
TRANSFORMATIONS PRESERVING
THE GRASSMANNIAN

BY

WILLIAM C. NEMITZ

1. Introduction. For m a positive integer, let Em be the arithmetic m-space

over a commutative field F. Let sém be the full linear group of Em, and let Sm-X

be the projective space of homogeneous coordinates in Em. For the rest of the

paper, we fix two positive integers n and k, such that k <n. Let N = (k), and

let Q.(k, n) be the k, n Grassmannian variety :

Q(k,n) cz SN-X.

Let ij/(k, n) be the set of those nonzero elements x of EN such that there is some y

satisfying

xeye£2(fc,n).

Let G be the set of nonsingular linear transformations of EN which keep \j/(k, n)

fixed as a set. If CN is the center of the full linear group of E_v, then GjCN is

the set of projective transformations of SN-X which keep Q(k, n) fixed as a set.

Let A(n,k) be the group of all fe-compounds [1, Vol. 1, p. 291] of elements

of <s/„. Then A (n, k)j(CN (~\A(n, k)) may be thought of as the group of projective

transformations of SN-X "induced" by the group of projective transformations

of S„_!. Since A(n,k)j(CN C\A(n,k)) is isomorphic to (A(n,k)-CN)jCN, and

since A(n,k)-CN is a subgroup of G, (A(n,k)-CN)jCN is a subgroup of GjCN.

The principal results to be proved here are:

1.   If n*2k, then

and thus

A(n, k)-CN = G,

(A(n,k)-CN)jCN = GjCN.

2.   If n = 2k, let J denote the "star dual" mapping of \j/(k,n) onto itself

(see 2). Since

J2 = (-1)<*2>J,

where I is the identity element of ¿#N, J generates a cyclic subgroup of order 2

if k is even, and of order 4 if k is odd. Let f denote this group. Let JT be the
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subgroup of G/Cjy made up of cosets of elements of ß. Thus Jf is of order 2.

Then, in this case,

/■A(n,kyCn = G,
and thus

^■((A(n,k)-CN)/CN) = G/CN.

2. Notation. (For definitions of terms used here and proofs of results

given here, see [2].) We shall denote the exterior product of vectors by "A".

Thus x is an element of i//(k, n) if and only if there is a linearly independent set

of k elements of E„,Xy,x2,x3,---,xk; and

x = Xy A x2 A x3 A ••■ A**-

For Ae¿én, let Ak be the fc-compound of A. Thus if

x = xy Ax2 Ax3 A ■•• Axk,

then

Akx = Axy A Ax2 AAx3 A ••• A Axk.

For £ c Em, let L(£) be the subspace of Em spanned by E. If x £ \¡i(k, n), such that

x = xy A x2 A^3 A ••■ Axk,

let

7i(x) = L({x1,x2,x3,..-,xt}).

For any positive integer m, let

J^(m) = {1,2,3, -,m}.

For t a positive integer, t ^ m, let

P(m,t) = {p:p = {py,p2,p3,---,p,}, p¡s Jf(m) for ieJf(t), and

Pi <p2<p3< ••• <p(}.

For peP(m,t), let c(p) be that element of P(m,m — t) such that

pUc(p) = /(m).

For x an element of \\i (k, n), *x is that element of \//(n — k, n) defined by

(*x)q = £(q)xc,g),

where q is any element of P(n,n — k), and s(q) is —1 to the power of the parity

of the permutation (qy,q2,q3,---,q„-k,(cq)y,(cq)2,(cq)3,---,(cq)k). Let J be that

mapping of ip (k, n) onto \¡/(n — k, n) defined by

J(x) = *x.
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Then J can be extended to a nonsingular linear mapping of EN onto itself.

Since k < n, we may consider Ek+X as a subspace of £„, and \j/(k, k + 1) as a

subset of \j/(k,n). On occasion, we shall find it necessary to use the *-dual of a

vector in \j/(k,k + l) "relative to Ek + X." That is, for x an element of

\j/(k,k +1) <= \¡/(k,n),

(*k+1x)i = (-l)i_1xc(i),   where c(i') = Jf(k + 1) - {¿}, if 1 = i = fc + 1;

and

(**+!*),• = 0,     ifi>fc + l.

