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THE BROKEN-CIRCUIT COMPLEX1
BY

TOM BRYLAWSKI

Abstract. The broken-circuit complex introduced by H. Wilf (Which poly-

nomials are chromatic!, Proc. Colloq. Combinational Theory (Rome, 1973))

of a matroid G is shown to be a cone over a related complex, the reduced

broken-circuit complex Q'(G). The topological structure of Q'(G) is studied,

its Euler characteristic is computed, and joins and skeletons are shown to

exist in the class of all such complexes. These computations and construc-

tions are compared with analogous results in the theory of the independent

set complex of a matroid. Reduced broken-circuit complexes are partially

characterized by conditions concerning which subcomplexes are pure (i.e.,

have equicardinal maximal simplices). In particular, every matroid complex

is a reduced broken-circuit complex. Three proofs are given that the simplex

numbers of the cone of Q'(G) are the coefficients which appear in the

characteristic polynomial x(G) of G. This relates the work of W. Tutte on

externally inactive bases to that of H. Whitney on sets which do not contain

broken circuits. One of these proofs gives a combinatorial correspondence

between these sets. Properties of the characteristic polynomial are then given
topological proofs.

1. Introduction. In this paper we synthesize some of the work of Tutte [11]

and Whitney [12] on the chromatic polynomial of a graph (extended by

Crapo [5] and Rota [8], respectively, to the characteristic polynomial x(G) =

X(G;X) = S'^o^A' °f a combinatorial geometry). In particular, we show that

Tutte's basis classification method (by internal and external activities) and

the broken-circuit method of calculating the characteristic polynomial of a

matroid have striking similarities and can (in fact should) be dealt with in the

same theory. Also, it is our belief that such study should be performed in the

more general matroid case since x(G) is not only the chromatic polynomial of

a graph (to within a factor of A), but for more general matroids, G, x(G)

appears in the theories of linear codes, hyperplane separation of points in

euclidean space, acyclic orientations of totally unimodular matrices, packing
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problems in finite projective geometries, etc. Surveys of many of these

applications appear in [3], [4] and [6].

The theorem, considered by Biggs [1] to be one of the most important in

the field of algebraic graph theory, that ±x(G; X) is the evaluation of a

polynomial with positive integer coefficients at 1 - X is proved in three

essentially different ways (all three of which are, we believe, new). Two of

these proofs use the decomposition-invariant methods of [3] and the third is

purely combinatorial. This theorem not only implies that the coefficients of

X(G), the so-called Whitney numbers of the first kind, alternate in sign and

increase up to half the degree, r, of x(G) [1]. so that |wr| < jwr_,| < • • • <

lwlr/2]|. DUt u also gives an immediate proof that \w¡\ > \wr_¡\ for all /' < [r/2]

(so long as G is not a boolean algebra). The analogous best result so far for

the Whitney numbers of the second kind is that 2J,m0W, < S/.,_y^ (if G

not modular and 0 <j < r) [7].

Our main object of study is the broken-circuit complex of Wilf [13], whose

simplex numbers (or /-vectors in the language of topology) are the elements

of the sequence (|w,|)'_0. In particular, we show that such a complex is a cone

over another complex Q'(G) and attempt to characterize which complexes

can appear as such broken-circuit complexes. The important criterion seems

to be which subcomplexes of Q' are pure. (We use wherever possible the

terminology [9] of combinatorial topology, and occasionally the terminology

of combinatorial geometries for matroid complexes; a review of these defini-

tions appears in the following section.) It turns out that each of these

complexes has a linear ordering on its points (or vertices) such that each

subcomplex on an initial consecutive set of points is pure. On the other hand,

any complex which has only pure subcomplexes is a reduced broken-circuit

complex. Thus the characterization lies somewhere between these conditions

and we hope to completely characterize these complexes in the future. We

also compare the Euler characteristic of a reduced broken-circuit complex

with that of the matroid complex of independent sets which generates it. It

turns out to have the same sign, and its absolute value is strictly less (except

in trivial cases).

Finally, we show that the class of all such complexes is closed under the

formation of joins and skeletons (as are matroid complexes for the corre-

sponding operations of direct sum and truncation). The very fact that the

skeleton of the reduced broken-circuit complex of a graph is almost never the

complex of any other graph suggests that the generalization to matroids is

appropriate.

In the future we hope to study and interpret topologically other construc-

tions which affect the coefficients in x(G) in a predictable way (such as the

generation of a subcomplex by a modular flat, the Brown truncation of a
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modular flat, and the generalized parallel connection). Another area for

future exploration depends on the fact that broken-circuit complexes produce

a Cohen-Macauley ring (as R. Stanley has recently shown in private corre-

spondence). This condition, as Stanley's work shows, would give much

information, such as improved Kruskal-type inequalities for the Whitney

numbers. Perhaps the interrogative title of [13] will someday be completely

answered.

