(RX, sx) and w, is the state it defines of M'. Now let S2, J2, A2 be the

Tomita-Takesaki operators associated with the vector <p2 and M'.

Let B E B,. Then S2(B<b2) = B*<b2. Also S^ is defined by S^(A<p^) = A*$2

for A E M and hence for A E A2. But we have already noted that A (tp^ =

B(<j>2) for an appropriate B E B,. Thus S^DtpJ ■ S^/ty^ = D<¡>2 and it

follows that Aj/^Zty^ = £><p2 for D G D, and so A^Zty^ = D<b2. Then

A2'BA2'<i>2 = A2'5<p2 = B<b2 for B G B, and since <f>2 is separating, A2'5A2' = B.

It follows from Takesaki [1] that there is a faithful normal conditional

expectation E2 from M' onto B, such that w2(T) = w2(E2(T)) for t E M.

However, a conditional expectation from M' onto B, is unique if it exists

(Tomiyama [1] and Connes [1]), and we already have one from the construc-

tion of M as M(RX, sx), namely E = JEXJ where Ex is the conditional

expectation of M onto A,. Thus

«l(n = «,(£(7-)) = u2(E(T)) = <o2(£2(T)) = <o2{T),

and so the states w, and w2 of M' are the same. Since ux(T) = (T<bx, <bx) and

u2(T) = (Ttp2, <p2), it follows that there is a unitary U in (M')' = M with

U<bx = <f>2.

But now we can characterize A,, the diagonal subalgebra of M(RX, sx), as

{A: A G M, A<bx G B,<p,} and the analysis above shows that A2 c {A: A G

M, A(b2 E B, • <p2} and since ̂ >2 is separating, we have equality. But now from

U<px = <p2 it follows that UAXU~X = A2.   □

There is a final fact about Cartan subalgebras and inner conjugacy which is

worth noting.

Theorem 10. If A, and A2 are Cartan subalgebras of M, then A, and A2 are

conjugate ij and only if A, © A2 is a Cartan subalgebra of ^(M), the two by

two matrices over M.

Proof. We note that A, © A2 is maximal abelian in ^(M) and has a
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conditional expectation, namely E((M¡jj) = EX(MXX) © E2(M22) where £,

and £2 are the conditional expectations of M onto A, and A2. It is clear that

the normalizer of A = A, © A2 generates at least the block diagonal algebra

M © M. But M © M is maximal as a von Neumann subalgebra, as is easily

seen, and so A, © A2 is a Cartan subalgebra if and only if N(A) contains

something which is not block diagonal.

Now if A, and A2 are inner conjugate with A2 = t/A, U*, it is clear that the

matrix V = (% %*) is in the normalizer of A, and we are done.

Conversely, let N(A) contain a non block diagonal matrix so that A is a

Cartan subalgebra. Now A s L°°(XX U Xj) where A,- s L'n(X¡) and then we

obtain a relation £ on (Xx u X2) X (Xx u X2) which, in X¡ X X¡, is £,. Let

Sx = £ n (Xx X Xj) and S2 = £ n (X2 X Xx); the sets S¡ are just the type

that occur in the proof of Theorem 9. In fact, it follows immediately that A, is

discrete over A2 and A2 is discrete over A,. Thus if M is purely infinite, A,

and A2 are inner conjugate by Theorem 9. Then by direct integral theory we

can, in fact, reduce to the case when M is a II, factor. One can then prove

that Sx contains the graph of a Borel isomorphism (cf. Proposition 5.5) of £,

onto £2. The extra piece of information one uses is the comparison of

projections ^(M). It is then fairly clear that A, and A2 are inner conjugate.

We omit further details as they are routine.   □
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