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We prove a partition theorem (in the sense of the theorems of Ramsey [3],

Erdös-Rado [1], and Rado [2]) which together with a forthcoming paper by

Halpern and A. Levy will constitute a proof of the independence of the axiom

of choice from the Boolean prime ideal theorem in Zermelo-Fraenkel set theory

with the axiom of regularity. Although the theorem arises in logic, it is of a purely

combinatorial character and, we believe, interesting in its own right. One appli-

cation is as follows. Let P be a partition of /t X R (R being the rational numbers)

into two parts, i.e. P « {P0,Pi}, P0r\Py = 0, P0 yjPy= R x R. Thus P de-

termines a matrix of O's and 1 's ; P(x, y) = 0 if <[x, y}eP0, P(x, y) = 1 if

(x,yyePy. What kind of solid submatrices are there? (a solid submatrix is a

subset of R x R of the form Ax B, whose entries are either all O's or all l's).

Results of Rado [2] tell us that for any positive integers m, n there are

A, BezzR, \A\ = n, |P| = m and A x B is solid. Our theorem implies that

A, B can be found satisfying additional properties of separation or scattering

in R. The finite version gives similar results for the case where R is replaced

by any large finite set. The theorem is applicable to all finite dimensions (not

just d = 2 as in the example). In fact much of the difficulty in the proof was

generalizing from dimension 2 to higher dimensions. The proof is novel in the

sense that we accomplish it by means of metamathematical techniques. Thus

the proof we give is in some sense dissatisfying. We have tried to eliminate the

use of metamathematics without success and would welcome a simplification

in this direction Ç1).

1. Notation, terminology and results. A tree &~=<fF, ^> is a partially

ordered set such that the set of predecessors of x, i.e. {y:y < x}, for each node

x, i= xe T), is totally ordered. The cardinality of this set is called the order of

x or the level at which x occurs. Afinitistic tree is a tree with a least element,

all of whose nodes have finite orders and such that each level is a finite set. It

follows that the set of immediate successors of any node of a finitistic tree is
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(t) We have also tried to simplify the proof, without success, by using measures (cf. E.

Specker [4]).
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finite. A subset A of nodes dominates (supports) a subset B of nodes if for all

xeB there exists ye A such that x ;S y (y ^ x). In these contexts we will identify

a unit set {x} with the node x. In a finitistic tree the set of immediate successors

of a node supports the set consisting of its successors. A set S of nodes is said

to be («, fc)-dense if there is a node x of order h such that the nodes of order h + k

supported by x ate dominated by S. We write "fc-dense" in place of "(0, fc)-

dense" and "oo-dense" in place of "/c-dense for all fc." Note the following:

(1) If A is fc-dense and B dominates A then B is fc-dense.

(2) If B is fc-dense then B dominates any node of order — k. For any node x,

we let x(3~) = {y : y = x} and for n any nonnegative integer we let

nLT)={x(ST):y. is of order n}. For B S T we let nLT,B)={x(9') C\B:x is of

order n}. Note:

(3) If B is h 4- fc-dense in &~and a e nUT,B) for some n — h, then a is (h,k)-

dense in ST.

A tree top is a maximal point. A d-vector is a finite sequence of length d, i.e.

a function on {i:l = i%d}. We use ¿4,x, etc. to denote vectors. Ak denotes

the fcth term of A for any fc in its domain. Often when dealing with vectors we

have conditions on each of its terms. If a condition involving A¡ or A¡ appears

with no indication of the range of i or j it is assumed to be the domain of A

e.g. if A is a d-vector we write "A¡ ç 7j" for ilA¡ ç T¡, í = i = d." It will be

convenient for us to consider a partition as a vector rather than as a collection

of sets. Thus for q finite a q-ary partition of X is a g-vector, the range of which

consists of mutually disjoint sets whose union is X. If B¡ (1 — i ¿L d) are sets

Qf B¡ is the set of all d-vectors x such that x¡ e B¡. If B is a d-vector whose terms

are sets, we write T] B fot YYi ̂ ¡ • h, i, j, fc, n, d, q always denote nonnegative

integers, n always denotes a vector whose terms are nonnegative integers. We

use the notion of restriction in two different ways. If Q is a g-ary partition, Q

restricted to 7 is a q-aty partition Q' such that Q¡ = Q¡r\Y. If T is the set of

nodes of a tree, T | n, (read, "T restricted to n") is the subset consisting of nodes

whose order is less than or equal to n. Given trees &~¡, 1 — i — d, we shall be

interested in products \\dyAi such that A¡ is («,fc)-dense in ^"¡ for each i. Such

a product will be called an (h, fc)-matrix. (N.B. Do not confuse this concept

with the ordinary concept of an "h by fc matrix".) A (0, fc)-matrix is called a

fc-matrix.

