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ON THE CLASSIFICATION OF SYMMETRIC GRAPHS
WITH A PRIME NUMBER OF VERTICES

BY

CHONG-YUN CHAO

Abstract.    We determine all the symmetric graphs with a prime number of vertices.

We also determine the structure of their groups.

1. Introduction. A symmetric graph is an undirected graph whose group of

automorphisms is transitive on its vertices as well as on its edges. Here, we deter-

mine all the symmetric graphs with a prime number p of vertices, i.e., we show

that besides the null and complete graphs, for each integer « such that 0 < n <p — 1,

there exists a symmetric graph with p vertices and degree « if and only if « is even

and « divides p — 1. Also, if the symmetric graphs with p vertices and degree «

exist, they all are isomorphic. For each given p, we can construct all the symmetric

graphs with p vertices. The method of construction which we use here is similar to

the one in [2], i.e., we use the properties of a Cayley graph of a cyclic group of

order/?. Our classification depends heavily on a result in [1, Theorem 5, p. 494], i.e.,

the group of automorphisms of a symmetric graph (nonnull and noncomplete)

with p vertices is a Frobenius group. In fact, here we can determine the generators

and the defining relations of this Frobenius group. Our classification also confirms

a conjecture in [4, p. 144].

2. Definitions and notations. The definitions concerning groups used here are

the same as in [3]. Since the definitions concerning graphs are less standard, we

state them as follows: The graphs which we consider here are finite, simple, loopless

and undirected, i.e., by a graph Jwe mean a finite set V(X), called the vertices of

X, together with a set E(X), called the edges of X, consisting of unordered pairs

[a, b] of distinct elements a,be V(X). We also assume that there is at most one

edge between two vertices. Two graphs Y and Y are said to be isomorphic, denoted

by X~ Y, if there is a one-to-one map a of V(X) onto V( Y) such that [aa, bo]

e E(Y) if and only if [a, b] e E(X). An isomorphism of X onto itself is said to be

an automorphism of X. For each given graph X there is a group of all auto-

morphisms, denoted by G(X), where the multiplication is the multiplication of

permutations. X is said to be vertex-transitive if G(X) is transitive on V(X). X is

said to be edge-transitive if G(X) is transitive on E(X). X is said to be symmetric
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if it is both vertex-transitive and edge-transitive. The complete graph (consisting of

all possible edges) and the null graph (having E(X) empty) of n vertices have Sn,

the symmetric group of« letters, as their group of automorphisms. Since Sn, n> 1,

is doubly transitive, the null graph and the complete graph are symmetric. A

symmetric graph is said to be nontrivial if it is neither null nor complete. (When we

are only interested in vertex-transitive graphs, it makes no difference whether the

graphs are loopless or not.) Let 77 be an additive abstract finite group and K be a

subset of 77 such that K does not contain the identity of 77. The Cayley graph of 77

with respect to K is XHtK with V(XH¡K) = 77and E(XH¡K) = {[h, h + k]; heH,keK}.

If K is the empty set, then E(XHK) is meant to be empty, i.e., XH¡K is a null graph.

Clearly, the left regular representations of 77 are contained in G(XHiK) for any

subset K (not containing the identity of 77) in 77. A graph X is said to be regular if

the number of edges incident with each vertex is the same, or X is said to be with

degree m if the number of edges incident with each vertex is m. The Cayley graphs

are regular. A cycle of length n (>2) is a collection of n edges [Xx, X2], [X2, X3],

..., [Xn, Xx] where Xx, X2,..., Xn are distinct. We, sometimes, indicate a cycle

of length n by Xx—X2—X3-Xn—Xx. In [1, p. 493] Theorem 4 states the

following :

Let/; be a prime, and G be the cyclic group generated by (123.. .p). Then Schur's

algorithm on G gives all the graphs of p vertices each whose group of auto-

morphisms is transitive.

This theorem implies that if A' is a vertex-transitive graph with p vertices, then

X is a regular graph with cycles of length p combined together. This is due to the

fact that when each basis for the centralizer ring V(G) corresponding to G is a

symmetric matrix, it is the adjacency matrix of a cycle of length p. (See pp. 492-493

in [1].) Let Dp be the dihedral group of order 2p generated by

R = (0l2...(p-l))   and

D = (0)(1 -1)(2 -2).. .((p-1)/2 -0-l)/2)

where the negative signs are taken modulo p. Then Schur's algorithm on G genera-

ted by R and on Dp give the same graphs. Hence, we have

Proposition 1. Let p be a prime and X be a vertex-transitive graph with p

vertices. Then

(a) G(X) contains the dihedral group Dp, and

(b) the order of G(X) is even.

