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1. Introduction. Bliss [l]0) has given a general definition of self-adjoint-

ness for a differential system of the form

n

X [Mi^jjia) + Nny^b)] = 0, i = 1, • ■ ■ , n.

In the paper above referred to, he has also discussed in detail a special class

of self-adjoint problems termed definitely self-adjoint. In a subsequent paper

[2], Bliss has given a modification of the definition of definite self-adjointness

which is weaker than that previously considered, and has shown that most

of the properties deduced in [l] are still valid for systems which are definitely

self-adjoint according to the new definition.

If (1.1) is self-adjoint under the nonsingular real transformation

Zi=Tij(x)y,-(2), in both the original and modified definition of definitely

self-adjoint problems Bliss has imposed the definiteness property of the sys-

tem specifically on the matrix S(x) =||5i)(x)|| = 117"**(rc)^*,-(sc)J[. Now if yi(x),

(*5=1, '• • • , n), is a solution of the differential equations of (1.1) for a value X

it follows immediately that

/l b i% b

y>Ta[y! — Ajkyk]dx = X I yiSijyfdx.
a Ja

It may be readily verified that the definiteness property of S(x) assumed by

Bliss could equally well have been phrased as a definiteness property of the

quadratic functional

yiSayjdx.

If H[y] denotes the first member of (1.2), the theory of pencils of quad-
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1 Numbers in square brackets refer to the bibliography at the end of this paper.

2 In the introduction, and throughout the paper where matrix notation is not more con-

venient, the repetition of a subscript in a single term of an expression denotes summation with

respect to that subscript over its range of definition.

(1.1)

Vi =

*i[y]
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ratic forms in a finite number of variables suggests that a differential system

(1.1) for which H[y] satisfies suitable conditions of definiteness may possess

properties analogous to those enjoyed by the class of definitely self-adjoint

problems as defined by Bliss [2]. The prime aim of this paper is to show that

such is indeed the case. The class of self-adjoint problems herein studied, for

which the definiteness property is placed on the functional //[j], is termed

//-definitely self-adjoint. Moreover, it is to be emphasized that the study of

indefinitely self-adjoint problems affords new results for systems which are

definitely self-adjoint in the sense of Bliss.

The definition of an //-definitely self-adjoint system is given in §2, and

properties of the functional H[y] are presented in §3. Preliminary results for

such a system are obtained in §4; one of the most important results therein

contained is that of Theorem 4.3, which states that for an //-definitely self-

adjoint system the matrix B{x) must be such that its square is identically

zero on the interval ab. This result, which at first seems startling in aspect,

admits certain important consequences for definitely self-adjoint systems.

The fundamental properties of an //-definitely self-adjoint system, such as

the reality of the characteristic values, the equality of the index and multi-

plicity of a characteristic value, and a type of completeness property of the

totality of characteristic solutions for such a system, are contained in §5;

§6 is devoted to the discussion of the existence of characteristic values for

such a system. Results for definitely self-adjoint systems are given in §7,

whereas §8 is concerned with a special definitely self-adjoint problem which

is related to a given system (1.1), although the system (1.1) itself may be

neither definitely nor //-definitely self-adjoint. By the use of the results of

the preceding section, extremizing properties of the characteristic values and

characteristic solutions of an //-definitely self-adjoint system are established

in §9. In §10 it is shown that an important instance of the type of boundary

value problems associated with the calculus of variations previously studied

by the author [9] is //-definitely self-adjoint. The connection between the

class of problems herein treated and the boundary problems associated with

a single linear differential equation of even order which have been studied by

Krein [7] and Kamke [6] is indicated briefly in §11. Finally, §12 is devoted

to the extension of the notion of //-definite self-adjointness to the case of

systems whose coefficients are complex-valued.

For simplicity, matrix notation is used almost exclusively in this paper.

Square matrices with n rows and columns are denoted by capital italic letters,

and the element in the ith row and jth column is denoted by the letter repre-

senting the matrix with the subscript ij. Lower case italic letters signify vec-

tors with n components, the ith component being signified by a subscript i.

If il/=||i/»jj|, m= [m], the vectors [JW,3-m,] and [ujMji] are denoted by Mu

and uM, respectively. The scalar product upj of two vectors is written uv.

If a is a scalar, 5 is its complex conjugate, and for a vector u we write ü
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for [üi]. For a matrix M= || Mij\\ we use M for the transpose matrix || Af,-j||.

Finally, if the elements of M are differentiable functions, the matrix of deriva-

tives is denoted by M'; similarly, if the components of u are differentiable

functions, we write u'=[u{]. The norm of a vector u, [mm]1'2, is written

norm {u}.

2. Definition of //-definitely self-adjoint systems. In the following pages

it will be assumed that the elements of the matrices A(x) and B(x) are real

single-valued continuous functions on the finite interval a^x^b and that the

elements of B(x) are not all identically zero on this interval. The elements

of the matrices M and N are supposed to be real constants such that the n X 2n

matrix \\Ma Nij\\ is of rank n. Moreover, because of its frequent occurrence,

we write £[y] for the vector differential operator y' — A{x)y. The boundary

value problem to be considered in this paper may then be written

(2-1) -CM = \B(x)y, s[y] m My (a) + Ny(b) = 0.