Theorem 1(2). Let &"t = <T¡, ^¡>, 1 = i ^ d be finitistic trees without tree

tops and let QcY\áyT¡. Then either

(2) The statement, of the theorems in terms of trees was suggested by the referee. They are

an improvement over the previous statements, being much more natural and also stronger.

The proof of Theorem 1 remains unchanged, but the resulting rephrasing of concepts in the more

natural setting contributes greatly to the paper. Another suggestion of the referee simplified

the proof of Theorem 2. We take this opportunity to express our appreciation and thanks.
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(a) for each k, Q includes a k-matrix or

(b) there exists h such that for each k, iY[dyT) — Q includes an ih,k)-matrix.

In the sequel &~t, 1 ^ i <; d, are fixed trees satisfying the hypotheses of The-

orem 1.

Corollary 1. In the above theorem replace "Tt" by "C¡" on lines two and

four and add as an hypothesis "let C» be co-dense in ^"¡."

Actually the proof we give for Theorem 1 suffices as a proof for Corollary 1

but we can derive it from Theorem 1 be means of the following consideration.

Principle. If C¡ dominates B¡ in &~h 1 rg i rg d, and Q is a q-ary partition

of J|C then there is a q-ary partition ft of Y[B such that for all h, k, I, if

ft' includes an (A, /c)-matrix then so does ft.

The proof of the Principle is obtained by considering f : B¡ -> C¡ such that

x S ¡fix). Let Q be a q-ary partition of \~\C. The partition ft of fj B induced

by Q via the mapping / is defined by

ft = {x e Y[ B : the vector whose ¿th component is /;(*,) is in ft}, 1 g / z% q.

An ih, /c)-matrix included in ft' is seen to come from an (A, fc)-matrix included

in ft.
The proof of Corollary 1 is immediate upon noticing that since C¡ is oo-dense

in S\, C; dominates T¡.

Theorem 2. There is a positive integer n such that whenever Q is a q-ary

partition £/fli(T¡|n), then one term of Q includes an ih,l)-dense matrix

for some h < ni3).

Proof. By induction on q. Assume the theorem holds for q but not for

q+l. Then for each n there is a q + 1-ary partition Q of ni(T¡|n) tnat

fails. Consider a new tree whose nodes are the q + 1-ary partitions Q such that

for some n, Q partitions ndi(^¡|") anc* Q fa''s tne conclusion of the theorem.

The partial ordering is defined by ft ^ Q if and only if Q' is a restriction of Q

i.e. for some m — n, Q is a partition of n^i^-ln) anc* Q' 's tne restriction of Q

to ni(^.|m)- Tne »eve's °f tn's tree are finite sets and in fact level n consists

only of partitions of n^iTj | n) because if a partition is a node of the tree all

of its restrictions are nodes of the tree and distinct for different mi=n. Hence

it follows from the assumption that this tree has nodes of all finite order and

hence, by Konig's infinity lemma, has an infinite branch B. B defines a q + 1-ary

partition Q of \~[dyT¡ as follows:

(3) Suppose the conclusion of the theorem were weakened as follows: "...then there are

hi<n, 1 rg / rS d, and sets A¡ ezz Ti \n, (h, l)-dense in ¿Ty such that YlyA¡ is included in one

term of ft" The proof of a corresponding Theorem 1 from which this is provable would be

much simpler.
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(xeQj if and only if xeQj for some Q'eB), 1 = j = q 4- 1.

Note that Q restricted to Y[\ (T¡ \ n) faHS tne conclusion of the theorem, for

all n. Applying Theorem 1 we have either

(a) for each fc, Qy \j ••■ \jQq includes a fc-matrix, \\A, or

(b) for some h,Qq+l includes an (h,l)-matrix, n^-

Since the levels of <^~¡ are finite we may assume that A¡ is finite, l — i^d. (b)

cannot hold since this would imply that Q restricted to fi^T^n) satisfies the

conclusion of the theorem where n is sufficiently large to insure that A¡ £ T¡\ n.