2. Definitions and elementary properties. It will be assumed that the reader

is familiar with the basic definitions and properties in the theory of matroids

(combinatorial geometries). A full treatment of the relevant aspects of this

theory may be found in [2], [4], or [6]. Of the many equivalent ways to

axiomatize a matroid G, perhaps the reader will be best served by thinking of

G in terms of its simplicial complex of independent sets.

Definition 2.1. Let G be a matroid of rank r and cardinality « on a

linearly ordered set S. We will occasionally identify S with the set

{0, 1, 2,...,«- 1} = [0, n - 1]. When loops are deleted and multiple

points identified, we get the associated geometry G with geometric lattice of

flats L(G) = L(G). The characteristic polynomial of G, x(G) = x(G> A)> IS

defined to be 0 if G has a loop and "ZxenG)p(0, x)Xr~r(x) otherwise, where

the sum is taken over the flats of G (elements of L(G)) and p is the Mobius

function of L [8]. The coefficients of this polynomial alternate in sign, and we

are led to define the absolute characteristic polynomial of G,

\X\(G) = 2 I KO, x)\X'-«*> = (-l)\(G; -X).
X

The coefficients in x(G) axe termed the Whitney numbers of the first kind.

For any basis B of G, the internal activity of B is the number of all points p

in B such that p < q for all other points q in the basic bond b = b(B,p)

associated with p and B (all q not in the closure of B - p). The external

activity of B is the number of all points p' in S - B such that p' < q' for all

other points q' in the basic circuit c associated with p and B (all q' in the

unique circuit contained in B u {/>'}). In the Whitney dual G* of G, bases of

G* are basis complements of G, and if p E B, a basis of G, then the basic

bond b associated with p and B in G is the basic circuit c associated with p

and S - B in G*. Another characterization of the basic bond b(B, p) is the

set of all q such that (B - {p)) u {q) is a basis of G. Dually, a basic circuit

c(B,p) is the set of all q G B such that (B - {q}) u {p) is a basis of G.

The function / defined for all bases B of zero external activity or Z-bases

associates with B its internal activity. The Z-bases polynomial, summed over

all Z-bases B, equals 2z/w.

A broken circuit C of G is a subset of 5 such that {p) u C is a circuit and
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p < q for ail q E C. Thus we obtain all the broken circuits of G by deleting

the least point from every circuit. In general, of course, two circuits may yield

the same broken circuit (although this never happens in the geometry

associated with a graph or any binary geometry) and one broken circuit may

properly contain another.

Just as an independent set of a matroid is one which does not contain any

circuit a x-independent set is one which does not contain a broken circuit. The

simplicial complex (a family of finite subsets termed simplices which is closed

under containment, and including 0 when nonempty) which these x-indepen-

dent sets generate is termed the broken-circuit complex G(G) associated with

G. A (simplicial) complex is termed pure if all of its maximal simplices (or

facets) are equicardinal. If the complex is understood to be a matroid, its

facets are termed bases. Associated with any pure complex G is its rank

r(G) = r equal to the size of a maximal simplex (one more than the topo-

logical dimension) and its Whitney polynomial: w(G) = 2Ar~'i' = 2¿_0w,A'>

the former sum being taken over all the simplices s of G. Thus w(X) is a

monic polynomial with positive coefficients. These coefficients are termed the

simplex numbers of G. Note that it will be convenient later to have these

numbers indexed by corank (codimension).

If ß is a complex on the set S, and S' is any subset of S, define the

subcomplex generated by S', G(S') = G — (S - S'), as the complex of all

simplices s £ G such that i Ç S'. We define the link of S' E G, G/S' as the

set of all simplices in the closed star of S' but not its open star (i.e. the

complex of all subsets s such that s \j S' E G). When G is the independent

sets of a geometry, Q(Sr) is termed the subgeometry of 5 generated by S' or

the deletion of S — S'. G/S' is termed the contraction of S by S'. These

definitions are equivalent to those given in [2], [3], [4], [6], etc.

Proposition 2.2. If G is apure complex on the set S, Q/S' is pure for all

S' EG;and G(Sr) is pure for all S' C S if and only if G is a matroid.

Proof. The first statement is obvious and the second is one of the

definitions of a matroid in terms of its independent sets.

Definition 2.3. For any complex G, p is an isthmus of G if p is in every

facet of G. (Again this agrees with the matroid-theoretic isthmus defined in

[4] and [3]), and G is the cone of G - p over p. In this case we call the

complex G - p the reduced simplicial complex G' associated with G (relative

top). The following is straightforward.

Proposition 2.4. a. If G is a pure cone over G', then G' is pure of rank one

less than G, and s E G' if and only if s and s U {p) are in G. Thus

w(G) - w(G')(l + X).
b. If G is a pure complex, and p E G is not an isthmus, then r(G — p) =
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r(&), r(Q/p) = r(Q) - 1, and the simplices of ß are partitioned into sets s

such that s is a simplex of Q — p (ifp £ s) or s — {p) G Q/p (ifp E s). Thus

w(ß) = w(ß -p) + wiß/p).