The system adjoint to (2.1) is

(2.2) M[z] = - \zB(x),      t[z] = z(a)P + z(b)Q = 0,

where fM[z] is the adjoint differential operator z'+zA(x), and p = (pi) = (Pa),

q=(qi) = (Qi]),(j = l, • ■ • , n), are n linearly independent solutions of the alge-

braic equations Mp — Nq = 0.

According to the modified definition of Bliss [2] the system (2.1) is defi-

nitely self-adjoint with a matrix /, or simply definitely self-adjoint, whenever

the following conditions are satisfied:

(i) The system is self-adjoint under the nonsingular real transformation

z= T{x)y; that is, for arbitrary values of X a vector y satisfies the differential

equations (or boundary conditions) of (2.1) if and only if the associated vector

z=Ty satisfies the differential equations (or boundary conditions) of (2.2).

The elements of T(x) are supposed to be of class C1 on the interval ab.

(ii) The matrix S(x) = T(x)B(x) is symmetric on ab.

(iii) The quadratic form uS(x)u is positive semi-definite on ab.

(iv) There exists no nonidentically vanishing solution y of -(^[y]=0,

sly] = 0 such that B(x)y(x) = 0 on ab.

The wording of hypothesis (iv) differs slightly from that used by Bliss [2,

property (3), p. 414]. However, when (ii) and (iii) are satisfied the above

hypothesis (iv) is readily seen to be equivalent to the property (3) of Bliss.

For the present treatment the form (iv) is preferable.

It is to be remarked [l, p. 569] that a nonsingular matrix T(x) whose ele-

ments are of class Cl on ab satisfies condition (i) if and only if

TA + AT + T' = 0,      TB + BT = 0   on ab,

(2.3)
MT-\a)M = NT~l(b)N.
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Consequently, whenever (ii) is also satisfied by T we have

(2.4) S =TB = BT = - TB.

For y a solution of (2.1) corresponding to a characteristic value X, relation

(1.2) becomes in matrix and vector notation

Now the above hypothesis (iii) clearly implies a positive semi-definite char-

acter of the quadratic functional

Indeed, (ii) and (iii) together imply that this functional is positive for all vec-

tors y whose components are continuous on ab and such that B(x)y(x) ^0 on

this interval.

The quadratic functional upon which certain assumptions of definiteness

are to be imposed in this paper is

which appears as the left-hand member of (2.5).

For convenience, we shall denote by L the linear vector space consisting

of all vectors y satisfying the following conditions: (a) the components of y

are real-valued and of class C1 on ab; (ß) s[y]=0; (7) there exists a corre-

sponding vector g(x) with real-valued continuous components such that

■Cb]=Bg on ab.
Instead of the above hypothesis (iii) we shall now assume the following

condition:

(iii)' The quadratic functional H[y] is positive for arbitrary vectors y of L

such that B{x)y(x) f^Q on ab.

A system (2.1) which satisfies hypotheses (i), (ii), (iii)' and (iv) will be

termed H-definitely self-adjoint with the matrix T, or simply H-definitely self-

adjoint; the prefix "H-" indicates that it is the functional H[y] which pos-

sesses the definiteness property. Correspondingly, a system which is definitely

self-adjoint as defined by Bliss [2] might be termed ^-definitely self-adjoint.

It is to be pointed out that in the treatment of definitely self-adjoint systems,

as well as in the present discussion of /^-definitely self-adjoint systems, the

space L occupies a central position.

Now a linear change of parameter in (2.1), replacing X by X+X0, has the

effect of substituting ^[y] —\0By for -£[y]. Hence it is to be emphasized that

as far as the qualitative properties of (2.1) are concerned the hypothesis (iii)'

(2.5)

a

ySy dx.
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is no stronger than the assumption that there is some value of Xo such that

the functional

H[y:\o] m j yf{£[y] - \oBy) dx

satisfies the definiteness property of (iii)'.

In view of equations (2.3), a system (2.1) which is self-adjoint with a

matrix T is also self-adjoint with the matrix — T, T or — T. In particular,

if (2.1) is //-definitely self-adjoint with a matrix T it is also //-definitely self-

adjoint with the matrix — T. If hypotheses (i), (ii) and (iv) are satisfied by

(2.1) with a matrix 7" and the functional (2.6) is negative for arbitrary vectors

y of L such that Byf^O, this functional can be replaced by one for which (iii)'

as stated is satisfied by using the transformation matrix — T instead of T.

Moreover, if (2.1) is //-definitely self-adjoint with a matrix T then the adjoint,

system (2.2), written in the form (2.1), is //-definitely self-adjoint with the

matrix T~x. It may be readily verified that analogous results hold for defi-

nitely self-adjoint systems.

We shall denote by L2 the linear subspace of / consisting of all vectors y

with real components and satisfying a system J^\y] =Bg, s[y] = 0, where g(x)

is also a vector of the space L. Clearly each real characteristic solution of (2.1)

belongs to L2 as well as to L. In the subsequent discussion the space L2 first

occurs in Theorem 5.4.

3. Properties of the quadratic functional i/[y]. If u and v are vectors

whose components are of class C1 on ab, let H[u; v] denote the bilinear expres-

sion

H[u;v] = I uTj£\v\dx.

In general H[u; v]?±H[v; «]. However, we do have the following property.

Lemma 3.1. For a system (2.1) satisfying conditions (i) and (ii) the bilinear

functional H[u; v] is symmetric on the linear vector space L.