Then *k+xxeEk+x czEn, and

L(*k+Xx) = (n(x))^\

where  ±t+1 denotes the orthogonal complement relative to Ek+X.

For i e Jf(m), let e¡ be that element of Em whose jih component is 5W. For

peP(n,k), let

eP = eptAep2AeP3A-- AePk.

Then the set {ep : |)6P(n,lc)} is a basis for EN.

For 4eG, and peP(n,fc), let Ap = Aep. Then ApeEN, and it is the pth column

vector of the matrix of A. For any qeP(n,k — 1),

dim(Ç\n(ep)) = k-l,

the intersection being taken over all peP(n,k) such that q cz p; and

dim(L({ep : q c p e P(n, fc)})) = n — k + 1.

So if 4 e G, and g e P(n, fc — 1), and if

M = A(L({ep: q cz peP(n,k)})),

then dimM = n — fc + 1, and M is spanned by the set {Ap : g c peP(n,k)}.

Furthermore, for p e P(n, fc), ̂ 4P e M if and only if q cz p.

Since we have excluded the zero vector from \\/(k, n), no linear subspace of EN

is contained in i]/(k,n). However, if M is a linear subspace of EN, we shall say

M cz \j/(k, ri) if and only if for x e M, if x # 0, then x e \j/(k, n).

3. Principal results. The principal results may now be stated in the fol-

lowing two theorems.

3.1. Theorem. // n # 2fc, and AeG, then there exists CeCN and Bejtfm

such that
A = CBk.

3.2. Theorem. If n = 2k, and if AeG, then there exists CeCN and Be¿tfn

such that either
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A = CBk

or
A = CJBk.

The proofs of these theorems depend on the following three lemmas, which

will be proved in §§4 and 5.

3.3. Lemma. For m an integer, 2 £| m ^ JV, let M be a subspace of EN,

with dimM = m, such that there exists a set {x1;x2,X3,••■,xm} czi//(k,n) and

{xy,x2,x3,---,xm} spans M.  Then,

1. if
m

dim p| 7t(x¡) = k — 1,
i = i

then M c i//(k,n),

dim pj 7t(x) = k — 1,
xeM

and

dim L({n(x) : x e M}) = k + m — 1 ;

2. if
dim L({n(xi): lg ig m}) « k + 1,

inen M <= \¡/(k,n), m £j fe + 1,

dim pj  7t(x) = /c — m + 1,

and

dim L({rc(x) : x e M}) = k + 1.

fn either case, M is the set of all k-vectors of k dimensional subspaces of E„

which containC\xeMn(x) and are contained in L({n(x): xeM}).

3.4. Lemma. For m an integer, 2 ^ m^N, let M be a subspace of EN,

with dimM = m, and assume that M <=\¡/(k,ri). Let {x1,x2,x3,--.x^,} be any

spanning set of M. Then either

m

dim P| n(x¡) = k — 1,
i = l

or

dim L({n(xt): 1 S¡ i ¡g m}) - k + 1.

3.5. Lemma.   If AeG, and if, for each qeP(n,k—l),

dimf]n(Ap) = k-l,

the intersection being taken over all p such that
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q c peP(n,k),

then there exists CeCN and Bes/„ such that

A = CBk.

Proof of Theorem 3.1 assuming Lemmas 3.3, 3.4, and 3.5. First assume that

n > 2/c. For q eP(n,k—l), let M(q) be the subspace of EN spanned by the set

{Ap: q cz peP(n,k)}. Then M(q) a\j/(k,ri), and dimM(q) = n — k + 1. But

n - k + 1 > k + 1. So by 3.3 and 3.4,

dim Ç\n(Ap) = k — 1,

the intersection being taken over all p such that

q cpeP(n,k).

The result follows from 3.5. Now assume that n<2k. Then for

xeij/(n — k,n),JAJ~1(x)eip(n — k,n). Hence there exists CeCN and Be¿&„

such that

JAJ~1 = CBn~k.

So

A = CJ~1B"~kJ.

By the Laplace expansion of a determinant,

jr-1JS"-V = (detß)/(B-r)*,

where — T denotes inverse transpose. Hence

A = C(detB)I(B~T)k.

