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ON THE CLASSIFICATION OF SYMMETRIC GRAPHS
WITH A PRIME NUMBER OF VERTICES

BY
CHONG-YUN CHAO

Abstract. We determine all the symmetric graphs with a prime number of vertices.
We also determine the structure of their groups.

1. Introduction. A symmetric graph is an undirected graph whose group of
automorphisms is transitive on its vertices as well as on its edges. Here, we deter-
mine all the symmetric graphs with a prime number p of vertices, i.e., we show
that besides the null and complete graphs, for each integer # such that 0<n<p—1,
there exists a symmetric graph with p vertices and degree » if and only if » is even
and » divides p—1. Also, if the symmetric graphs with p vertices and degree n
exist, they all are isomorphic. For each given p, we can construct all the symmetric
graphs with p vertices. The method of construction which we use here is similar to
the one in [2], i.e., we use the properties of a Cayley graph of a cyclic group of
order p. Our classification depends heavily on a result in [1, Theorem 5, p. 494], i.e.,
the group of automorphisms of a symmetric graph (nonnull and noncomplete)
with p vertices is a Frobenius group. In fact, here we can determine the generators
and the defining relations of this Frobenius group. Our classification also confirms
a conjecture in [4, p. 144].

2. Definitions and notations. The definitions concerning groups used here are
the same as in [3]. Since the definitions concerning graphs are less standard, we
state them as follows: The graphs which we consider here are finite, simple, loopless
and undirected, i.e., by a graph X we mean a finite set ¥ (X), called the vertices of
X, together with a set E(X), called the edges of X, consisting of unordered pairs
[a, b] of distinct elements a, b € V(X). We also assume that there is at most one
edge between two vertices. Two graphs X and Y are said to be isomorphic, denoted
by X~ Y, if there is a one-to-one map o of ¥V(X) onto V(Y) such that [as, bo]
€ E(Y) if and only if [a, b] € E(X). An isomorphism of X onto itself is said to be
an automorphism of X. For each given graph X there is a group of all auto-
morphisms, denoted by G(X), where the multiplication is the multiplication of
permutations. X is said to be vertex-transitive if G(X) is transitive on V(X). X is
said to be edge-transitive if G(X) is transitive on E(X). X is said to be symmetric
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if it is both vertex-transitive and edge-transitive. The complete graph (consisting of
all possible edges) and the null graph (having E(X) empty) of n vertices have S,
the symmetric group of n letters, as their group of automorphisms. Since S,, n> 1,
is doubly transitive, the null graph and the complete graph are symmetric. A
symmetric graph is said to be nontrivial if it is neither null nor complete. (When we
are only interested in vertex-transitive graphs, it makes no difference whether the
graphs are loopless or not.) Let H be an additive abstract finite group and K be a
subset of H such that K does not contain the identity of H. The Cayley graph of H
with respect to K is Xy g with V(Xy x)=H and E(Xy ¢)={[h, h+k]; he H ke K}.
If K is the empty set, then E(Xy ) is meant to be empty, i.e., X x is a null graph.
Clearly, the left regular representations of H are contained in G(Xy x) for any
subset K (not containing the identity of H) in H. A graph X is said to be regular if
the number of edges incident with each vertex is the same, or X is said to be with
degree m if the number of edges incident with each vertex is m. The Cayley graphs
are regular. A cycle of length n (>2) is a collection of n edges [X;, X.], [Xa2, X5],
.oy [Xs Xi] where Xy, X, ..., X, are distinct. We, sometimes, indicate a cycle
of length n by X;—X;—X3—---—X,—X,. In [1, p. 493] Theorem 4 states the
following:

Let p be a prime, and G be the cyclic group generated by (123. . .p). Then Schur’s
algorithm on G gives all the graphs of p vertices each whose group of auto-
morphisms is transitive.

This theorem implies that if X is a vertex-transitive graph with p vertices, then
X is a regular graph with cycles of length p combined together. This is due to the
fact that when each basis for the centralizer ring V(G) corresponding to G is a
symmetric matrix, it is the adjacency matrix of a cycle of length p. (See pp. 492-493
in [1].) Let D, be the dihedral group of order 2p generated by

R=(012...(p—1) and
D = (0)(1 =12 —2)...((p—D/2 =(p—1)2)

where the negative signs are taken modulo p. Then Schur’s algorithm on G genera-
ted by R and on D, give the same graphs. Hence, we have

PROPOSITION 1. Let p be a prime and X be a vertex-transitive graph with p
vertices. Then

(a) G(X) contains the dihedral group D,, and

(b) the order of G(X) is even.