We shall repeatedly use Theorem 5 in [1, p. 494] which states the following:

Let A' be a nontrivial vertex-transitive graph with a prime number p vertices.

Then (a) G(X) is solvable; (b) G(X) is a Frobenius group; (c) G(X) is 3/2-fold

transitive.

We shall show that if X is a nontrivial symmetric graph with p vertices then this

Frobenius group G(X) is metacyclic.
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3. The construction.    Our construction here is similar to the one used in [2].

Lemma 1. Let p be a prime and n be a positive integer such that n is even and «

divides p—l. Then there exists a symmetric graph with p vertices and degree n.

Proof. Let H={0, 1, 2,.. .,/>—1} be the group of integers modulo p, and A(H)

be the group of automorphisms of H. Then we know that A(H) is a cyclic group of

order p—l. Say, A(H) is generated by a, i.e., A(H) = {a, a2,..., ap~2, op~1 = e}.

Since n divides p—l, we have p — 1 = nr for some positive integer r. Let r = ar and

K= {It, It2,..., It""1, It" = 1}.

We claim that if one of the elements in Ä'has its inverse in .K (the operation is taken

modulo p), then every element in K has its inverse in K. Say, —(It4) e K for some

i,l£i<in. Then, for any t,l£t<n, -(1tV~*= -(It4) eK since Kr = K. We

claim that -1 e K. Since « is even, (lrnl2)rnl2 = l. If lrnl2=j, then 1 = (j)rnl2 =/a.

This means p divides/'2— 1. Since/? is a prime and t is of order «,./= — 1. It follows

that every element in K has its inverse in K. We form the Cayley graph, XH>sr, of

H with respect to K. Then since the cardinality of K is « and every element in K

has its inverse in K, XHyK is a regular graph of degree «.

Now we claim that XHK is a symmetric graph. Since H is abelian and the left

regular representation of H is contained in G(XHK), the right regular representa-

tions (say, generated by R) belong to G(XHK). Consequently, XH%K is vertex-

transitive. Let E be an arbitrary edge in XH¡K, then £=[/, i+lr'] for some i and

some It' e K, and [0, l]riRi = E. Since [0, l] e £(Y), it follows that for any two edges

in E(XHyK), there exists an element in G(XHK) which takes one to the other, i.e.,

XHiK is edge-transitive, and it is symmetric.

Let <t> be the group generated by r = ar. We know that the order of <V> is «.

Two elements, i and y in H, are said to be related with respect to <t> if and only if

there is a rk e <t> such that hk=j. Since <t> is a group, this relation is an equiva-

lence relation. Consequently, H is partitioned into disjoint subsets

{0},

K= Kx = {It, It2, . .., It»-1, It" = 1},

(i) k2 = {{»r, (ict)t2, ..., oy = u},

KT = {(W-x)t, (W-1)-/3,..., (ler'-V = W-1}.

The Cayley graphs XHtK, XH-K2,..., XHyKr are symmetric, and they are pairwise

isomorphic since a'"1 maps XH¡K onto XHiKl isomorphically for ¡'=2,3,..., r.

Hence, we have

Lemma 2. Let n, p, H, a and r be the same as in Lemma 1, and K, K2,..., Kr be

(1). Then XH¡K, XH¡Kz,..., XH¡Kr are symmetric and are pairwise isomorphic.
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Lemma 3. The Cayley graphs XHtK, XH¡K2,..., XHiKj constructed in Lemma 2

are independent of the generators of A(H).

Proof. ,4(77) = {a, a2,..., <j"-1 = e} is generated by a, i.e., la is a primitive root

modulo p. Let p. = o' be another generator of A(H), then i and p—\ are relatively

prime, denoted by (i,p—l)=l. Since/)— 1 =nr, we have (/, n)= 1. Let

k; = {(fo'V, (w>2r, • • Al<W = 1*0

for/'=0, 1,..., r— 1. Since (/', n)= 1, the elements in each of K'¡ are distinct. Also,

since (/', n)= 1, K'^Kj forj= 1, 2,..., r.

4. The classification.

Lemma 4. Let X be a symmetric graph with a prime number p of vertices, and

[0, /] and [0,j]e E(X). Then there exists a 6e(G(X))0 such that iQ=j where

(G(X))0 is the subgroup {r e G(X); 0t = 0}.

