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THE CURVATURE OF LEVEL CURVES

BY

DOROTHY BROWNE SHAFFERH

Abstract. Sharp bounds are derived for the curvature of level curves of analytic

functions in the complex plane whose logarithmic derivative has the representation

c/(w—g(w)), where g(w) is analytic for |w|>a and \g(w)\fía, c real. These results

are applied in particular to lemniscates and sharpened for the level curves of lacunary

polynomials. Extensions to the level curves of Green's function and rational functions

are indicated.

1. Introduction. In this paper sharp bounds are derived for the curvature of

various classes of level curves of analytic functions in the complex plane. In §§2

and 3 a considerably simplified proof is given for the estimates of the curvature of

lemniscates, the level curves of Green's function and rational functions derived by

the author in previous publications [4], [5]. In §4 new estimates for the curvature

of the level lines of lacunary polynomials and their orthogonal trajectories are

derived. The methods used combine the author's previous calculations with an

application of a new coincidence lemma due to Rubinstein and Walsh [3]. These

estimates are sharp. Applications to the special lemniscate of radius one are

indicated in the final section.

2. Estimates of the curvature of the level curves of special functions. In this

section bounds are derived for curvature of level curves Vß : {w | 1^(^)1 =/x, p->0}

of analytic functions P(w) whose logarithmic derivative has a special representa-

tion. The following section deals with the determination of the classes of functions

which satisfy the required representation.

Theorem 1. Let P(w) be a function such that for \w\ >a the function P'(w)/P(w)

has the representation

(1)   P'(w)/P(w) = c/(w—g(w)), c real, g(w) analytic for |w|>a, |g(w)|^a;

then the curvature K(w) at w of the level curve Vu satisfies the following bounds:

(2a) (sgnc)7<Xw) ú lj(h-a), \w\ = h > a,

(2bl) (sgn c)K(w) ^ l/(h + a) for h ^ 3a,

(2(h2-a2W2-h
(2b2) (sgn c)K(w) ̂  2 KAfl ̂J^- for h Ú 3a.
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Proof. Study's formula for the curvature of the image of a circle under an

analytic transformation is used as the starting point for the calculations, i.e.

K=Re{l+zf"(z)/f'(z)}l\zf'(z)\.

By applying this to the inverse function^/""1 the following expression for the

curvature K(w) of Vu at the point w is obtained :

K(w)-Ke\l-P-^^
P'(w)

P'(w)2   j\P(w)

For a function with the given representation (1) this yields

(4) (sgn c)K(w) = Re {1 — g'(w)}/s       where j = \w—g(w)\.

The bounds of the curvature follow in the form

(5) (1 -1g'(w)\)/s ^ (sgn c)K(w) g (1 +1g'(w)\)/s.

The next step in the proof is the application of standard inequalities for the

absolute value of the derivative of a bounded analytic function [1, p. 168]. Under

the hypothesis of our theorem g(w) is analytic for |w| >a, |g(w)| fía, and

(6) \g'(w)\ i(a2-\g(w)\2)l(\w\2-a2).

It follows that

\w\2 — 2a2+l?l2 \w\z—\a\2
(7) '   \i   i2     2f   ^ (sgn c)K(w) â ',' i2 |g' •

s(\w\2 — a2) '   v        s(\w\¿ — a¿)

In order to express the bounds (7) as functions of a single variable the identity

g=g— w + w is used. This yields

(8) \w\2-\g\2= -s2 + 2Re{(g-w)w}.

For the right-hand inequality we obtain

(sgn C)K ^ s + 2hcosarg(w-g)w^       ^ = ^

< -s+2h

=  h2-a2'

The bound (2a) is obtained by substitution of the smallest value of s, such that the

hypothesis \g(w)\ fia is satisfied, i.e. s=h — a.

The left-hand inequality is rewritten in the form

,        ^-> 2Q|2-a2)+|g|2-|H2
(sgn c)K ^ -iJ—*—.   |    '"'—'—i—

s(\w\2 — a2)

By application of the identity (8) this is reduced to

(10) (sgn c)KA,
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The function of s has a minimum at

(11) s =[2(h2-a2)]1'2.