We shall repeatedly use Theorem 5 in [1, p. 494] which states the following:

Let X be a nontrivial vertex-transitive graph with a prime number p vertices.
Then (a) G(X) is solvable; (b) G(X) is a Frobenius group; (c) G(X) is 3/2-fold
transitive.

We shall show that if X is a nontrivial symmetric graph with p vertices then this
Frobenius group G(X) is metacyclic.
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3. The construction. Our construction here is similar to the one used in [2].

LEMMA 1. Let p be a prime and n be a positive integer such that n is even and n
divides p— 1. Then there exists a symmetric graph with p vertices and degree n.

Proof. Let H={0, 1, 2,..., p—1} be the group of integers modulo p, and A(H)
be the group of automorphisms of H. Then we know that A(H) is a cyclic group of
order p—1. Say, A(H) is generated by o, i.e., A(H)={0, 0%, ...,0°7 %, 0" " 1=¢}.
Since n divides p—1, we have p—1=nr for some positive integer r. Let r=0¢" and

K={r1+2 . ..,1/m4 1" =1}

We claim that if one of the elements in K has its inverse in K (the operation is taken
modulo p), then every element in K has its inverse in K. Say, —(17') € K for some
i,1<i<n. Then, for any t,1=5t<n, —(1)7 " '=—(1"*) e K since Kr=K. We
claim that —1 € K. Since n is even, (1772)7"2=1, If 17¥2=j, then 1 =(j)r"2=j2.
This means p divides j2— 1. Since p is a prime and 7 is of order n, j= — 1. It follows
that every element in K has its inverse in K. We form the Cayley graph, Xy g, of
H with respect to K. Then since the cardinality of K is n and every element in K
has its inverse in K, Xy  is a regular graph of degree n.

Now we claim that Xy x is a symmetric graph. Since H is abelian and the left
regular representation of H is contained in G(X} x), the right regular representa-
tions (say, generated by R) belong to G(Xy ). Consequently, Xy x is vertex-
transitive. Let E be an arbitrary edge in Xy g, then E=[i, i+ 1+7] for some i and
some 1+ € K, and [0, 1]7R*=E. Since [0, 1] € E(X), it follows that for any two edges
in E(Xy x), there exists an element in G(Xj ) which takes one to the other, i.e.,
Xy ¢ is edge-transitive, and it is symmetric.

Let (7> be the group generated by r=¢". We know that the order of {7 is n.
Two elements, i and j in H, are said to be related with respect to {) if and only if
there is a 7* € () such that i7*=j. Since {7) is a group, this relation is an equiva-
lence relation. Consequently, H is partitioned into disjoint subsets

{0},
K=K ={lr,1+% ..., 1" 1 1" = 1},

) K, = {(10)1, (10)72, ..., (lo)™" = lo},

K, = {lo"" Y1, (1" M2, ..., (lo"" Y7 = lo" "1},

The Cayley graphs Xy x, Xu k5 - - -» Xu,x, are symmetric, and they are pairwise
isomorphic since o'~ maps Xy x onto Xy g, isomorphically for i=2,3,...,r.
Hence, we have

LeMMA 2. Let n, p, H, o and = be the same as in Lemma 1, and K, K,, . . ., K, be
(D). Then Xy x, X ks - - -» Xu x, are symmetric and are pairwise isomorphic.
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LeMMA 3. The Cayley graphs Xy g, Xu gy - - -» Xu,x, constructed in Lemma 2
are independent of the generators of A(H).

Proof. A(H)={o, 0%, ..., 0" 1=¢} is generated by o, i.e., 1o is a primitive root
modulo p. Let u=o* be another generator of A(H), then i and p—1 are relatively
prime, denoted by (i, p—1)=1. Since p—1=nr, we have (i, n)=1. Let

K, = {1, 1), . . ., (Lo = 1o}

for j=0, 1, ..., r—1. Since (i, n)=1, the elements in each of Kj are distinct. Also,
since (i, n)=1, K;=K; for j=1,2,...,r.

4. The classification.

LEMMA 4. Let X be a symmetric graph with a prime number p of vertices, and
[0, i] and [0,j]€ E(X). Then there exists a 0 € (G(X)), such that i0=j where
(G(X)), is the subgroup {r € G(X); 0r=0}.