Proof. Since X is edge-transitive, there exists a e G(X) such that [0, i]a= [0,j],

If 0(j = 0and ia=j, then there is nothing to prove. Consider the case 0<r =j and /ct = 0.

Since X is vertex-transitive, X is a regular graph with cycles of length p combined

together. Then [0,j] is on the cycle of length p

0-/-2/-(-1)7-0.

Let 6 = <jR->D. Then clearly, 9 e G(X),

00 = 0(aR-iD) =j(R~iD) = 0,   and

id = i(aR-'D) = 0(R-'D) = (-j)D =/

Lemma 5. Let X be a nontrivial symmetric graph with aprime number p of vertices

denoted byH={0, 1, 2.p — 1), and 77 be regarded as the group of integers modulo

p. If a e G(X) and0a = 0, then a belongs to the group of automorphisms, A(H), of the

group 77, i.e., (G(X))0^A(H).

Proof. Since A' is a vertex-transitive graph with p vertices, A" is a regular graph

with cycles of length/? combined together. There is no loss of generality to assume

that X contains the cycle Cx: 0—1—2-(p— 1)—0. That is, if X does not

contain the cycle Cx, then we may relabel the vertices so that it contains C, with

0 remaining unchanged. In other words, if X does not contain Cx, there is an

isomorphic map which takes X onto a symmetric graph with p vertices containing

Cx and 0 is left fixed under the map.

Let a e G(X) such that 0a = 0. We want to show a e A(H). a e G(X) implies that

it is a one-to-one map of the set 77 onto itself. We only need to show that it is a

homomorphism of the group 77 onto itself, i.e., to show

/0    1    2     • • •     i    ■■■      -1 \

U~ \0   j   2}    ■■■    ij    •••    (-!)//'
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Suppose not, then we may assume

Oct = 0,   ia = ij,   for j = 1,2,.. .,k; 1 á k ¿ p—2,

(fc+lW (k+l)j.

Say, (k+l)a = kj + m where m^j. X contains Cx implying [k, k+ 1] e E(X).

oeG(X) implies [ka,(k+l)a] = [kj, kj+m]e E(X). That means [0,m]eE(X).

By Lemma 4, there exists a re(G(X))0 such that lr = m. Then T~1RkaR~ki

e(G(X))0 and m(T-1RkaR^ki) = m. If T-1RkaR~ki is not the identity e, then we

have a contradiction since G(X) is a Frobenius group by Theorem 5 in [1]. So, we

assume r~1RkaR~ki = e. Then

(-1)T = (~l)RkoR-ki = (k-\)oR~kl = -/.

We claim (— 1)<t= — m. Consider DtD where

/0        l        2    •••        /•••-/•••     -1\

~ \0     -1    -2    ■■•     -i    •••        /    ■••        1/

Then we have 0(DtD) = 0 and

1(DtD) = (-1)(tD) = (-j)D=j.

Then either (DtD)o~1 is e, or it contradicts G(X) being a Frobenius group. Hence,

we assume DtD = o. Then

(-1)CT = (-\)(DtD) = 1(t/>) = mD = -m.

Now we have

= [o   j    ....    -m/'    and        " \0   m    •■■     -//*

Then
w(T-1(7Äm-0 = l(aRm-i) =jRm~i = m,

(-j)(r-iaRm~') = (-l)(aRm->) = i^m)Rm-' = -/,

and
OÍt-^^-O = Oi?'"-^ = m-j.

Since «J^y, OÍt'^^-^^O. Hence, r~1oRm~' is not the identity and it leaves m

and —j pointwise fixed. That contradicts G(X) being a Frobenius group, and

a e A(H).

Theorem 1. Let p be a prime and « be an integer such that 0<n<p—l. Then

there exists a nontrivial symmetric graph with p vertices and degree n if and only if

n is even andn dividesp—\.

Proof. If « is even and « divides p—l, then, by Lemma 1, there exists such a

graph. Conversely, if a symmetric graph Y with p vertices and degree « exists, then

« cannot be an odd integer since a vertex-transitive graph is regular and a regular

graph with an odd number of vertices cannot have an odd number degree. If
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p = 2 and n=l, then the graph is complete and it is a trivially symmetric graph. We

claim that n divides p— 1. Let [0, /] and [0,j] be any two edges in E(X), then, by

Lemma 4, / and j belong to the same orbit (set of transitivity), denoted by U, of

(G(A"))0. If [0, k] is a non-edge in X, then k <£ U since each element in G(X) takes

an edge to an edge and a non-edge to a non-edge. Hence, the length of U is n. Since

by Theorem 5 in [1], G(A") is 3/2-fold transitive, the orbits of (G(X))0 have the

same length. It follows that n divides p— 1.