For suppose that u and v belong to L, and that •CJ[u\=Bg, jQ\v]=Bh.

Then w=Tv satisfies the system 9tt [w] = — hTB, t [w] =0. By a familiar argu-

ment it then follows (see Bliss [l, p. 567]) that

wBg dx — I   hSu dx = wu = 0.

The result of the lemma is then immediate since

b n b

hSudx= I   uTBh dx = H[u; v],
a Ja

/* b f\ b
wBg dx = I vTBg dx = H[v; u].

a "a
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Lemma 3.2. Hypotheses (ii) and (iii)' imply H[y]^0 on L.

For consider an arbitrary vector y of L. If By^O on ab, then (iii)' implies

H[y]>0. On the other hand, if By = 0 on this interval the symmetry of 5

insures

/» & /% b
yTBg dx = I   gfBy dx = 0.

a Ja

The following result is an immediate consequence of Lemma 3.1 and the

linearity of L.

Lemma 3.3. If the system (2.1) satisfies (i), (ii), and Il[y]^Q on L, then

(3.1) {H[u; v]}2 g H[u]H[v]

for arbitrary vectors u and v of L.

Lemma 3.4. If (2.1) satisfies hypotheses (i) and (ii) and y, y* are charac-

teristic functions corresponding to distinct characteristic values X, X*, then

(3.2) f  y*Sydx = 0,      H[y*; y] = 0.
J a

The first equality of (3.2) follows by Theorem 8 of Bliss [l], and the sec-

ond relation is then immediate since y*TjQ\y~\=\y*Sy. It is to be remarked

that this result is true quite independent of the reality of the characteristic

values and characteristic functions involved.

4. Preliminary results. In this section we shall present some results for

iJ-definitely self-adjoint systems which, although of individual significance,

are preliminary to the rest of the paper.

Theorem 4.1. If (2.1) is H-definitely self-adjoint, then X = 0 is not a char-

acteristic value of this system.

For suppose X = 0 were a characteristic value for such a system, and de-

note by y a corresponding real characteristic solution. The condition (iv) im-

plies By^O on ab, and as y clearly belongs to L it follows by (iii)' that

H[y]>0: On the other hand, H[y]=0 since /^[y]=0. Hence X = 0 is not a

characteristic value.

In connection with this theorem, we also have the following result.

Theorem 4.2. If (2.1) satisfies conditions (i) and (ii), i/[y]^0 on L, and

X = 0 is not a characteristic value, then this system is H-definitely self-adjoint.

If X = 0 is not a characteristic value for (2.1), then clearly condition (iv)

is satisfied. Moreover, suppose that y is a particular vector of L such that

H[y] =0. Then by Lemma 3.3 it follows that H[y; v]=0 for arbitrary vectors

v of L. But for an arbitrary vector g whose components are continuous there
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exists, if \ = 0 is not a characteristic value, a unique solution of £[v]=Bg,

s [v] =0; for this vector v, H[y;v]= JlySg dx. Hence 0=yS = TBy, and there-

fore By = 0 on ab. That is, if y is a vector of L for which H[y] =0 it must

be true that By = 0. Hence condition (iii)' is also satisfied by such a system,

and it is iJ-definitely self-adjoint.

As a consequence of Theorem 4.1, for an ü-definitely self-adjoint sys-

tem the functional H[y] is afforded an alternate representation. Let

G(x, t) =\\Gi,(x, t)\\ denote the Green's matrix (see, for example, Bliss [l,

pp. 577-581]) for the incompatible system

(4.1) £fcy] - 0,      s[y] = 0.

Then a vector y belongs to L if and only if it is of the form

(4.2) y(x) = [ K(x, t)g(t) dt,
J a

where K(x, t)—G{x, t)B(t), and the components of g are continuous on ab.

We may then write

/» b /» &
yTBgdx = I gSydx

a Ja

/» b /*b
I   g(x)S(x)K(x, t)g(t) dx dt

a "a

/« 6     /» b
I   g{x)K1{x, t)g(t) dx dt,

a Ja

where Ki(x, t) =S{x)K{x, t) =S(x)G(x, t)B{t). Similarly, if u and v are vectors

belonging to L and =£[«] =Bg, £[v] =Bh, we have

/ib     /* b
I   h(x)K1(x, t)g(t) dx dt.

a Ja

Now corresponding to arbitrary vectors g, h whose components are continu-

ous there exist unique corresponding vectors u, v of L satisfying the above

conditions. Since by Lemma 3.1 we have H[u; v] =H[v; u] it then follows that

(4.4) K^x,t) = ki(t,x),

that is,

S(x)K(x, t) = K(t, x)S(t).

Indeed, in the proof of (4.4) we have used in addition to hypotheses (i), (ii)

only the condition that A = 0 is not a characteristic value of (2.1). Relation

(4.4) has been obtained by Bliss [l, p. 580], and it may be readily verified

that his proof also uses only these conditions on the system (2.1).
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For convenience in the presentation of the following two lemmas the func-

tional (4.3) will be denoted by J[g]; similarly, the quantity (4.3') will be

written J[h; g]. The following result will be stated without proof, since it fol-

lows readily from well known properties of Lebesgue integrals.

Lemma 4.1. If J[g]^0 for all vectors g whose components are continuous

on ab, then this integral, taken in the sense of Lebesgue, is non-negative for all

vectors g whose components are of integrable square on this interval.