Definition 2.5. Another complex derived from a pure complex 6 of rank r

is the (r - l)-skeleton, T(Q), which is the complex on the set S1 of rank

r(6) - I whose facets are the (r - l)-simplices of C. (For matroid com-

plexes, this is called the truncation of G.) T(Q) is also pure and has Whitney

polynomial w(T(Q)) = (l/X)(w(C) - w0). If C, and Cj are two complexes

on disjoint sets Sx and S2, the join of C, and Sj, ß, V &i, is the complex with

simplices {sx u s2\sx E S,, s2 E Of). It is pure if and only if 6, and 6¡ axe

pure. Further, w(Gx V ß?j = v/'ß^ßf).

When 6, and 0^ are matroid complexes, ßx\J Q^is denoted Gx © G2 and

called the direct sum in [3], [4] and [6]. For example, it ^ = {0), 6X \/ 62 =

Q; if 62 has a facet p, the join is the cone of (9, overp and if Gj has the facets

of p and q, the join is the suspension of C,.

Definition 2.6. Associated with every matroid G is a unique polynomial

invariant t(G) = t(G; z) which may be defined recursively by:

a. t(G) = 0 if G has a loopp (G(p) = {0} as a complex).

b- '(/0 = z if/* is a one-point geometry (G(p) = {p, 0}).

c. t(G © #_) = t(G)i(H).

d.t(G) = t(G—p)+ t(G/p) Up is neither an isthmus nor a loop.

Further, as shown in [3], an invariant/which satisfies (a, c, and d) above is

an evaluation of /. In particular,

(- l)r(C)x(G) - i(G; l-X)   if G is loopless.

Proposition 2.7. Let G be a matroid and p a point oj G which is neither an

isthmus nor a loop.

a. The circuits oj G — p (bonds oj G/p, respectively) are the original circuits

(bonds, resp.) oj G which are contained in G — {p).

b. The circuits of G/p (bonds of G — p, respectively) are the .inimal subsets

among those subsets c of G — {p) such that c or c U {p) is a circuit (bond,

resp.) of G. Then if c U {/>} is a circuit of G, then c is a circuit of G/p, and if

c Ç G — {p) is a circuit of G, then either c is a circuit of G/p, or c = U c¡,

where each c¡ U {p} is a circuit of G and c¡ is a proper subset of c (so that c is a

union of circuits of G/p). This latter case can only happen ifp forms a circuit

with a proper subset of c.

c. The bases of G are partitioned into those which do not contain p which form

the bases of G — p, and those bases b which contain p which after p is deleted

from each form the bases of G/p (cf. 2.4b).

Proof. These results are straightforward and can be found in [3].

The following facts are proved in [2]:
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Definition 2.8. If G, and G2 are matroids with preferred pointsp, andp2,

respectively, and with no points in common, a matroid P(GX, G2), termed

the parallel connection of Gx and G2, can be formed on the underlying set

G\ ~ {P\) W G2 - {p2} u {p} whose circuits are the following:

a. c, where c¡ is a circuit of G¡ - p¡ (i-l, 2).

b. c, u {p} where c, u {p,} is a circuit of G¡ (i ■ I, 2).

c. c', u c2 where c/ u {/>} is a circuit of G,.

Definition 2.9 Let G be a matroid on the set S with p E S. The free

extension of G by p, denoted G + p, is the matroid T(G ffip). Its bases are

the bases of G along with {p} u b where b is an independent set of rank

r(G) — 1. Its hyperplanes are the colines of G ©p, and thus its bonds are all

sets of the form b u {p} where b is a bond of G, and minimal sets of the

form bx u b2 where bx=£ b2 are bonds of G. The free dual extension of G by p,

G X p, is defined by G X p = (G* + p)*. Its circuits are given by all sets

{c u {p)\c a circuit of G} and some of the sets (c, u c2|c, distinct circuits of

G).
Example 2.10. To illustrate some of the preceding and following ideas let G

be on the set [0, 5] with affine representation

and graphical representation

Then, for example, the basis 0245 (= {0, 2, 4, 5}) has external activity one

since 1 is the least point in the basic circuit 1245 while 3 is not the least point

in 0235.