The two possible extremal cases occur according to whether relation (11) satisfies

|g|<a, i.e. (h + a)^[2(h2-a2)]112. Bound (2bl) is obtained by substitution of

s = h + a, its maximum permissible value and (2b2) by substitution of value (11).

Corollary. Vß is a convex curve ifh^2ll2a.

This follows from bound (2b2).

Theorem 2. Let, in addition to the hypothesis of Theorem 1, the assumption be

made that the angle 8 between the normal to Vß and the line joining the point w to

the origin be given, then the bounds of K(w) are sharpened as follows:

(12a)     (sgn c)K <, (h cos 8 + (a2-h2 sin2 8)1'a)/(A2-a2)   for h > a,

(12bl)   (sgnc)A- è (h cos 8 - (a2-h2 sin2 8)ll2)/(h2-a2) for h ä 3a/(l+8 sin2 S)1'2,

(12b2)   (sgn c)K^ (-heos 8 + (2(h2-a2)ll2)/(h2-a2)   for h S 3a/(l+8 sin2 S)1/2.

Corollary. Vu is convex if h^2ll2a/(l +sin2 S)112.

Proof. The method of proof follows along the lines of the proof of Theorem 1.

The term h cos S must be substituted in (9) and (10) in place of h and the allowed

values of s are given by

h cos 8-(a2-h2 sin 8)1'2 ^ s £ h cos 8 + (a2-h2 sin2 S)1'2.

3. Determination of functions with given representations. In this section it will

be shown that lemniscates, certain rational functions and the level curves of Green's

function can be represented so as to satisfy the hypotheses of Theorems 1 and 2.

Lemma 1. Let

n

P(w) = TT (w-a,)mt,        m¡ > 0,
f = l

|«i| ú a, i = 1, 2,..., n.

Then the representation (I) holds with c>0.

This lemma was proved by Walsh [9], [3]. It follows that the curvature of the

lemniscate Vu: \P(w)\ =p. satisfies the estimates of Theorems 1 and 2 with c>0.

Lemma 2. Let

R(W) = fl l/(w-ß,)       with \ß,\ < a;
i = l

then R'/R has the required representation (1) with c<0.
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The proof of the lemma depends only on the logarithmic derivative and the

result follows from Lemma 1. The curvature of the level curve of R(w) satisfies

Theorems 1 and 2 with sgn c < 0. This result can also be obtained as a special case

of the curvature of the level curve of general rational functions derived by the

author [51.

Lemma 3. Let P(w) have the representation (1) with c=l. Then Vu is the level

curve of the Green's function of the region \P(w)\ > p, with pole at infinity.

Proof. Let F(w) = logP(w) — logp, F(w) is analytic in |w|>a. By hypothesis

F'(w)=P'/P=l/(w—g(w)) exists and is analytic in |w|>a, Re F(w) ^ log |w| as

vv^oo, ReF(w) = 0 for \P(w)\=p; therefore G(u, v) = Re F(w) is the Green's

function of \P(w)\ >p with pole at oo.

Lemma 4. Let G(u, v) be the Green's function with pole at oo for a region R whose

boundary is contained in \w\^a. Let 77 be the conjugate function, 4> = G + iH, then

c/>'(w) has the representation (1).

Proof. If B is a Jordan configuration, the Green's function has the following

representation [8, pp. 270-272] :

G(z) = G(x0,y0) = £ log |(z-0| da+g;

g is Robin's constant, da>0, jB da = 1, £ is a point on B, z e R.

If B is not a Jordan configuration integrate instead over a level curve Gu, p -> 0.