Now denote by L' the extension of L obtained by considering the totality

of vectors y such that: (a') the components of y are real-valued and absolutely

continuous on ab; (ß') s[y]=0; (7') there exists a corresponding vector g

whose components are real-valued, of Lebesgue integrable square on ab, such

that -(^[y]=-Bg almost everywhere on this interval. In view of Lemma 4.1,

and the fact that we still have y{x) = f„K(x, t)g(t)dt for a vector y of L', it

follows that the results of Lemmas 3.1, 3.2 and 3.3 remain valid for y, u and v

vectors in L'. Moreover, since X = 0 is not a characteristic value for an

///-definitely self-adjoint problem, it follows as in the proof of Theorem 4.2

that H[y] =0 for a vector y of L' if and only if By = 0 on ab. That is, as far

as the results previously established are concerned, in the definition of iJ-defi-

nitely self-adjoint systems one might without further restriction have used

the vector space L' instead of L. As a matter of fact, this remark is valid for

all the results obtained in the present paper. Specifically, in this connection, it

is to be pointed out that the results of Bliss used in §7 are valid for the space

L' instead of L.

Because of the special form of Kx{x, t), and the fact that if the components

of b(x) are integrable on ab then y{x) = flG{x, t)b{t)dt is a vector whose compo-

nents are absolutely continuous, satisfies *Q,[y]=b(x) almost everywhere on

ab, and i[y]=0, all the preceding results may be proved for a much more

general linear vector space than L'. In particular, they all hold for the space

of vectors y satisfying the above conditions (a'), (/?'), and the condition ob-

tained by replacing in (7') the phrase "of Lebesgue integrable square" by

"Lebesgue integrable." However, for a number of the subsequent results to

remain valid, it is necessary to restrict the involved vectors to the space L'.

We shall denote by K~uj{x, x + ) the limiting values of K~uj(x, t) as / tends

to x through values greater than x, and write Ki(x, x+) = \\Kuj(x, x+)||. The

quantities R~uj(x, x —) and K\{x, x — ) are defined in a corresponding fashion.

Since K\(x, t) = S(x)G(x, t)B(t) it follows that the elements of K\ have dis-

continuities at most along the line x = t. Moreover, if K\{x, t) is taken to be

equal to Ki(x, x + ) along x = t, then the elements of the resulting matrix are

continuous in (x, t) on the region R\: x fit fib, a fix fib. Similarly, if Kx(x, t)

is taken to be equal to R~i(x, x —) along x = t, then the elements of the resulting

matrix are continuous in (x, t) on R^: a fit fix; a fix fib.

Lemma 4.2. If the functional j[g] defined by (4.3) be positive semi-definite for
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arbitrary vectors g whose components are continuous on ab, then K\(x, x — )

= K~i(x, * + ) on a fix fkb; that is, if K\{x, t) be taken as equal to this common

value along the line x = t, then the elements of K\ are continuous in (x, t) on

a fix, tfib. Moreover, the matrix K\{x, x) thus defined is symmetric and positive

semi-definite on ab.

For convenience, we write J[g] = J\ [g] + /2 [g], where Ji and Ji are the

integrals of the integrand of (4.3) taken over the above defined regions R\

and Ri, respectively. The integrals J\\h; g], Jz[h; g] are defined similarly.

Now consider a point (xo, x0) with a<xo<b. For an arbitrary constant vec-

tor go, denote by gk(x), (k = l, 2, ■ ■ ■), the vector whose components are

identically zero except on \x — x0\ fidk, where dk = c/k and c is the smaller of

the numbers x0 — a, b—x0, while on x0— dkfix<Xo we define gk = (l/<4)go, and

on Xofixfixo-\-dh we set gk = ( — \/dk)g0. Because of the continuity properties

of the elements of Ki as described above, it is readily calculated that

limk^x J1[gk]=0 = \imk^a3 Ji[gk], and consequently, \imk^„ j[gk]=0. Now

for a second arbitrary constant vector ho, define hk(x)=0 except on

Xo—dkfixfixo+dic, hk(x) = {l/dk)ho on this subinterval. Clearly there exists

a constant k such that H[hk]fiK, (k = l, 2, • • • ). Moreover, in view of the

positive semi-definite character of J proved in Lemma 4.1, we then have

{J[h;gk]}2fi J[h] J[gk]fiK.j[gk], (k = l, 2, ■ • ■ ), and hence lim*, „ j[hk; gk]

= 0. Again, using the continuity properties of the elements of K~i de-

scribed above, it is found that linu,*, Ji[hk; gk] = — ht>K~i(xo, x0+)go, and

lirm^ J2[hk; gk) =Ä0iT1(xo, x0 — )g0. Thus for arbitrary constant vectors ha,

go we have h0[K~i(xo, Xo — )—Ki(x0, x0+)]go = 0, and consequently Ki(x, x — )

— Ki(x, x+)=0 on a<x<b, whence it in turn follows that this relation is

also true at the end values a and b. In the following we shall write K\{x, x) for

this common limiting value along the line x = t. Returning to the above defined

sequence {hk\, we see that for a <x0 <b we have ih0K~i(x0, Xo)h0 = \imk^„ J[hk]

3:0 for arbitrary vectors h0. Hence, the matrix K~i(x, x) is positive semi-

definite on a<x<b, and by continuity this property holds on the closed inter-

val ab. The symmetry of this matrix follows from (4.4).