The bases of external activity zero (Z-bases) with their associated internal

activities are as follows:

a. 7(0123) = 4,

b. 7(0124) = 3,
c. 7(0125) = 3,
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d. 7(0135) = 2,

e. 7(0145) = 2,
f. 7(0234) = 2 (since 0 is minimal in the bond 012 and 2 is minimal in the

bond 25),

g. 7(0345)= 1.
The (broken) circuits are (0)134, (0)235, and (1)245. The broken-circuit

complex G(G) has the isthmus 0. Its associated reduced complex G'(G) has

as faces the above seven bases a - g with 0 deleted (i.e. all three-element

subsets of [1, 5] except the broken circuits) as well as all smaller subsets of

[1, 5]. A full list of the simplices of G(G) follows:

a. 0123; 012, 013, 023, 123; 01, 02, 03, 12, 13, 23; 0, 1, 2, 3; 0;

b. 0124; 014, 024, 124; 04, 14, 24; 4;
c. 0125; 015, 025, 125; 05, 15, 25; 5;

d. 0135; 035, 135; 35;
e. 0145; 045, 145; 45;

f. 0234; 034, 234; 34;

g. 0345; 345.
G/5 has affine representation

and graphical representation

Its (broken) circuits are (0)134, (0)23, and (1)24 and its Z-bases have the

following internal activities:

7(012) = 3,       7(013) = 2,   7(014) = 2,   7(034) = 1.

Thus we see that its Z-bases are the sets b such that b u {5} is a Z-basis of G

and 1(b) in G/5 equals I (b5) in G. Further, the broken-circuit complex of

G/5 equals G(G)/5.

G - 5 has affine representation
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4k
and graphical representation

Its broken circuit is 134; 7(0123) = 4, 7(0124) = 3, and 7(0234) = 2. Note
that 2 is an isthmus of G — 5 and contributes one to the internal activity of

all Z-bases. Hence, each Z-basis of G - 5 is a Z-basis of G which does not

contain 5 with identical internal activity. The broken-circuit complex G(G —

5) equals G(G) - 5.

3. The broken-circuit complex. In this section, the broken-circuit complex of

Whitney and Wilf [12], [13] is discussed and associated with the work of Tutte

concerning the internal activity of Z-bases [11] and the so-called Tutte-

Grothendieck decomposition of a matroid [3]. We begin with a discussion of

various properties of Z-bases and x-independent sets. As an illustration of

many of these ideas, the reader is reminded to check them for the geometry in

Example 2.10. We first prove a lemma which will be elaborated on in (3.6).

Proposition 3.1. If G is matroid of rank r, then 0(G) is a pure complex of

rank r. In particular, its facets are the Z-bases of G.

Proof. Assume a basis B contains a broken circuit c where c u {p) = c' is

a circuit of G. Then c' is the basic circuit associated with p and B. Since

p < q for all q E c,p contributes to the external activity of B and B is not a

Z-basis.

Thus Z-bases are x-independent sets and they are maximal since bases are

maximal with respect to not containing circuits. Further, all bases have r

elements. Suppose 7 is a x-independent set which is maximal but not a

Z-basis. In G, there is a basis Bx, which contains 7. If it is a Z-basis we are

done. Otherwise, there is a basic circuit c such that c — Bx = p andp < q for

all q in c n Bx. Since c — {/>}, a broken circuit, g 7, there is a point p' in

c n (Bx — I). By (2.1) (Bx — {p'}) U {p) is a basis B2 which also contains 7
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and such that 5, > £2 in the lexicographic order induced from the order on

the points of G. Since this process of reducing the order of £, cannot continue

indefinitely we are done.

Proposition 3.2. Let G be a matroid on the set [0, m] with broken-circuit

complex (3(G).

a. If G contains a loop, then 0 is a.broken circuit, there are no Z-bases, and

the broken-circuit complex is empty.

b. If p is an isthmus of G, then p is in every Z-basis, and the bases of G are

the sets of the form B u {p} where B is a Z-basis of G — p and 1(B) (in

G — p) equals 1(B u {p}) — 1 (in G). Further, the broken circuits of G are

the same as the broken circuits of G — p. The broken-circuit complex of G is

the cone of G(G — p) over p.

c. If m is neither an isthmus nor a loop of G, then the Z-bases of G are

partitioned into Z-bases B which are Z-bases of G — m with the same internal

activity and Z-bases B' (J {m) where B' is a Z-basis of G/m and I'(B') =

7(5' u {m)) (where 7' is the internal activity function of G — m).

d. If m is not a loop G, the broken circuits of G — m are precisely the broken

circuits of G which do not contain m. G(G — m) = G(G) — m.

e. If m is not a loop G, the minimal broken circuits of G/m are the minimal

sets c such that either c or c U {m) is a broken circuit of G. G(G/m) =

Q(G)/m.