Proof. Since X is edge-transitive, there exists o € G(X) such that [0, iJoe=][0, j].
If 06 =0 and io =, then there is nothing to prove. Consider the case 0o =j and ic=0.
Since X is vertex-transitive, X is a regular graph with cycles of length p combined
together. Then [0, j] is on the cycle of length p

0—j—2j—- - -—(—1)j—0.
Let 6=0R~7D. Then clearly, 0 € G(X),
06 = O(cR™'D) = j(R™'D) = 0, and
i = i(cR~'D) = O(R~'D) = (—j)D = j.

LEMMA 5. Let X be a nontrivial symmetric graph with a prime number p of vertices
denoted by H={0, 1, 2, ..., p—1}, and H be regarded as the group of integers modulo
p. If o € G(X) and 00 =0, then o belongs to the group of automorphisms, A(H), of the
group H, i.e., (G(X))o<S A(H).

Proof. Since X is a vertex-transitive graph with p vertices, X is a regular graph
with cycles of length p combined together. There is no loss of generality to assume
that X contains the cycle C;: 0—1—2—-..—(p—1)—0. That is, if X does not
contain the cycle C,, then we may relabel the vertices so that it contains C; with
0 remaining unchanged. In other words, if X does not contain C,, there is an
isomorphic map which takes X onto a symmetric graph with p vertices containing
C, and O is left fixed under the map.

Let o € G(X) such that 0o =0. We want to show o € A(H). ¢ € G(X) implies that
it is a one-to-one map of the set H onto itself. We only need to show that it is a
homomorphism of the group H onto itself, i.e., to show

(0 1 2 oo i ... _1)
o = .
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Suppose not, then we may assume
00 =0, ic =14, fori=12,...,k;1 £k £p-2,
(k+1)o # (k+1)j.

Say, (k+1)o=kj+m where m+#j. X contains C,; implying [k, k+1] € E(X).
o € G(X) implies [ko, (k+1)o]=[kj, kj+m] e E(X). That means [0, m] e E(X).
By Lemma 4, there exists a 7€ (G(X)), such that 17=m. Then 7 'R¥oR™*
€ (G(X)), and m(r"*R*eR~*)=m. If 7~1R¥¢R~* is not the identity e, then we
have a contradiction since G(X) is a Frobenius group by Theorem 5 in [1]. So, we
assume 7" 'R¥eR" ¥ =e. Then

(=17 = (=DR*sR* = (k—1)oR™* = —j.

We claim (— 1)o= —m. Consider DD where

0 1 2 oo q e —i e —1
D=(0 B S O R 1)'

Then we have 0(D7D)=0 and
I(D7D) = (=1)(vD) = (=j)D =j.

Then either (D7D)o "1 is e, or it contradicts G(X) being a Frobenius group. Hence,
we assume DrD=o. Then

(=)o = (=1)(DrD) = (+D) = mD = —m.

Now we have
_(01 —1) and _(0 1 - —-l)
¢ = 0 j cee _m’ T= O m --- _j
m(r~*eR™~ %) = 1(eR™7) = jR™"7 = m,

(=)= eR™ ) = (=1)(eR™™) = (—m)R""' = —},
O(r~'oR™"7) = OR™™7 = m—j.

Then

and

Since m#j, 0(1~*aR™~7)#0. Hence, 7~ 'oR™ "/ is not the identity and it leaves m
and —j pointwise fixed. That contradicts G(X) being a Frobenius group, and
o€ A(H).

THEOREM 1. Let p be a prime and n be an integer such that 0<n<p—1. Then
there exists a nontrivial symmetric graph with p vertices and degree n if and only if
n is even and n divides p—1.

Proof. If n is even and n divides p—1, then, by Lemma 1, there exists such a
graph. Conversely, if a symmetric graph X with p vertices and degree n exists, then
n cannot be an odd integer since a vertex-transitive graph is regular and a regular
graph with an odd number of vertices cannot have an odd number degree. If
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p=2 and n=1, then the graph is complete and it is a trivially symmetric graph. We
claim that » divides p—1. Let [0, i] and [0, j] be any two edges in E(X), then, by
Lemma 4, i and j belong to the same orbit (set of transitivity), denoted by U, of
(G(X))o. If [0, k] is a non-edge in X, then k ¢ U since each element in G(X) takes
an edge to an edge and a non-edge to a non-edge. Hence, the length of U is n. Since
by Theorem 5 in [1], G(X) is 3/2-fold transitive, the orbits of (G(X)), have the
same length. It follows that n divides p—1.