Clearly the above result applies to any positive semi-definite kernel matrix

Ki(x, t) such that K\{x, t) =Ki(t, x), and which possesses the continuity prop-

erties described immediately preceding the lemma.

Theorem 4.3. For an H-definitely self-adjoint system (2.1) the matrix B(x)

must satisfy the condition BB=0 on ab; in particular, the rank of B(x) at any

point of this interval cannot be greater than [n/2], the largest integer not exceeding

the value n/2.

Since for an 77-definitely self-adjoint system we have Kx{x, t)

= S(x)G(x, t)B(i), and as G{x, x — )—G{x, x-\-)=I on ab (see, for example,

[l, p. 578]), we have from Lemma 4.2 that Q=K^{x, x — )—Kx{x, x+)

= S(x)B(x) = T(x)B(x)B(x) on ab. As T is nonsingular, it then follows that
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BB=0 on this interval. Algebraically, it is readily seen that this condition

implies that at each point of ab the rank of B cannot exceed [n/2].

This result, which at first notice seems remarkable, first occurred to the

author in considering the results which will be presented in §8. Indeed, be-

cause of this relatively strong condition imposed upon B(x) by the ü-definite

self-adjoint character of (2.1), one might conclude that this class of boundary

value problems is too restrictive to be of great significance. That this is not so,

however, is borne out by the fact that this class of problems includes those of

the type discussed in §10. Moreover, the additional results obtained in §7

concerning systems which are definitely self-adjoint in the sense of Bliss also

show the significance of such problems.

- 5. Properties of ü-definitely self-adjoint systems. We shall now proceed

to establish some fundamental properties of systems (2.1) which are iJ-defi-

nitely self-adjoint.

Theorem 5.1. All the characteristic values of an H-definitely self-adjoint sys-

tem are real, and the corresponding characteristic functions may be chosen real.

Suppose X=Xi+( — 1)1/2X2, (X2^0), is a characteristic value of (2.1), and

y=m+ (— l)ll2v is a corresponding characteristic solution. Then y = u — (— 1) 1/2z;

is a characteristic solution of this system corresponding to the complex con-

jugate value X of the characteristic parameter. As X^ä, it follows from

Lemma 3.4 that H[y; y] =0. Since

jQju] = XiBu - \2Bv,     £[v] = \iBu + \iBv,      s[u] = 0 = s[v],

the vectors u, v belong to L. Consequently, in view of Lemma 3.1,

H[y\ y ~\=H\ii\ -\-H\v~\. It then follows from condition (iii)' and Lemma

3.2 that Bu = 0, Bv = 0 on ab; that is, u and v are individually solutions of

(2.1) for X = 0. It is then a consequence of Theorem 4.1 that w = 0, v = 0, which

is a contradiction to the assumption that y = u + ( — l)ll2v is a characteristic

solution for the value X. Hence all the characteristic values of an H-definitely

self-adjoint system are real, and because of the reality of the coefficients of

such a system the corresponding characteristic solutions may be chosen real.

In the future, when we speak of a characteristic solution of an H-definitely

self-adjoint system, it will be understood that this solution is real.

Theorem 5.2. //X is a characteristic value of an H-definitely self-adjoint

system, and y a corresponding characteristic solution, then H[y] >0 and J*ySy dx

has the sign of\.

Since, by Theorem 4.1, X = 0 is not a characteristic value, for a character-

istic solution y of (2.1) we have By^O on ab, and hence ij[y]>0 by (iii)'.

The rest of the theorem is an immediate consequence of (2.5).

Let Y(x, X) be a matrix whose columns are n linearly independent solu-

tions of the differential equations of (2.1), and whose elements are perma-
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nently convergent power series in X. Such a matrix is determined, for example,

by the initial condition Y(a, X) =7. By definition, the multiplicity of a charac-

teristic value of (2.1) is equal to its multiplicity as a zero of the characteristic

determinant \MY(a, X)+iVF(ö, X)|, which is a permanently convergent

power series in X. The index of X as a characteristic value of (2.1) is equal

to the number of corresponding linearly independent solutions of this system.

Theorem 5.3. For an H-definitely self-adjoint system (2.1) the index of a

characteristic value is equal to its multiplicity.

The proof is the same as that of Theorem 10 in Bliss [l], down to the

last equation on page 572. On the assumption that the result of the theorem

is not true, this equation states that there exists a characteristic solution y

of (2.1) such that JlySy dx = 0. This, however, is impossible in view of the

above Theorem 5.2.

Theorem 5.4. If the components of f are continuous on ab, and the condition

(5.1) f fSydx = 0
J a

is satisfied by every characteristic solution y of an H-definitely self-adjoint sys-

tem, then this relation is also satisfied by every vector y of L2.

In view of the preceding theorem, the condition (5.1) for all characteristic

solutions of (2.1) implies, as in the proof of Theorem 11 of Bliss [l], that the

nonhomogeneous system

(5.2) £[y] = \By + Bf,      s[y] = 0,

has a solution y{x, X) of the form

(5.3) y(x, X) = u0(x) + Xwi(z) + • • ■ + X"«„(a;) + ■ • • ;

the components of uu(x), (m = 0, 1, ■ • ■ ), are of class C1 on ab, and this series

converges absolutely and uniformly on any region of the form a fix fib,

|X| fip. Moreover, if we write w_i(x) =/(x) and vd(x) = T(x)uli(x), (p= —I, 0,

!,•••), then

(5.4) -Ck.] = Bu^i,        s[u„] = 0, ii = 0, 1, • • • ,

(5.5) M[v,] =- v,-iB, *[«,] = 0, v = 0, 1, • ■ • .