This completes the proof.

Proof of Theorem 3.2 assuming Lemmas 3.3, 3.4, and 3.5. We first show that if

dim L({n(Ap): q' <=peP(n,k)}) = k + 1,

for some q'eP(n,k— 1), then

dim L({n(Ap): q <=peP(n, k)}) = k + 1,

for every qeP(n,k— 1). It suffices to consider q' = {1,2,3,■■•,k— 1} and to

assume that

dim £({7104,): q' c peP(n,k)}) = k + 1.

Select qeP(n,k — 1), so ordered that if q¡eq', then q¡ = i. Let

9" = {2,3,4,-",fc-l,gi}. We will show that

dim L({7r04p): q" cpeP(n,k)}) = fc + 1.
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If qx = 1, there is nothing to prove. So assume that qx ^ 1. Let

p" = {1,2,3,— „fc-l.i!}, and let

M' = L({Ap; q' czpeP(n,k)}),

and

M" = L({AP: q"czpeP(n,k)}).

Then

M'OM" = L(Ap..),

so

dim(M' r\M")= 1.

Now let Q' = L({n(Ap): q' cz peP(n,k)}), and Q" = f]n(Ap), the intersection

being taken over all p eP(n,k) such that q" cz p, and assume that dimQ" = fc— 1.

Then

e-cz^-oczo/.

So the set of all y e i/r(fc, n) such that Q" cz n(y) cz Q' is a subspace of M' n M",

but by [1, Vol. 2, Chapter XIV, Theorem I], the dimension of this subspace is 2.

So dim(M' C\M") 2: 2. This is a contradiction. So by Lemma 3.4,

dimL({n(Ap): q" czpeP(n,k)}) = fc + 1.

Continuing in this manner, working with one element of q at a time, we conclude

that

dimL({7iL4p): q cz peP(n,k)}) = fc + 1.

Hence either A or JA satisfies the conditions of Lemma 3.5, so the result follows

from the fact that J2 = (-1)(*2)L

4. Linear subspaces contained in i//(fc, n). Lemmas 3.3 and 3.4 describe the

linear subspaces of EN which are contained in i¡/(k,n) in the sense of 2. In this

section we give proofs of these two lemmas.

Proof of Lemma 3.3. Select a set {x1,x2,x3,•••,xm} cz t¡/(k,n), such that

{x!,x2,x3, •••,xm} spans M, and assume that

m

dim P| it (x¡) = fc — 1.
> = i

Then without loss of generality, we may assume that

Xi = ex A e2 A e3 K ••■ A ek_x Aek+i-x,       for i = 1,2,3, --^m.

Now let xeM. Then there exist ax,a2,a3,---,am, elements of F, such that

x = Zr=1a;X¡. So

x = ex A e2 A e3 A — A e*-i A I ¿ %+>-! ) •
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Hence M c \//(k, n), and consists of those k-vectors of /c-spaces containing

L({ei>e2,e3,---,ek-y}), and contained in L({ex,e2,e3, ■■■,ek+m-1}). Now assume

that

dimL({n(xi): 1 ̂  i ^ m}) = k + 1.

Then without loss of generality, we may assume that

n(x¡) cL({ey,e2,e3,---,ek + ¡})

for i = 1,2,3,•■•,m. Hence the x¡ may be thought of as /c-vectors in Ek+1. So

if xeM, x = T,fLíalx¡, for suitable elements a¡ of F, then x is a /c-vector in

Ek + V Hence M<=i//(k, ri), and

dim L({7t(x): xeM}) = k + 1.

Also, the set {*t+1Xj: 11 i ^ m} spans an m-space of £t+i, so m ^ fc + 1, and

since L(*k+1x¡) = (Tifo))-1"* \

m

dim p| 7î (xf) = k — m + 1.
¡ = i

But for xeM, L(*k+lx) c L({*t+1x¡: 1 ^ i ^ m}), and so

M

P| n(Xi) <=n(x).

Hence

dim P| 7t(x) = fc — m + 1,

the intersection being taken over all xeM. This completes the proof.