If (a) holds, let fc satisfy the theorem for q-aty partitions. Hence every q-aty

partition of P]^(T¡| fc) has a term which contains an (h, l)-matrix for some h<k.

Since Ay is fc-dense A¡ dominates T,|fc. Hence by the Principle, for some I ^ q

and some h,Q¡ includes an (h, l)-matrix. As in case (b) this gives a contradiction.

Definition.   Let T¡(n) = {xeTf.x has order n in &",}.

Corollary 2.   In Theorem 2 replace T¡ | n by Tfn).

Proof. T¡(n) dominates T¡\n. Hence the corollary follows directly from

Theorem 2 via the Principle.

The remainder of the paper is devoted to a proof of Theorem 1 which we ac-

complish in two parts. First we consider symbol strings together with transform-

ation rules on the strings. We show that for some strings Wy and W2 successive

applications of the transformation rules lead from Wy to W2. In the next part

we associate to each string an assertion about \~\dyT¡ and Q and show that truth

of the assertions is preserved by the transformation rules. Finally the truth of

the assertion associated with W2 is seen to yield conclusion (a) of the theorem,

while the falsity of the assertion associated with Wy yields conclusion (b).

2. An algebra of symbols. The atomic symbols or atoms are 3A¡, Vx¡, V^, 3x¡

where i ranges over the positive integers. The choice of this notation for the

atoms is dictated by the use to be made of them. For any deN, Ld is the set of

all strings of length 2d of atomic symbols satisfying the following conditions:

For every i = d either 3A¡ and Vx¡ are both entries and the occurrence of 3A¡

precedes the occurrence of Vx;, or Va¡ and 3x¡ are both entries and the occurrence

of Va¡ precedes the occurrence of 3x¡.

Examples. Va23Ay\lxy3x2eL2. Va23x23AyVxyeL2. The only strings in

Ly ate Vat3xy and 3AyVxy.

We define a relation Yd on Ld by means of three rules. To state these rules we

make the convention that U and Frange over strings of atomic symbols, a and ß

stand for At, a¡, x ¡. Juxtaposition indicates concatenation of strings. We further

assume that all strings indicated are in Ld.

Rule 1.
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U3a3ßV \-d U3ß3aV

UVaVßV rd UVjSVaF

UlaVßV hd UVß3aV (if UVß3aVeLd)

Rule 2.

UVaßxtV \-d UlAfix-y,       all i = d

U3A,WxiV hd UVaßx,V,       all i = d.

To state and prove Rule 3 we make the following convention : if V¡, r :£ i ^ k,

are strings of atomic symbols then (V)k is the string VrVr+i---Vk.

Examples.   (\/a)t — Va2Va3Va4;   (Va.3x¡)í = Vay3xyVa23x2.

Rule 3.   If cr is any permutation of l,---,d then

Ciaa)ry( 3Aa)d+ yV\-d( 3AJrd+ yCiaJy V    for all r < d.

Example.     'iafia33Ay3A4.3x3^xi^x4.3x2 bd 3Ay3AAyafia33x3'ixy'ix/y3x2.

Here

¡1   2   3   4\
er = \,   r = 2,    V = 3xfixfix^3x2.

\2   3    1    4 /

Let hd be the transitive closure of h,,.

Lemma 1 (4).   (VaOÍCVx;)í Nd( 3^)t(Vx;)? .

We first prove:

1.1. Vad( 3ADÎ" '( 3*¿T » 3xd hd S^Va^" '( 3x)\~l Vxd.
Proof.

Vadi3A)dfiÇ1x)dy-l3xd

Vdi3A)\-^adCix)dy3xd, (Rule 3),

t=d (S^Vx^-1 Vad3xd, (Repeated applications of Rule 1),

tdCiaßx)dy-13Af1xd, (Rule 2),

t=d (Va,-)?- ' 3Adi 3x)dfxx Vxd, (Repeated applications of Rule 1),

Nd 3AaCia)dy- \Vx)\-1 Vxd, (Rule 3).

1.2. If UVeLd and no atoms of the forms Vx., 3xt- occur in U and if Ü is

any rearrangement of U then UV ¥d ÜV.