In view of the boundary conditions we also have

b nb

As

/to /*

m„_i5mm dx = I   uJSu^-x dx, p, v = 0, 1,
a "a

/» b b n b

Uy_iSul±dx= I   m„_i TBup dx = I   u,^iT£[u»+i] dx,
a Ja Ja
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/& /* b /» 6
m^Smm_i dx = I   utTBuß~i dx = I   u^Tj^u^ dx,

we have

H[u„-i; Up+i] = H[uv; u^}, p, v = 1, 2, • • • .

By Lemma 3.1 it also follows that H[uv; Un]=H[uß; «,]. Now set

W7,, = //[«o; «m]> = 0, 1, • • • .

By the above relations we have

JF„+„ = H[u>; uu], p, v = 0, 1, • • • ,

and it results from Lemma 3.3 that

(5.6) [W^]2 = [W^1)+iu+1)]2 ^ W2^2Wiu+2, ß = 1, 2, • • • .

Writing the differential equations of (5.2) in integral form, and employing

the uniform convergence of (5.3) in a region of the form a fix fib, |X| fip, it

follows that jQjy] is a permanently convergent power series in X given by

(5 7) -CM + x£{«i] + • ■ ■ + vvCM + • • ■
= Bf + \Bu0 + •••' + \"Bua-i + ■ ■ ■ .

From its specific form, it is seen that the series (5.7) has convergence proper-

ties of the sort indicated above for the series (5.3). Consequently, the series

(5.8) Wo + \Wl + \*W,+ • • ■ ,      Wo + \2W2 + ■ ■ • ,

the first of which is equal to H[u0; y], are permanently convergent power se-

ries in X.

If Wi^Oit follows from (5.6) that W2„^0, (ju = 1, 2, • • • ), and the second

series of (5.8) is seen to diverge for X = (W2/W4)112. Hence the permanent con-

vergence of this series is possible only if 0= W^-H^wi]- Condition (iii)' then

implies that Bux = 0 on ab. Moreover, by Lemma 3.3 we have H[y; ui] =0 for

arbitrary vectors y of L. As ^[mi] =Bu0, we may also state this condition as

/> b /* b
yfjQ\Ul\ dx = I ySuodx

a Ja

for arbitrary vectors y of L. In particular, for y = u0 we have

(5.10) I   UaSuodx = 0.
J a

Now suppose y is any vector belonging to the space L2, and g{x) is a vector

of L such that £[y] =Bg. By Lemma 3.1 we then have
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/i 6 r* 6ySf dx — I   UaSg dx
a J a

= I   ySf dx,
J a

in view of (5.9) and the fact that g is a vector of L. This completes the proof

of Theorem 5.4.

The above result for //-definitely self-adjoint systems is somewhat weaker

than the corresponding result for definitely self-adjoint systems (see Bliss [2,

Theorem 2.3]). Formally, this is true because the permanent convergence of

the second series of (5.8) does not imply that the constant term Wo of this

series is equal to zero; the failure to obtain this latter result is in turn a con-

sequence of the fact that we do not have an inequality of the form (5.6) for

^t = 0. If the convergence of the second series of (5.8) were to imply the vanish-

ing of Wo, by the argument used above we could proceed to show that the

hypotheses of the above theorem imply the relation (5.1) for arbitrary vectors

of the space L instead of merely for the vectors belonging to L2. That the

result of the above theorem cannot in general be thus strengthened, however,

is shown by the following example.

Consider the system

H =0, yi = - X6(x)yi.
(5.11)

yi(o) - y»(0) = o,    yi(i) + y2(i) = o,

where b(x) is a continuous function not identically zero on Oflxfi 1, and such

that

(5.12) b(x) dx = 0.(\(x)
J 0

It may readily be verified that this system is iZ-definitely self-adjoint with

the matrix

0 1

-1 0(5.13)

and, moreover, this system has no characteristic values. For this system,

therefore, the condition of Theorem 5.4 that (5.1) hold for every characteris-

tic solution imposes no additional restriction on a vector/= (/i(x), fi{x)) with

continuous components. Now

yi(x) m 1,       y,(x) = 1 - ^2 I j  b\t) dtj       b2(t) dt
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is a vector of the space L for this problem, and for this particular y we have

I   fSy dx = I   fi(x)b(x)yi(x) dx = I   fi(x)b(x) dx.
Jo Jo Jo

For certain continuous functions fi(x), in particular, for/i(x) = b{x), this ex-

pression is different from zero. Thus we see that in the statement of Theorem

5.4 the phrase "every vector y of L2" cannot in general be replaced by "every

vector y of L."

We shall now proceed to establish as corollaries-to the above theorem cer-

tain related results.

Corollary 1. If the system (2.1) is H-definitely self-adjoint and f(x) is a

vector of the corresponding space Lfor which condition (5.1) is satisfied by every

characteristic solution y of the system, then this condition is also satisfied by every

vector y of L; in particular, JlfSf dx = 0.