Proof of Lemma 3.4.   Since M <= i//(k, n), the plane spanned by x¡ and Xj lies

in \J/(k,n), for i <ftj, i,j = 1,2,3, •••,m. By [1, Vol. 2, Chapter XIV, Theorem I],

dim (n (x¡) n n (xj)) = k — 1.

So, without loss of generality, we may assume that

n(xy) = L({ey,e2,e3, ■■■,ek}),

and

7t(x2) = L({e2,e3,e4, ■■■,ek+1}).

Now assume that there is some Xj, say x3, such that

7t(xi) r>7r(x2) c 7r(x3).

Then we may assume that 7i(x3) = L({e2,e3,e4,•••,ek,ek+2}). Now assume that

there is some x¡, such that n(x¡) does not contain 7t(xi) 0 7i(x2). Since

dim(7i(xf) nn(xy)) = dim(n(x¡) nn(x2)) — k — 1,
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we can choose a spanning set {ux,u2,u3,---,uk} for 7i(x¡) such that u^^Xj),

for i = l,2,3,---,fc—1, and uken(x2). Hence

n(x¡) czL({ex,e2,e3,---,ek+1}),

and so

dim (71 (x¡) n n (x3)) < k—1.

But this contradicts the fact that dim(n(x¡) n7i(x3)) = fc—1. So

L({e2, e3,e4, • • -,ek}) cz n(x¡),

and hence

m

dim Q n(x() = fc—1.
¡=i

Thus far, we have shown that if any three of the spaces

n(xx),n(x2),Ti(x3),---,n(xm) intersect in a fc—1 space, then they all intersect in

a fc — 1 space. Now assume that no three of these spaces intersect in a fc— 1 space.

Hence, for i # 1,2, 7r(x¡) does not contain n(xx) r\n(x2). So, as before,

tc(x,) c L({ex,e2,e3,—,ek+x}), and so

dimL({7c(x,): 1 = i = m}) = fc + 1.

5. Proof of Lemma 3.5. The proof is in two parts.

Part 1. We first prove that, given the assumptions of the lemma, there is a

set {x1;x2,x3, •■•,x„} cz E„, such that

(1) <AP) = L({xpl,xP2,xP3,---,xpk})

for any peP(n,k). The proof is by induction on the number of vectors which can

be found satisfying (1). First note that the assumption that for any qeP(n,k — 1),

the dimension of the intersection of the spaces n(Ap) for q cz peP(n,k) is fc —1,

implies that to each q e P(n, fc — 1) there is assigned in a one-to-one manner,

a fc— 1 space S(q) of £„, such that

S(q) = n(Ap)nn(A,),

for any peP(n,k), and reP(n,k), such that p # r, and q cz p Or. Obviously,

there is a set {xx, x2, x3,---,xk} cz £„ such that if p = {1, 2, 3,---,fc}, then

(1) is true. So, assume that there exists a set {x1,x2,x3, ■•■,xt} c£„ for

some integer t, fc_i^n — 1, such that (1) holds for any peP(t,k). Let

p= {1,2,3,•••,&—!,< + 1}. Then there exists an x(+1e£„ such that (1) holds

for this p. Let q be an element of P(t,k— 1), so ordered that if qsep, then qs = s.

Let p = q u {t + 1}. We wish to show that (1) holds for p. We now define a

family of elements of P(n, fc) as follows :
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P(0) = P,

PÜ)=(PÜ-1)-{J})U{Í;},

for j = 1,2,3, •■-,& — 1. We will show by induction on j, that (1) holds for each

p(j). This will complete the induction on t, since p = p(k — l). Obviously, (1)

is true if ;' = 0. Assume that, for some j, O^j <k-l, (1) holds for p(j). If

qj + x =j + 1, then (1) holds for p(j + 1). So assume that qJ+y$p. We also

assume that qJ+l ¥= k. Let

p'= (Pü + i)-{í + i})u{fc},

r= (p0' + l)-{i + l})u0 + l},

Z(i) = L({xy,x2,x3,---,xi}),

for i equal t or t + 1. Then

71(^+1)) nz(i) = n(Ap.) n7t(Ap(J.+1)) = s(p' nP(j+ 1))

= i 04p-) n n (Ar) = L({xp0-+1)l,xp(j + i)2,xp0 + 1)3, •••,xpU+y)k_t}),

and

«W^tiVi)) = s(PÜ)nPÜ + !))•

Since p' n p(j + 1) ̂  pO') O pO + 1),

dim(n(ApU+1)) n »x(¿pa)) n Z(i)) < fc-1.