Proof, a. A loop is a one-point circuit which when deleted gives the empty

set as a broken circuit. Since every subset of [0, m] contains 0, G(G) is

empty. Further, the loop is in every basis complement and so it is a basic

circuit relative to every basis. Thus the loop contributes to the external

activity of every basis and thus there are no bases of external activity zero.

b. An isthmus p is in every basis B and is the unique element in its basic

bond and thus contributes one to its internal activity. Since the bonds of G

are precisely the bonds of G - p with the additional bond p, it is clear that

7(£) = 7'(£ - {p}) + l.p is in no circuit and thus no broken circuit. Thus

the broken circuits of G are the same as those of G — p and we may apply

2.4a.

c. All bases are partitioned as in 2.7c. Thus we must show that for every

basis b containing m, the property of being a Z-basis and the internal activity

is the same in G and (for B — {m)) in G/m and the analogous statement for

the bases of G - m. In fact, we will show that both internal and external

activity is preserved from G to G/m. The analogous result for G — m is a

consequence of the duality theory of matroids (where internal and external

activities, bonds and circuits, G/m and G - m, and B and S — B are all,

respectively, interchanged).
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Let B be the basis of G which contains m. Since the bonds of G/m axe

those bonds of G which do not contain m (2.7a), b is a basic bond in G of B

associated with any pointp =£ m if and only if b is the basic bond in G/m of

B — {m) associated with p. Further, m itself cannot contribute to the external

activity of B in G since m is not an isthmus and is the greatest point in G (and

thus not the least ordered point in any bond which contains it). Thus B (in G)

and B — {m) (in G/m) have the same external activity.

Letp be any point in S - B (hence p + m) and let c be its 5-basic circuit.

If m E c, then c — {m) is the basic circuit of B — {m) in G/m associated

withp. Ifp contributes to 7(5), thenp is the least point in c and thus the least

point in c — {m) and p contributes to the internal activity of B — {m) in

G/m. lip does not contribute then q < pine, and, evidently, q ^ m so that

q < p in c — {m) andp does not contribute in G/m.

If m £ c then c is a circuit of G/m, since m along with any proper subset

of c cannot be a circuit (by 2.7b and since c is the unique circuit in B u {p})-

In this case p clearly contributes to internal activity in G if and only if it does

so in G/m.

d. Since m is not a circuit and is the highest point in any circuit which

contains it, a broken circuit c in G contains m if and only if its associated

circuit contains m. We may then apply 2.7a. Since the broken circuits define

the broken-circuit complex (as obstructions) and G(G) is pure, the second

statement follows.

e. In analogy with d above and using 2.7b, the following are equivalent:

1. c is a minimal broken-circuit of G/m.

2. c is minimal with respect to the property that there exists p such that

c U {p} is a circuit of G/m, andp < q for all q E c.

3.c Q G — {m) is minimal such that c u (p) or c u {p, m) is a circuit of

G for somep less than any point in c.

4. c Q G — {m) is minimal such that corcu {w} is a broken circuit of G.

The second statement follows since minimal broken circuits define the

broken-circuit complex, so that the simplices in G(G/m) are precisely those

sets j such that s \j {m) contains no broken circuit of G.

We now apply our decomposition to simultaneously prove Tutte's and

Whitney's interpretations of a matroid's Whitney numbers of the first kind.

Theorem 3.3. Let G be a matroid of rank r on the set [0, m] with

characteristic polynomial x(G; X), absolute characteristic polynomial

\x\(G) = (-l)rx(G;-X),

and Z-basis generating function Z(G; z). Further, let w(G(G)) be the Whitney

polynomial of the broken-circuit complex G(G).

a. If G contains a loop, then x(G) = Z(G) = w(G(G)) = 0.
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b. If m is an isthmus of G, then x(G) = (X - l)x(G - m) (\x\(G) =
(X + l)|x(G - m)\), Z(G) = zZ(G- m), and w(G(G)) = (\ + l)w(G(G -

m)).

c. If m is neither an isthmus not a loop, then x(G) = x(G — m) — x(G/m)

(\x\(G) = \X(G - m)\ + \x(G/m)\), Z(G) = Z(G - m) + Z(G/m), and
w(G(G)) = w(G(G - m)) + w(G(G/m)).

d. If m = 0 and r= 1, X(G) = X - 1, |X|(G) = X + 1, Z(G) = z, and
w((G)) = X+ 1.

e.\x(G)\ = w(G(G))=Z(G;X+ 1).

Proof, a. This follows from 2.1 and 3.2a, respectively.

b. This follows from 2.6b, c, 3.2b, and 2.4a, respectively.

c. We may apply 2.6d (noting r(G — m) = r and r(G/m) = r — 1) to

prove the first equality. The second follows from 3.2c. The third is proved by

applying 3.1, 3.2d, and 3.2e to 2.4b.
d. These are easy to check.

e. Parts a, b, and d above, respectively, verify properties 2.6a, c, and d for

|x(G)|, Z(G), and w(G(G)). We then use 2.6 and part d above to show that

i(G; X+l) = \x\(G; X), t(G; z) - Z(G; z), and t(G; X + 1) = w(G(G); X).
Remark 3.4. a. Of course, we could have proved the equalities in 3.3e using

the rest of 3.3 and induction on m. This is the essence of 2.6.

b. That |x|(G) equals w(G(G)) is a polynomial restatement due essentially

to Wilf [13] of Whitney's result (stated for graphs) that the absolute value of

the coefficient wk in the characteristic polynomial is the number of subsets of

cardinality r — k which contain no broken circuit.