Let g{x) be a vector with continuous components such that J^[f]= Bg,

j[/]=0. For a characteristic solution y corresponding to a characteristic

value X we have

f  ySg dx = H[y; f] = H[f; y] = X f fSy dx,
Ja Ja

and thus the condition that/satisfies (5.1) with every characteristic solution y

implies that the vector g satisfies a like condition. It then follows from Theo-

rem 5.4 that Jly*Sg dx = 0 for arbitrary vectors y* of L2. Now for an arbitrary

vector y of L let y* denote the vector of L2 such that «£[y*] =By, s[y*] = 0.

Then

0 = f  y*Sg dx = H[y*; f] = H[f; y*] = f fSy dx,
Ja Ja

so that the conditions of the corollary imply (5.1) for arbitrary vectors y

of L. Since f(x) belongs to L, we have, in particular, fOfSf dx = 0.

Corollary 2. If the system (2.1) is H-definitely self-adjoint and f(x) is a

vector of the corresponding space L2 for which condition (5.1) is satisfied by every

characteristic solution y of the system, then B{x)f{x) =Q on the interval ab.

Let g{x) be a vector of L such that ^Qjf] =Bg, s [f] =0. Then by an argu-

ment similar to that used in the proof of Corollary 1 we have flySg dx = 0

for every characteristic solution y and hence, by Theorem 5.4, this condition

also holds for arbitrary vectors y of L2. In particular, for y=f we have

0= f fSgdx= H[f],
J a

and in view of (iii)' we have Bf=0 on ab.
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Corollary 3. If for an H-definitely self-adjoint system the condition

B(x)y(x)=0 on ab holds for a vector y of Lif and only if y(x) = 0 on this interval,

then if the components of f(x) are continuous and condition (5.1) is satisfied by

every characteristic solution of the system it follows that B(x)f(x) = 0 on the

interval ab.

In the proof of Theorem 5.4 it was established that the vector u\ of L

defined by (5.3) satisfies Bu\ = Q on ab. Under the strengthened hypotheses

of the corollary we consequently have «i=0, and it then follows from (5.4)

for n = 1 that Bu0 = 0 on ab. As Uo is also a vector of L it in turn results that

w0 = 0, and hence B(x)f{x) =Q on ab by equation (5.4) for p = 0.

For an H-definitely self-adjoint system the additional hypothesis of the

above corollary is clearly equivalent to the following: H[y] >0 for every non-

identically vanishing vector y of L.

6. Existence of characteristic values. In general an H-definitely self-ad-

joint system (2.1) does not possess an infinity of characteristic values. In

particular, the example (5.11) of the preceding section illustrates the possibil-

ity that such a system may have no characteristic values. It is also easy to

construct examples of such systems that have only a finite number of charac-

teristic values. We shall, therefore, consider in this section the possible char-

acter of the totality of characteristic values of an H-definitely self-adjoint

system.

Since for such a system the characteristic values are the zeros of a perma-

nently convergent power series, and the index of each characteristic value is

equal to its multiplicity, it follows that there can exist at most a denumerable

infinity of characteristic values. Let {y„, X„}, (ju = l, 2, • • • ), denote a maxi-

mal set of linearly independent characteristic solutions and corresponding

characteristic values, the former chosen orthonormal in the sense that

(6.1)

where 5„„ = 0 if p^v, 5W= 1. Such a choice is possible in view of Theorem 5.2.

Theorem 6.1. A necessary and sufficient condition that an H-definitely self-

adjoint system have at least k linearly independent characteristic solutions is that

the quadratic functional H[y] be positive definite on a linear subspace of L2 of

dimension k; that is, that there exist vectors f^x), (p = l, ■ ■ ■ , k), of L2 such that

for arbitrary constants (du • • ■ , dk) 5^(0, • ■ • , 0) the vector f(x) =fi{x)d\-\- ■ ■ ■

+fk(x)dk renders H\f] > 0.

For suppose that y„(x), (m=T> • • • » are linearly independent charac-

teristic solutions of such a system, and that these solutions are chosen ortho-

normal in the sense of (6.1). If XM denote the characteristic value correspond-

ing to y„, then forand arbitrary constants (di, ■ ■ • , dk) 9^ (0, ■ • • , 0) we
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have for each vector/ =fidi+ ■ ■ ■ +fkdk that H[f] = \\i\d\+ ■ ■ ■ + \\k\d2k>0.

Hence the condition of the theorem is necessary.

In order to prove the sufficiency of the theorem, suppose that there exists

a linear subspace of L2 determined by vectors fu •••,/* on which H[y] is

positive definite, while the system (2.1) has fewer than k linearly independent

characteristic solutions. It would then follow that there exists a set of con-

stants d\, ■ ■ ■ , die not all zero and such that the vector f=fidi+ ■ ■ ■ +fkdk

satisfies equation (5.1) with every characteristic solution y. Since/ belongs to

L2, it is then a consequence of Corollary 2 to Theorem 5.4 that Bf=0, and

hence H\f] =0 also, contrary to the assumption of the positive definite char-

acter of H[y] on the linear subspace of L2 determined by /i, • • • , fk. Hence

the condition is also sufficient.

We shall now give a particular sufficient condition for an //-definitely

self-adjoint system to have an infinity of characteristic values. This condition

has application for the special boundary value problem of §10. Suppose that

the matrices ^l(x) and B{x) satisfy the following condition.