Theorem 2. Let p be a prime and n be an even integer such that 0<n<p—l and

n divides p—l. Then any two symmetric graphs with p vertices and degree n are

isomorphic.

Proof. Let A" be a symmetric graph with p vertices and degree n. Then A" is a

regular graph with cycles of length p combined together. We label the vertices

of X by 0, 1,...,/)— 1, and we regard {0, 1,.. .,p— 1} = 77 as the group of integers

modulo p. By Lemma 5, (G(X))Q is contained in the group of automorphisms,

A(H), of 77. Since A(H) is cyclic, (G(A"))0 is cyclic. Let t be a generator of (G(X))0.

By Lemma 4, any two edges [0, /] and [0,j] incident with 0, there exists a

Tfc e (G(A"))0 such that ir" =/ This means that the length of the orbit of (G(A"))0 to

which i belongs must be n. In fact, the length of every orbit of (G(A"))0 is n since

G(X) is 3/2-fold transitive on F(A") = 77. Consequently, the order of (G(Ar))0 = <r>

must also be n. [0, /] eE(X) implies [0, it*] 6 7s(A") for k = 0, 1,..., n—l. Since

X is a regular graph with cycles of length p combined together, A" is a Cayley graph

A"//.sr where K={i, ir,..., Tr"-1}. Let a be a generator of 77, then i=la' for some /,

and Kcan be written as {W, (1</)T>..., (la^r"-1}.

Let Y be another symmetric graph with p vertices and degree n. We also label

the vertices of Y by 0, 1,.. .,p— 1, i.e., V(Y) = H. Then, by the similar reasons,

(G(F))o = <0> is a cyclic subgroup of order n in 77, and Fis a Cayley graph YH¡K,

where K' = {m, md,..., m6n~1} and [0, m] e E(Y). Since <0> = 77, m = \os for some

s, and K' = {W, (W)6,..., (W)^-1}.

Since ^4(77) is cyclic, the subgroup of order n in ^4(77) is unique. Hence, <r) = <0>,

and K' = {W, (1<js)t, .. .,(las)rn~1}. By Lemma 2, X~ Y. By Lemma 3, Xand Y

are so constructed that they do not depend on the choice of the generators a of 77.

In the proof of Theorem 2, we have shown the following:

Corollary 1. Let X be a symmetric graph with a prime number p of vertices and

degree n where n is even, 0<n<p—l and n divides p — l. Then (G(A"))0 = <t> is a

cyclic group of order n generated by r which can be regarded as an automorphism of

the group of integers modulo p.

5. The group.

Theorem 3. Let X be the symmetric graph with a prime number p of vertices

and degree n where 0<n<p—l, n is even and n divides p — l. Then

(1) G(A") is a Frobenius group. Hence G(X) is 3¡2-fold transitive. G(X) contains

the dihedral group of order 2p.
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(2) \G(X)\=np.
(3) <i?> is the Frobenius kernel of G(X). Hence, <Ä> is normal in G(X) where

tf=(012...(/>-l)).

(4) G(X) is metacyclic.

(5) G(X) is a semidirect product of the cyclic subgroups </?> and (G(X))0. G(X) is

generated by R and a with defining relations

Rp = e,        an = e,        oRa-1 = Rr

where rn= 1 mod p.

(6) All Sylow subgroups of G(X) are cyclic.

Proof. (1) was proved in [1, Theorem 5]. Our Proposition 1 shows the dihedral

group of order 2p belonging to G(X).

(2) Since G(X) is vertex-transitive |G(.30| is equal to the product of |(G(X))0|

and p by Corollary 5.2.1 on p. 56 in [3].

(3) Let N be the subset of G(X) consisting of the identity together with those

elements which fix no vertices. Then we know that, by Frobenius' theorem (see

p. 292 in [3]), N is a normal subgroup of G(X) (N is called the Frobenius kernel

of G(X)), and the order of N is equal to the index of (G(X))Q in G(X), i.e., \N\ =p

by (2). Since N clearly contains <Ä> and |<i?>| =p, N=(R>.

(4) Since G(X)KR}~(G(X))0, G(X)KR> is abelian. Hence <Ä> contains the

commutator subgroup (G(X))2 of G(X). G(X) containing the dihedral group

implies (G(X))2^{e}. Since <i?> is a cyclic group of order/?, we have (R) = (G(X))2.