A way to prove this result differently from the above and also different

from Whitney's proof (which was by inclusion-exclusion) is by using an

interpretation of Wilf (see 3.5 below) for the evaluations of x(G) at negative

integers. Of course this means evaluation of |x|(G) at positive integers.

Another interpretation (only for graphs) of |x|(G) is given in [10].

Proposition 3.5. Let G be a matroid of rank r and let W(G) = Xn(C)|x|(G)

where n(G), the nullity of G, equals \G\ — r(G). Then W(G; n) is the number

of ways to "color" the points_ of G with (0, 1, ..., h~) such that no broken

circuit is colored entirely with 0.

Proof. We will suggest two proofs which together will verify that |x|(G) =

w(G(G)).

1. W(G) - Xn^w(G(G)) = Xn(C)2 wkXr~k- Evidently, W(G) counts the

number of ways to color some simplex in the broken-circuit complex with Ö

and the other points of the geometry with other colors. For a simplex 7 with k

points this can be done in «lcH'l = nn(C)+r(C)-k wavS) ancj summing over all

simplices we are done.
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2. W(G)/Xn™ = \x\(G). We will show that W(G; rí)/Xn(G) = W'(G)
satisfies the same recurrence and boundary conditions as |x|(G; n). If G is a

one-point geometry, «(G) = 0 and W(G; ri) = n + 1 (no broken circuits). If

p is a loop of G, then G cannot be colored and W(G) is identically zero. Ifp

is an isthmus it may be colored with anything (in n + 1 ways) and the other

points may be colored independently in W(G — p) ways (and n(G) =

n(G — p)). If the points of G are labeled [0, m], we will be done by (2.6) when

we show that

W(G)/Xn(G) = W(G - m)/Xn(G-m) + W(G/m)/Xn{G/m)

where m is neither an isthmus nor a loop. But in this case n(G - m) = n(G)

- 1 and n(G/m) = n(G). Thus we must show that W(G) - nW(G - m) +

W(G/m). This is done by partitioning all colorings into those colorings of

W(G) in which m is assigned 0, and those in which m is assigned something

else. The former colorings when restricted to [0, m — 1] are exactly the

colorings of G/m and the latter when restricted to [0, m — 1] are exactly the

colorings of G — m. Details are left to the reader.   □

Since the coefficients of Z(G) are smaller than those of x(G)> it is usually

more convenient to compute Z(G) (by decomposing or examining the

Z-bases) and then evaluate at z = X + 1 to get |xl(G)- In this evaluation, each

Z-basis of internal activity k contributes (*) to the coefficient of X' in |x|(G).

A combinatorial interpretation of this result is to find a one-to-(*) association

between such Z-bases and x-independent sets of codimension i (i.e., size

r — i). The following theorem then shows, combinatorially, that w(G(G);

X) = Z(G, X + 1). The correspondence is illustrated by the listing of the

simplices of G(G) in Example 2.10.

Theorem 3.6. Let G be a matroid on the set [0, m]. Define the function f on

all x-independent sets (simplices of 6(G)) 7 by f(I) = B where B is the least

Z-basis (in the lexicographic order on bases) which contains I.

IfB is a Z-basis, thenf~x(B) = {I\P(B) C I C B) where P(B) consists of

all the points of B which do not contribute to its internal activity (i.e.,

P(B) — {p\p G -S» andp > q for some q in the basic bond associated with p

andB)).

Proof. That/is well defined follows from 3.1 where it was shown that 7 is

contained in some Z-basis. Now assume f(I) = B and B - 1 contains a

point p which does not contribute to its internal activity. Then there is a

q < p such that q is the least element in the bond b associated with B andp.

Thus B' = (B - {p}) u {<?} is a basis (2.1), B' < B, and B' contains 7. We

will contradict the definition of / when we show B' is a Z-basis. Assume

otherwise. Then there is a point p' such that p' is the least point in the basic
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circuit c associated withp' and £'. Since c is not a basic circuit of B, c - {p')

Ç B' but c - {p} g B. Thus q E c and so q E (c n b). But it is well known

that the intersection of a bond and a circuit cannot have cardinality one so

that there is some other point q' in c n b. This leads to the contradiction that

q' E B since q' £ c, and q' E B since ?' E 6, and ç' ^ p (otherwise c would

contain two points p' <.p, neither in £')• Thus 7 contains all the points of B

which do not contribute to external activity.

Conversely, we will show that when B and B' are two bases with B' < B,

then £ n £' cannot contain all of the points which do not contribute to the

internal activity of B.