Similarly,

77(z) = j arg (z-Qda,

¿(z) =  f log (z-0 da+g,
JB

^'(z) =      -?>       4>\z) analytic for |z| > a.
hz-i

Following the argument used in [3] for the proof of Lemma 1 we have, for fixed z,

\z\>r, the function 1/(1 - w/z) which maps | w\ S r into the interior of a circle which

does not include the origin. Therefore there exists a unique value g(z), \g(z)\ 7¿a,

such that

1

^> = iJrVCT z(l-g(z)/z)-

The methods of this paper can also be extended to the level curves of general

rational functions and harmonic functions. We will consider the curvature of level

curves Uu:{w\ \P(w)\=p} where the logarithmic derivative of P(w) has the

representation

P(w) \w-gx(w)    w-ga(w)j
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where c>0, £¡ arbitrary complex constants a¡>0, for i= 1, 2;

gi(w)e Dt : {w \ \w-Q ^ a,},

and the gt(w) are analytic exterior to Dx u D2.

A rational function

7?(H') = n(w-«i)/fl(M'-/3i),
i = l /   i = l

where all the zeros a, lie in the disc Dx and the poles ¿8¡ lie in the disc D2, has the

required representation. This follows from coincidence Lemma 1.

The representation can also be extended to functions which are harmonic in a

region and assume the values 0 and 1 respectively on a set of curves contained in

disjoint discs Dx and D2.

Calculations of the curvature can be carried out using the methods of proof of

Theorem 1 and the estimates derived previously by the author [5] are obtained by

this shorter method.

4. The curvature of the level curves of lacunary polynomials. This section deals

with the curvature of level curves of polynomials which satisfy additional symmetry

conditions on the location of its zeros. For a polynomial with p missing coefficients

the following estimates are obtained :

Theorem 3. Let the zeros a, of the polynomial P(v,>) = n?=i (w — a¡), |a,|:£a,

satisfy the additional condition 22= i «k = 0 for 1=1,2,..., p; then the curvature K

of Vu satisfies the following sharp inequalities for \w\ =h>a:

(13al)       K - l^(h^~PS^)   f°r 2a(h" + 1 + aP + 1) * V+P)(h2-a2)h*,

K ^ 2hp[h2p + 2-a2p + 2 + (h2-a2)(l+p)hpap]112
(13a2)

- 2h2p +1 -p(h2 - a2)hp " V   for 2a(h" + 1+ap + 1)^(l +p)(h2 - a2)hp,

hp + 1 + nap + 1
(13b) K S

hp(hp + 1-ap + 1)

Proof. An improved form of the coincidence lemma due to Rubinstein and

Walsh [3] is applied in the proof. It states that for a polynomial with the hypothesis

of the theorem we have the representation

P'(w) c ap + 1
(14)       Çf( =-V^   with \g(w)\ â ^r for \w\ = h > a,   c> 0.

P(w)      w—g(w) '        '        hp '   '

The inequalities (5) derived in the proof of Theorem 1 again form the starting

point of the calculations of curvature.

The basis of the proof is the reformulation of the coincidence lemma (14) so that

the inequality (6) for the absolute value of the derivative of a bounded analytic

function can again be applied.
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We rewrite (14) in the form \(w/a)pg(w)\ f¡a, for h>a and obtain

(15) \pg(w)lw+g'(w)\ ú(ap + 2-\g(w)\2h2p¡ap)lhp(h2-a2).

From (4) we derive the bounds

(l-\pg(w)lw+g'(w)\+Repg(w)lw)¡s S Krg (1 + \pg(w)lw+g'(w)\ + \pg(w)lw\)ls,

Repg¡w^p(h — s)lh. Substituting (15) we obtain

(h2-a2)hpapsK ^ h2p\g(w)\2-a2p + 2 + (h2-a2)( 1 +p)hpap-ps(h2-a2)hp" 1ap.

These bounds are again reduced to a function of s alone by means of the identity

(8). With calculations similar to those employed in the proof of Theorem 1 we

obtain for the lower bound,

K(h2-a2)hpa"

^ [h2p + 2-a2p + 2 + (h2- a2)(l +p)hpap]ls + h2ps - 2h2p + 1-p(h2- a2)hp " xap,

dK/ds = 0   for s0 = [h2p + 2-a2p + 2 + (h2-a2)(l +p)hpa"}ll2lhp.

By the coincidence lemma, the minimum value of K lies at turning point (bound

(13a2)) if

(16) s0 Ú h + ap + 1lhp,   i.e. 2a(hp + 1 + ap + 1) ^ (h2-a2)(l+p)hp.