Proof.

UV   l=d (Va!ri)ï(3y4ffi)r+1F for some permutation a,

(Repeated applications of Rule 1),

t=d i3_Aai)UyCiaa)[V,        (Rule 3),

t=d ÜV, (Repeated applications of Rule 1).

(4) In fact it can be easily deduced from Lemma 1 that any two id-strings are Nd-equi valent.
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1.3.    If W td_y W then   \/adW3xdYdVadW3xd and   3AdWixdYd3AiWVxd.

Proof. If WYd_yW according to Rules 1 and 2 then the conclusion of 1.3

follows trivially. If WYd_yW according to Rule 3, then the conclusion of 1.3

follows from 1.2. It remains to recall that Yd_y is the transitive closure of Yd_t.

We now obtain Lemma 1 by induction on d. For d = 1 the lemma is an in-

stance of Rule 2. For d > 1

Ciai)áy(3Xi)ay Yd Va¡j(Va¡)l"1(3x¡)í"13x((, (Repeated applications of Rule 1),

Yd Vai(3Ai)iy~t(y1xl)áy~í3xi, (Induction hypothesis and 1.3),

Yd 3AdCiai)iy-\3xi)\-^xd, 1.1,

Yd 3Ad(3Ai)dy~1(\/Xi)dy, (Induction hypothesis and 1.3),

¥d(3Ai)dy(VXi)d, (Rule 1).

Q.E.D.

3. Assertions associated with strings in Ld. From here on the symbols "V"

and "3" will be used ambiguously to express "for every" and "there is" re-

spectively in some occurrences while in others they are just part of an atomic

symbol. It will be clear from the context what they are.

We shall associate an assertion about Q ç Y\diT¡ to each We Ld in two steps.

First we define a sentence, W(n, B) where IF is a string, of atomic symbols and n

and B ate d-vectors, by induction on the length of W(= l(W)).

Case.    l(W) = 0. Then W(n,B) is "<*i.—>*<>efi"

Case.    l(W) = fc -I-1.

W =   3A,W. Then W(n,B) is "14, =lB„At is nrdense in ST. and W'{n,B)".

W = Vx;lT. Then W(n,B) is "Vxt,x,eA, implies W'{n,B)".

W = VfljW". Then W(n,B) is ilMai,aieni(^'i,Bi) implies W'(n,B)".

W = 3XiW'. Then W(n,B) is "3x„xtea, and W'(n,B)".

For each WeLd and d-vector n, c&(w,n,p) is the statement:  "If B is a d-vector

with B¡ p-dense in&~¡ then W(n,B) is true"(5). In the sequel n is always a d-vector

of nonnengative integers.

Example. If IF is 3/41Va23x2v'x1 then ®(w,n,p) is equivalent to "If B is

a 2-vector with By,B2 p-dense in ^~y,^2 respectively then there exists Ay ç B,,

Ay is »-dense in 3TX such that for all a2en2UT2,B2) there exists x2ea2 such

that for all Xy eAy, <[xy,x2s)eQ.'',

Lemma 2.   // W, WeLd and WYdW then

Vn3pO(lF,K,p) implies Vn3p<P(ÍV,n,p).

(5) In order that the theorem of this paper serve the purpose for which it is intended it must

be provable in set theory. Such an exposition here would entail the defining of a formal language

and a model for it and then the using of Tarski's definition of satisfaction to get at W{n, B) and

<&{W, n,v).
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It suffices to prove three sublemmas:

Lemma 2. m(m = 1,2,3). // W hd W according to Rule m then Vn3p<b(vV,n,p)

implies Vn 3p<D(W, n,p).

Lemma 2.1 depends only on logical manipulation of quantifiers and Lemma

2.2 is an immediate consequence of the fact that At E B¡ is n¡-dense in &~t if and

only if At ezz B¡ and

aiC\Ai±0 for all a¡e n^.B,.).

Proof of Lemma 2.3. Let W = Cia)[i 3A)dr+ y V(«) and W = ( 3A)r+ X(Va)\ V.

Note that Vin,B) is independent of n and B and in fact is an expression involving

as constants only a¡ and A¡. For any r-sequence, a, of sets and sets Ar+1,---,Ad

denote the corresponding assertion by \pia,Ar+1,---,Ad). Since the A/s occur

in this expression only in the context Vx;ey4; we have

2.31. If A\ c A¡, r <i <d and \pia,Ar+l,---,Ad) holds then \pia,A^+l,---,A'f)

holds.