Assume £' < £, and letp be the least point in B' - B so thatp < q for all

q E B - £'. It is a result in matroid theory that ifpEB'-B then there is a

q in £ - £' such thatp is the basic bond b with respect to £ and £7. In this

case q would not contribute to the internal activity of £ and thus q E £(£).

Hence £(£) £ £'. Thus, if £(£) ç I ç B, then 7 g £' and /(7) = £.

(Note that we did not use the fact that £ (or £') is externally inactive.)

4. Structure of the broken-circuit complex. We now turn our attention to the

question of which simplicial complexes can be broken-circuit complexes.

Proposition 4.1. Let G be a matroid on the set [0, m]. Then G(G) has the

isthmus 0, and so is the cone of G(G) - 0 over 0.

Proof. 0 will be deleted from every circuit which contains it when the

broken circuit is formed. Thus no broken circuit contains 0 and 0 may be

adjoined to any simplex in G(G) resulting in another simplex of G(G).

The above result is the broken-circuit analog of the fact that X + 1 divides

|x|(G) so that X - 1 divides x(G), i.e. x(G; I) = 2p(0,x) = 0. Since 0
contributes nothing essential to the structure of G(G), we delete it and restrict

our study to the reduced simplicial complex G'(G) = G(G) — 0. Our goal

will be to find properties of such reduced broken-circuit complexes which

mimic those of matroid complexes. We start by showing that any matroid

complex is a reduced broken-circuit complex.

Theorem 4.2. If G is a matroid complex on the set [I, m] then G = G'(G X

0), the reduced broken-circuit complex of the free dual extension of G by 0.

Proof. In 2.9 we showed that the circuits of G X 0 were all sets of the

form c u {0} where c is a circuit of G, along with some sets which were the

union of two distinct circuits. Hence the broken circuits of G x 0 are all the

circuits of G with other sets of the form c, u c2 - {p). But the circuit

elimination axiom for matroids guarantees that any set of the form c, u c2 —

{p) contains a circuit c. Thus the broken-circuit complex is generated by the
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circuits of G. When the isthmus 0 is deleted from this complex the theorem

follows.

Remark 4.3. The converse of 4.2, that every reduced broken-circuit com-

plex can be represented by some matroid complex, is false. In fact, not every

Whitney polynomial of a reduced broken-circuit complex can be realized as

the Whitney polynomial of a matroid. For the G of Example 2.10, w(G'(G))

= X2 + 5X2 + 10À + 7, while if H is a matroid with at most five atoms and

ten independent pairs of points, H must be a geometry. A quick check of

five-point geometries will verify that there are no planar ones with seven

bases (a four-point line would guarantee that at least four of the ten potential

bases are destroyed and three three-point lines are impossible with less than

six points).

Thus matroid complexes all contribute to, but do not exhaust, the class of

reduced broken-circuit complexes [x<2']> and every complex in [xC'] is pure.

For matroid complexes, any subset may be deleted, resulting in a pure

complex. We give the following necessary condition for a complex to be in

[XG']:

Proposition 4.4. If G E [xG'], then there exists an ordering on the points of

G, (p„ ... ,pm), so that G - Pj and C/P} are in \xG'] and thus pure for

j=l,...,m where Pj = {p},... ,pm).

Proof. If C = G'(G), with G a matroid on the set [0, m], letp, = / and we

may apply 3.2b, d, and e.

We remark that this condition is not sufficient: let G' be the complex with

facets 012, 123, 234, 345 and 015.
There are other calculations on matroid complexes which may be extended

to reduced broken-circuit complexes. The Euler characteristic Xe(G) of a

simplicial complex G of rank r is defined to be wr_x — wr_2 + wr_3— ... +

(- l)r_1w0 = (- l)r~xw(G; - 1) + 1. The reduced Euler characteristic, xE(G),

equals x£(C)- 1.

Proposition 4.5. Let G be a matroid of rank r on the set S, \S\ > 1 with

Whitney dual G*.

a.X*(G) = (-irV(G*)l + l-
b.X£(ß(G))-l.
c Xe(£'(G)) = (- 1)0S(G) + 1, where ß(G), the ß-invariant of H. Crapo

[2], [3], [4], is the number of bases of G with zero internal and external activity.

d. xE(G) is zero if and only if G has an isthmus. xE(G'(G)) is zero if and

only if G is separable.

e. If G is connected, xE(&'(G)) and ~Xe(G) both have the sign (—l)r and

0 < \Xe(G'(G))\ < \x(G)\.
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Proof, a. If 6* is a simplex of nonspanning sets of H, then Xe(^*) = 1 ~

p(H) [8]. But the independent sets of G are the complements of spanning sets

of G*. We then have the following equalities:

H(G*) = -X£(ß*(G))

= 2 (- 1)|/4'»        A nonspanning in G*,
A

= 2(-l)|B|.       B spanning in G*,
B

= 2 (-1)|S|_|B|,       5-£ spanning in G*,
S-B

= (- 1)'SIS (- 1)'">       / independent in G,

= -Í-^XeÍG).