Also, since Z(t + 1) is spanned by n(ApU)) UZ((),

dim(7t(4p0 + i))nZ(i + l)) = /c,

and hence

rc04p(;+i))cZ(i + 1)-

Therefore, (1) holds for p(j + 1). If qJ+1 = k, interchange k and j + 1 in the

argument above. This completes the proof of Part 1.

Part 2.   As a consequence of Part 1, there is an He^/„ such that AHk is

diagonal. Hence we can assume that A is diagonal.

A = diag(ap),       for peP(n,k).

Now select any two integers g and n, such that 1 ^ g, n ^ n, and g # n. Let q

and r be two elements of P(n,k— 1), neither of which contains g or h. Let

P = q U {>},

P' = !U {Ä},

p = rU{g},

and



1963] TRANSFORMATIONS PRESERVING THE GRASSMANNIAN 409

p' = r\J {h}.

We want to show that

apap  = ap. ap .

As in Part 1, we construct two families of elements of P(n,k).

P(0) = P,

P(j) = (PÜ -!)-{«/}) U {/-,-},

for j — 1,2,3, •••,fc— 1 and

P'(0) = P\

m  = (p'(j-l)-{p'j})u{ry),

for j — 1,2,3, •••,&— 1. Here we regard the p(;') and p'(j) as so ordered that g

or /i is always the last element. It suffices to prove that

(2) apU-l)ap\J) = apU)ap'U-t)

for;'= l,2,3,---,fc-l. Let y = epU_X) + epU) + ep.(j) + ep,u.X). Then ye\ji(k,n).

Therefore Aye\j/(k,n). Thus y4y satisfies the Plucker identities, one of which

may be written as (2), since only these four components of Ay are not zero.

Now let

b(g,h) = apjap..

Then b(g,h) is independent of q, and for any three integers g, h, and s,

1 úg,h,s^ n,

b(g,s) = b(g,h)b(h,s).

Therefore, for reP(n,k), and r' = {l,2,3,---,fc},

i

«r = IT  b(Pi,i)ar',
i = l

where f] here indicates product. So if B esin

B = diag(b(l,l),b(2,l),b(3,l),-,b(n,l)),

and

i-(n*(i,o)<v,
then

¿ = XIBk.

This completes the proof of Lemma 3.5.
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6. The orthogonal group. In this section we let F be the field of real numbers.

For m a positive integer, let • denote the usual inner product of Em, and J v | the

usual norm. For Aesém, let A(l) denote the ¿th row vector of the matrix of A.

6.1. Lemma.   For m and A as above, if there exists a set Tc:Em such that

1. e¡e T for all integers i, l£i¿m,

2. A(i) eT for all integers i, í¿i^tn,

3. for all veT, AveT, and A~lveT,

4. for all veT,    \Av\ = \v\,

then A is orthonormal.

Proof.   Since, for v e T, A~lv e T, we have that

\v\ = \AA-i(v)\ = \A-1(v)\.

Now let x¡ = A~iei for any integer i, 1 ^ i ^ m. Then |x,| = 1, and Ax, = e¡.

Hence Aw-xx = 1, and thus |¿(i)| ^ 1- But

M

\AA(if   =   I (A(»-A")2 = A(i)-A(iK

So

I   ÍAU)-A(i))2= A^-A^Xl-A^-A^).

Hence |^4(,)| ^ 1. Thus, for any integers i and j, 1 ^ i, j ^ m, / #/ |i4(1) | = 1,

and A{1)-AiJ) = 0. Hence A is orthonormal.

6.2. Theorem. Let AeG such that for all veijj(k,n), \Av\ = |r|. Then A

is orthonormal, and there exist Bes4n, B orthonormal, and CeCN, C2 = I,

such that either A = CBk, or A = CJBk.

Proof.    This follows immediately from the previous lemma.
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