THEOREM 2. Let p be a prime and n be an even integer such that 0<n<p—1 and
n divides p—1. Then any two symmetric graphs with p vertices and degree n are
isomorphic.

Proof. Let X be a symmetric graph with p vertices and degree n. Then X is a
regular graph with cycles of length p combined together. We label the vertices
of XbyO0,1,...,p—1, and we regard {0, 1, ..., p—1}=H as the group of integers
modulo p. By Lemma 5, (G(X)), is contained in the group of automorphisms,
A(H), of H. Since A(H) is cyclic, (G(X)), is cyclic. Let 7 be a generator of (G(X))o.
By Lemma 4, any two edges [0, i] and [0, ;] incident with O, there exists a
7* € (G(X)), such that i=*=j. This means that the length of the orbit of (G(X)), to
which i belongs must be 7. In fact, the length of every orbit of (G(X)), is n since
G(X) is 3/2-fold transitive on V' (X)= H. Consequently, the order of (G(X)),=<{7)
must also be n. [0, i] € E(X) implies [0, i+*] € E(X) for k=0, 1,...,n—1. Since
X is a regular graph with cycles of length p combined together, X is a Cayley graph
Xy x where K={i, ir, ..., i7"~'}. Let o be a generator of H, then i=1¢* for some ¢,
and KX can be written as {lo, (1697, ..., (1o9)7" " 1}.

Let Y be another symmetric graph with p vertices and degree n. We also label
the vertices of Y by 0, 1,...,p—1, i.e.,, V(Y)=H. Then, by the similar reasons,
(G(Y))o=<b)> is a cyclic subgroup of order n in H, and Y is a Cayley graph Yy g,
where K'={m, m9, . .., m0~~*} and [0, m] € E(Y). Since {0)>=H, m=1¢* for some
s, and K'={l¢%, (16°)6,..., (1%)6"~1}.

Since A(H) is cyclic, the subgroup of order n in A(H) is unique. Hence, {7)=<0),
and K’'={l¢*%, (16°)7,...,(1¢*)7""1}. By Lemma 2, X~ Y. By Lemma 3, X and Y
are so constructed that they do not depend on the choice of the generators o of H.

In the proof of Theorem 2, we have shown the following:

COROLLARY 1. Let X be a symmetric graph with a prime number p of vertices and
degree n where n is even, 0<n<p—1 and n divides p—1. Then (G(X))o=<{7) is a
cyclic group of order n generated by  which can be regarded as an automorphism of
the group of integers modulo p.

5. The group.

THEOREM 3. Let X be the symmetric graph with a prime number p of vertices
and degree n where 0<n<p—1, n is even and n divides p—1. Then

(1) G(X) is a Frobenius group. Hence G(X) is 3/2-fold transitive. G(X) contains
the dihedral group of order 2p.
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(2 |G(X)[=np.
(3) <R) is the Frobenius kernel of G(X). Hence, {(R) is normal in G(X) where
R=(012...(p-1)).
(4) G(X) is metacyclic.
(5) G(X) is a semidirect product of the cyclic subgroups {R)> and (G(X)),. G(X) is
generated by R and o with defining relations
RP = ¢, o = e, oRs~! = R"

where r"=1 mod p.

(6) All Sylow subgroups of G(X) are cyclic.

Proof. (1) was proved in [1, Theorem 5]. Our Proposition 1 shows the dihedral
group of order 2p belonging to G(X).

(2) Since G(X) is vertex-transitive |G(X)| is equal to the product of [(G(X)),|
and p by Corollary 5.2.1 on p. 56 in [3].

(3) Let N be the subset of G(X) consisting of the identity together with those
elements which fix no vertices. Then we know that, by Frobenius’ theorem (see
p- 292 in [3]), N is a normal subgroup of G(X) (N is called the Frobenius kernel
of G(X)), and the order of N is equal to the index of (G(X)), in G(X), i.e., |[N|=p
by (2). Since N clearly contains {R> and [{R)>|=p, N=<{R).