Thus)X£(G)= -(-l)lslp(G*)= -(-1)1p(G*)|.

b. G is a cone.

c. Since 6'(G) has a rank r — 1,

XEmG))=(-l)rw(G';-l) = (-l)r"
X+ 1

= (-i)'|Wß;0))

- (-l)r^(w(ß; -1)) = (-1)'^Z(G;0) = (-l)'ß(G).

d. p(G*) = 0 if and only if G* contains a loop, equivalently, when G has an

isthmus. That ß(G) = 0 exactly when G is separable is a well-known result of

matroid theory [2], [3].

The reader may supply a direct proof of this latter result by showing that a

geometry has no Z-bases of zero internal activity precisely when G is

connected. He may then apply (3.6).

e. |p(G*)| = Z(G*; 1) > ß(G*) = ß(G) > 0.    D

We remark that 4.5a, 4.5c, and the dual version of 4.2 give a topological

proof of the Greene-Zaslavski theorem that ß(G + p) = \ p(G)\.

Operations on complexes which preserve the property of being a matroid

complex include taking the (r - l)-skeleton and joins. These operations may

also be performed within [x<2]:

Theorem 4.6. Let Q'(G) and G'(H) be two reduced broken-circuit complexes

where G and H are disjoint matroids with minimal points 0 and 0', respectively.

Then

a. T(Q'(G)) = G'(T(G)),
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b. G'(G) V G'(H) = G'(P(G, H)) where P(G, H) is the parallel connection

relative to the basepoints 0 and 0' with any order on the points (G — (0}) u (H

— (0'}) U 0" which makes the basepoint 0" the least point and induces the

original order on G — {0} and H — {0'}.

Proof, a. T(G) has as circuits the original circuits of G of size < r(G)

along with the bases of G. Its rank is r(G) - 1 so that the facets of G'(G)

(being of cardinality r - 1) will not appear in G'(T(G)) (which has rank

r — 2). On the other hand, if I is any proper simplex of G'(G) then 7 is a

X-independent set of size < r — 2. In this case, / u {0} has size < r — 1 and

cannot contain a broken basis since every broken basis has size r — 1 and

never contains 0. Clearly 7 u (0), being in G(G), does not contain any

broken circuits of G. Therefore 7 u {0} is a simplex of G(T(G)) and so 7 is a

simplex of G'(T(G)).

b. G'(G) V G'(H) and G'(P(G, H)) axe both complexes on the set G -

{0} u H - {0'}. The circuits of P(G, H) are given in 2.8 and, using this, the

broken circuits are sets of the following forms:

(i) c where c u {0} is a circuit of G.

(ii) c' where c' u {0'} is a circuit of H.

(iii) c — p where c is a circuit of G (andp is least in c).

(iv) c' - p' where c' is a circuit of H.

(v) (c, u Cj) — q where c2 u {0} is a circuit of G, c2 u {0'} is a circuit of

77, and q is least in c, u c2.

The sets in (v) are not minimal, since if, for example, q E G, then q&H

and (c, u c-fj — q contains a broken circuit c2 of form (ii). Thus the sets of

the form (i)-(iv) generate G'(G). But the sets in (i) and (iii) are precisely all of

the broken circuits of G and those of (ii) and (iv) are the broken circuits of H.

Thus every broken circuit is contained in the set G — {0} or disjoint from it.

The result then follows.

We conclude by giving topological proofs of two results in [2] and a result

of [14].

Corollary 4.7. Let P = P(G, H) be the parallel connection of G and H.

*.X(P) = X(G)X(H)/(X-1).
h.ß(P) = ß(G)ß(H).

Proof, a.

\X\(P) = (X+ l)w(G'(G) V G'(H)) = (X+ l)w(G'(G))w(G'(H))

= \X\{G)\X\(H)/(X+1).

b.

X(e¡VGi)=-x(G¡)x(G¡),   and   r(P) = r(G) + r(H) - I.
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Other formulas, involving, say, the characteristic polynomial, should have

topological proofs like the above. For example, it would be instructive to give

simplex-theoretic proofs of such theorems as ß(S) = ß(G)ß(H) where S is

the series connection of G and H; and |x|(G) = \x\(x)w(G'(H)) where x is

any modular flat of G and H is the Brown truncation, a matroid associated

with G and x. For example, the "modular short-circuit axiom" of [14] easily

implies the following:

Theorem 4.8. A set x of a geometry G is modular if and only if, whenp < q

for all p E x and q E G — x, the minimal broken circuits of G consist of the

broken circuits of x along with other sets disjoint from x.

Equivalently, G(x) is a join-factor of G(G). Thus, \x\(x) divides \x\(G).
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