We now assume V«3p <&CW,n,p). Let F be a function such that <S)(W,n,F(n))

holds for all n. Since p' density implies p density for p < p' we may assume

that F(n) > »», 1 ^ i = à. To complete the proof it suffices to consider a fixed

d-vector n of positive integers and produce a p such that <&(W,n,p). To this end

let G be defined by induction as follows

G(0) = max{«,:r <iz%d},

G(j +l) = F(k) where fc, = nt, 1 á ¿ á r and k¡ = G(j), r<i^d.

Let m = | nrin¡(T;)| an^ »et Pj ~ Gim ~ /)» 0^ ; ^ m. We will prove that p0

has the desired property, i.e. that <J>(W,n,pf) holds.

Thus consider a d-vector B such that B¡ is p0-dense in ^. We use the follow-

ing facts: pj+l *g pj, j < m and hence any set p^-dense in 3~x is also pJ+1-dense.

Also B¡ is Pj-dense in 3Ti, 0 ^ j ^ m. Furthermore if ,4; is p^-dense in S"t, r ^ i ^ d

and j < m and a is such that a¡ e n¡(^"¡, B¡), 1 g i g r then there exists A'¡ezz At,

pJ + i-dense in ^"i, r<iz%.d, such that \p(a,A'r+{,---,A'd). Finally note that

| ní"i(^.>-5¡)| = m since p0 > n¡ all i.
To prove the lemma it suffices to prove the existence of A¡ ezz B¡, p„,-dense in

y¡, r^i^d such that

Va e nri «t(^i, B), xb(a, Ar+l,-,Ad)     holds.

Sublemma. For any J ^Wynff^^B) such that \j\=j there are sets

AiezzB^AjPj-dense in T¡, r<i = d such that for every aeJ, \p(a,Ar+y,---,Ad)

holds.

(«) For simplification of notation we assume oi = i.
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Proof.   By induction on j: For j = 0 the sublemma holds vacuously.

Induction step: Let J' =J u{o} ^ niw¡(^"¡'^¡)- By tne induction hypothesis

we obtain ^¡'s such that

(1) At ç B¡,j4¡ is pódense in ^¡, r <i Si d

(2) VaeJ, ip(a,Ar+1,-;Ad) holds.

Since A¡ is p^-dense in ^ there exist sets A¡cz A¡, A'¡ p, + 1-dense in ^¡, such that

(3) iP(b,A'r+y,-,A'd)

Hence using (2), 2.31, (3) in that order we deduce

ip(a,A'r+1,---,A'd) holds, all aeJ'.

This proves the sublemma and hence the lemma.

Proof of Theorem 1.    Let W0 = (Va^Sx^ and Wy = (3Ai)dy(Vx¡)Í.

Case 1. Vn3p(b(W0,n,p) holds. As a consequence of Lemmas 1 and 2,

Vn3p<b(Wy,n,p) holds. The existence of a fc-matrix satisfying alternative (a) of

the conclusion of the theorem follows by taking n to be the d-vector such that

n¡ = k.

Case 2. Vn3p<S>(W0,n,p) is false, i.e. for some d-vector n Vp — <b(W0,n,p)

holds, i.e. for every p there is d-vector B with B¡ p-dense in ^ and sets a¡ e ni(^~¡,B¡)

such that ndi«¡ = di T¡) - Q. Let h = max{n¡: 1 ̂  i ^ d). Given any fc e N,

let B satisfy the assertion for p = h + k. The sets a¡e n^S"bB) ate then (h, fc)-dense

in F i (see (3) in §1) and thus the second alternative of the conclusion is true.

Q.E.D.

References

1. P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62

(1956), 427-489.
2. R. Rado, Direct decomposition of partitions, J. London Math. Soc. 29 (1954), 71-83.

3. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1930),

264-286.
4. E. Specker, Teilmengen von Mengen mit Relationen, Comment. Math. Helv. 31 (1957),

302-314.

California Institute of Technology,

Pasadena, California

Institute for Advanced Study,

Princeton, New Jersey

University of Arizona,

Tuscon, Arizona