(4) Since G(X)/K{R>~(G(X))y, G(X)/{R) is abelian. Hence {R> contains the
commutator subgroup (G(X))? of G(X). G(X) containing the dihedral group
implies (G(X))2#{e}. Since (R is a cyclic group of order p, we have {R) =(G(X))2.
Hence, G(X) is metacyclic.

(5) Since (R} is normal in G(X) and <{R> N (G(X))o={e}, G(X)=<{RX(G(X))o.
Since (G(X)), is a cyclic group of order n, G(X) is generated by R and ¢ where o
is a generator of (G(X)),, and o, by Corollary 1, belongs to the group of auto-
morphisms of integers modulo p. Since {R) is normal in G(X), cRs~*= R" for some
r. Then, using the fact that ¢ belongs to the group of automorphisms of integers
modulo p, and ¢ is of order n, we have

_ (01...k""‘..‘)(01 k )(0 1 ... (k+1) )
oRo"! =
Ok ... 1 ...JJ\12...G+D .../J\0 Kk .. k" Yk+D) ...
_(o 1 ...)_(o 1 )
IRV AR 2 (XS ) RV AR VAL el B
where we use the fact k*=1, and all the operations are taken modulo p. That
means r=k""1!, and r*=(Kk"")"=(k")"*"1=1, i.e., r"=1mod p, and we have

obtained the defining relations.
(6) It follows from Theorem 9.4.3 on p. 146 in [3].

6. Summary and examples. For any given odd prime p, p—1 is even and is a
product of primes p—1=24g42- - -g4. From this decomposition we can find all
even integers »; such that 2<n;<p—1 and », divides p— 1. Say, there are k of them;
and for each i=1,2,...,k, we have p—1=nyr; for some integer r;. Let o be a
generator of A(H) which is the group of automorphisms of the group H of integers
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modulo p, then o is of order p—1. Let 7,=¢", then the order of =, is n;. Let
Ki={l7, 17},..., 17hi=1}, and we form the Cayley graph Xy, which, by
Theorems 1 and 2, is the unique (up to isomorphism) symmetric graph with p
vertices and degree n;. With the null graph and the complete graph, we have obtained
all symmetric graphs with p vertices. With the help of Theorem 3, we know the
structure of each of their groups of automorphisms.

The case of p=11. Since (p—1)/2 is a prime, the only symmetric graphs of 11
vertices are null graph, complete graph and cycles of length 11. Their groups of
automorphisms are S;;, S;; and D,; respectively.

The case of p=13. Besides the null graph and the complete graph of 13 vertices
(their group of automorphisms is S,3), the symmetric graphs with 13 vertices are
with degree 2, 4 and 6. Let H={0, 1, 2, .. ., 12} be the group of integers modulo 13.
The group of automorphisms A(H) of H is of order 12 generated by o where lo=2
(2 is a primitive root modulo 13). Hence, we have 0=(124836121195107)
and A(H)={o, d%,..., o'%=¢}.

Degree 2. Each Xy 4 _y,i=1,2,...,6,is a cycle of length 13. Clearly, they are
pairwise isomorphic. G(Xy,y, -y)= D13, i=1,2,..., 6.

Degree 4. Let K;={16°=8,16°=12, 16°=35, l6'2=1}. Xy, is shown in
Figure 1.

FIGURE 1
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K,={l6*=3,10"=11,16°=10, 16=2} and Xy x,~ Xy x, Where the isomorphic
map is o. Similarly, K3={16°=6, 16®=9, 16*'=7 and 10®*=4} and Xy x,~ Xy k,
where the isomorphic map is ¢2.

G(Xyx), i=1,2, 3, is generated by R and ==0° where

R=(012...12), and == (18125)231110)4697)

with R'3=e, 7¢*=e and 7R7~ 1= R®. The order of G(Xy x,) is 52, i=1, 2, 3.
Degree 6. Let K,={l0>=4, 1¢*=3, 16°=12, 16°=9, 16'°=10, 16'?=1}. Xy g,
is shown in Figure 2.

FIGURE 2

Ks={163=8, 16°=6, 16" =11, 16°=5, 16*' =7, lo=2} and Xy x,~ Xy x, Where the
isomorphic map is o.
G(Xy,x,),j=4, S, is generated by R and 6=0? where

R=(012...12), and 6 =(14312910)2861157)
with R18=¢, 68=¢ and 0RO~ 1= R*°. The order of G(Xy,x,) is 78.
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