The bound (13al) is obtained by substituting the largest permissible bound for s;

s = h + ap + 1lhp.

Inequality (16) is satisfied for values oí h close to a, (h¡a<^2), bound (13al)

holds for large values of h ¡a.

The upper bound can be obtained by similar methods, the function of s is

monotonically decreasing and the smallest permissible value of s substituted. It is

also obtained by application of a lemma due to Rubinstein [3].

For a point on the positive real axis, i.e. w = h, the lemniscate \wp + 1 — ap + 1\=p

has the curvature (13b) and the lemniscate \wp + 1 + av + 1\=p assumes the minimum

curvature (13al).

If the point w approaches the boundary, i.e. h^a, the bound (13b) approaches

l/(h — a) and the bound (13a2) approaches —l/(h — a) which coincides with the

estimate due to Walsh [7] for the ak restricted to lie in a half-plane instead of a disc.

For the case p= I, i.e. the center of gravity of the zeros is prescribed, the bound

(13a2) can be simplified as follows:

h(h2-a2)K ^ 2a[h2-a2]ll2(h + a)-2h3-a(h2-a2)   for a(h2 + a2) ^ h(h2-a2).

Corollary.  Vu is convex if

2hp[h2p + 2-a2p + 2 + (h2-a2)(l+p)hpap]1'2 ^ 2h2p + 1+p(h2-a2)hp-1ap.

This follows by requiring the bound (13a2) to be nonnegative. For/?=l, this

reduces to the condition 4h2(h2 — a2) — a(h2 + a2)^0 with solution for hja<\/2,
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which is sharper than that obtained without prescribing the center of gravity. As

p increases the lemniscate Vu will be convex for decreasing values of h.

Estimates of the curvature of the orthogonal trajectories of lacunary poly-

nomials can be obtained by similar methods. We have

Theorem 4. With the hypotheses of Theorem 3 the curvature K of the level

curves arg P(w) = const satisfies the inequality

,    , ^ -2hp[h2p + 2-a2p + 2]ll2 + 2h2p+1+p(h2-a2)aphp-1

(    ' '    ' = aphp(h2-a2)

Proof. The starting point is the formula for the curvature of images of radial

straight lines

(18) K(w) = \P'(w)/P(w)\ Im {-PP'jP'2}.

For curves with given representation (1),

(sgnc)ÄT.H>) = \m{g'(w)}l\w-g(w)\.

From this we obtain the bounds

\pglw + g\+plm{(w-g)lw}_

1       " |w| \(w-g)\w\

The same coincidence lemma, identity (8), and similar simplifications lead to

aphp(h2-a2)\K(w)\ S -(h2p + 2-a2p + 2)ls-h2ps + 2h2p + 1+p(h2-a2)aphp-1.

Substitution of the extremal values for s, s=[h2p + 2 — a2p + 2]ll2lhp, yields the bound

(17).

5. Application to the lemniscate Lx. The previous sections dealt with properties

of level curves in a single plane; in this section these results are connected with the

radius of the lemniscate. Calculations are carried out for the lemniscate

Li:|P(hO| =f\\w-a,\ = 1.
jc = i

The results can be scaled up for arbitrary constants. An upper bound is derived

for the radius of the disc containing the zeros which implies convexity of Lx.

Theorem 5. Let the zeros ofLx be inscribed in a disc with radius a and center at

the center of gravity of the zeros; then L1 is convex if a satisfies the following in-

equality :

(19) 4(l-a2)3l2(l-2a2)^a.

Proof. M0 = (l/«) 2í=i «k = 0 by hypothesis. By a lemma due to Pommerenke

[2,   p.   99]   this   implies   h2^l— a2.   The   convexity   condition   for   p=\   is
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4h2(h2 — a2)7±a3 — h2a. Inequality (19) is obtained by combining these two in-

equalities. The solution to (19) lies between 3-1'2 and 2"1/2, and thus represents a

slight improvement over the author's previous result which implies the bound

a^3-112 for w0 = 0 [6].
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