Hence, G(X) is metacyclic.

(5) Since <i?> is normal in G(X) and <£> n (G(X))0 = {e}, G(X) = (Ry(G(X))0.

Since (G(X))0 is a cyclic group of order «, G(X) is generated by R and a where a

is a generator of (G(X))0, and a, by Corollary 1, belongs to the group of auto-

morphisms of integers modulo p. Since <i?> is normal in G(X), oRa~x = Rr for some

r. Then, using the fact that a belongs to the group of automorphisms of integers

modulo p, and a is of order «, we have

j_/01   ...  ^-'  ...W01   ...       k      •-A/O     1     ...      Ot+D      ...\

~\0k...     1     . .Jll 2 ... (Jfc + 1) ...)\0 k"-1 ... k"-\k+l) ...)

,0 1 ...WO 1        ..A
U"-1 k"-\k + \) ...)      U"-1 k"-1 + \ .../

where we use the fact kn=l, and all the operations are taken modulo p. That

means r = kn_1, and /-" = (A:'l_1)'t = (A:n)n~1 = l, i.e., rn=l modp, and we have

obtained the defining relations.

(6) It follows from Theorem 9.4.3 on p. 146 in [3].

6. Summary and examples. For any given odd prime p, p—l is even and is a

product of primes p— l=2t^qi22- ■ ■q'ji. From this decomposition we can find all

even integers n¡ such that 2 ^ «¡ <p — 1 and «¡ divides p—l. Say, there are k of them ;

and for each i=l,2,..., k, we have p— l=«i/"¡ for some integer r¡. Let a he a

generator of A(H) which is the group of automorphisms of the group H of integers
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modulo p, then a is of order p—l. Let T, = ori, then the order of t, is n,. Let

Ki = {lr,, It2, ..., 1t?i = 1}, and we form the Cayley graph XHfK¡ which, by

Theorems 1 and 2, is the unique (up to isomorphism) symmetric graph with p

vertices and degree n,. With the null graph and the complete graph, we have obtained

all symmetric graphs with p vertices. With the help of Theorem 3, we know the

structure of each of their groups of automorphisms.

The case of p =11. Since (p— l)/2 is a prime, the only symmetric graphs of 11

vertices are null graph, complete graph and cycles of length 11. Their groups of

automorphisms are S1X, S1X and Dxx respectively.

The case of p=l3. Besides the null graph and the complete graph of 13 vertices

(their group of automorphisms is 513), the symmetric graphs with 13 vertices are

with degree 2, 4 and 6. Let 77={0, 1,2,..., 12} be the group of integers modulo 13.

The group of automorphisms A(H) of 77 is of order 12 generated by a where 1<t = 2

(2 is a primitive root modulo 13). Hence, we have <x=(124836121195 10 7)

and A(H) = {a, a2, ...,o12 = e}.

Degree 2. Each Xb,u,-q, i= 1, 2,..., 6, is a cycle of length 13. Clearly, they are

pairwise isomorphic. G(XHA,_tt) = Dx3, i=l, 2,..., 6.

Degree 4. Let Kx={la3 = S, la6 =12, la9 = 5, la12 =1}. XH¡Kl is shown in

Figure 1.

Figure 1
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K2 = {lai = 3, 1ct7 = 11, 1(t10=10, 1<t = 2} and XH,Kl~XH-K2 where the isomorphic

map is a. Similarly, K3 = {lo5 = 6, la8 = 9, lo11^ and la2 = 4} and XH¡Kl~ XH¡K3

where the isomorphic map is o-2.

G(XH¡Ki), /'= 1, 2, 3, is generated by R and t = <t3 where

R = (012... 12),    and    t = (1 8 12 5)(2 3 11 10)(4 6 9 7)

with R13 = e, T4 = e and rRr~1 = R5. The order of G(XH¡K) is 52, i=l, 2, 3.

Degree 6. Let 7C4 = {1<t2 = 4, la4 = 3, la6=12, la8 = 9, 1<710=10, fo12=l}. XHiKi

is shown in Figure 2.

Figure 2

Kb = {la3 = S, la5 = 6, 1ct7 = 11, la9 = 5, la" = 7, fo = 2} and XH¡Ki~ XH¡Kb where the

isomorphic map is a.

G(XHtK),j=4, 5, is generated by R and 6=a2 where

7? = (012... 12),   and    6 = (1 4 3 12 9 10)(2 8 6 11 5 7)

with 7?13 = <?, e6 = e and eRO'^R10. The order of GiA^) is 78.
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