(v) There is a subinterval aibi, a <a\<bi <b, of ab such that if a{ , bl are

arbitrary values satisfying a\fia( <b{ g&i, then there exists a vector g of L

and associated y of Z2 satisfying j£\y] —Bg, By ^0 on a[b{ , whereas y = 0 out-

side the given interval a{ b{ .

Theorem 6.2. If an II-definitely self-adjoint system satisfies condition (v),

then this system has infinitely many characteristic values.

For consider an interval a\bx on which the condition (v) is satisfied,

and for a given integer k divide a\b\ into k non-overlapping subintervals

Ai, • • • , A*,. Let y =/„ denote a vector of L2 satisfying the conditions of (v)

relative to A„, (ju= 1, • • • , k). Since Bf„^0 on AM, and/„ = 0 outside this inter-

val, it follows readily that //[fj >0, H[f,;f„] =0 for p^v, (p; v=\, ■ ■ ■ , k).

Consequently, for each f=fidi+ ■ ■ • -\-fidk we have i/[/]=//[/i] d\+ ■ ■ ■

-\-H\fk) dl, and by Theorem 6.1 the system (2.1) has at least k linearly in-

dependent characteristic solutions. Since k may be chosen arbitrarily, such a

system has infinitely many characteristic values.

Corresponding to a vector / we shall denote by c„[f] the Fourier coeffi-

cients

Clearly these coefficients are well-defined for a vector / whose components

are merely integrable on ab.

Lemma 6.1. // {yu, X„}, (p — i, 2, • • • ). denote a maximal set of linearly

independent characteristic solutions and corresponding characteristic values for an

II-definitely self-adjoint system (2.1), the former orthonormal in the sense of

(6.1), then for an arbitrary vector f of L,

p = 1, 2, • • • .
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(6.2) £| K\cl[f] fl H[f].

If /belongs to L, then for arbitrary integers k the vector/— Zes^fOOc,, [f]

is also in L, and
2,

0 < H f-Zy,

7. Definitely self-adjoint systems. In this section we shall consider sys-

tems (2.1) that are definitely self-adjoint in the sense of Bliss. A maximal set

of linearly independent characteristic solutions and associated characteristic

values for such a system will again be denoted by {y„(x), \u}, (p = 1, 2, • ■ ■ );

moreover, we shall assume that the former are chosen orthonormal in the

sense that

(7.1) I   y,JSyvdx = if,,, n, v = 1, 2, • ■ • .
J a

We also write

(7.2) e>[f] = f fSy>dx, p = 1, 2, • ■ ■ ,

for the Fourier coefficients of a vector/(x). It then follows from Theorem 3.1

of Bliss [2] that for an arbitrary vector / of L the series

(7.3) 4>(x) = Iy,(xK[f]

converges absolutely and uniformly on ab; moreover, B(x) [f(x) — <£(x)] =0 on

this interval.

Theorem 7.1. If (2.1) is definitely self-adjoint, then for arbitrary vectors f

of L we have

(7.4) H[f} = Z \4\f],        f"fSfdx = Z el[f].

The uniform convergence of the series (7.3) permits the evaluation of

H[f] as

H[f] = f fSgdx= f gSfdx

= I   gS<t> dx
J a

= Z eJsk[/J

= Z \el[f],



398 W. T. REID [November

where g is a vector such that £[f]=Bg; the last relation above is a conse-

sequence of the readily established equality eu[g] = X(1e(l[/]. Similarly

f fSfdx= f fS*dx='£el[f].
"a "a u

Theorem 7.2. Suppose that (2.1) is definitely self-adjoint and that the char-

acteristic values of this system are bounded below, moreover, let the set {yß(x), XM}

be so ordered that Xi :£» X2 ̂  • • • . If C\ denote the totality of vectors f of L satisfying

fafSf dx = \ and G is nonvacuous, then Xi is the minimum of Il[f] in this class;

moreover, this minimum is attained by a particular f of G if and only if

f= F1(x) + <J>i(x), where Yi is a characteristic solution for X =Xi and <b\isavector

of L such that B^i = 0. In general, i/Xi, • • • , Xm_i exist, denote by Cm the totality

of vectors f of L satisfying

/ib /» b

fSf dx =1,      eu[f] = I   fSyadx = 0, p = 1, • • • , m — 1.
a "a

If this class is nonvacuous, then Xm exists and is the minimum of H\f] in Cm;

moreover, this minimum is attained by a particular f of Cm if and only if

f= Ym{x) + $m(x), where Ym is a characteristic solution for X=Xm and $m is a

vector of L such that B<tm = 0 on ab.

The relations (7.4) clearly imply Il\f] ?:Xi in G whenever this class is non-

vacuous; furthermore, if Xi=X2= ■ • • =X3 <Xa+i, then the equality sign holds

ifandonlyif«l.|/]=0,(M = a+l, • ■ ■ )• If Y^x) =yi(x)e1[f]+ • • • +yt(x)et[f],
then $i(x) =/(x) — Fi(x) belongs to L and «„[$1] =0, (p = 1, 2, • • • ). Hence by

the second equation of (7.4), and the definiteness of 5 we have 5$i = 0on a&

(see also Bliss [2, Corollary 2.2]). In general, if Xi, • • • , Xm_i exist and the

class Cm is nonvacuous, it again follows from (7.4) that Xm must exist and

H[f] 3:Xm in this class. Moreover, if Xm=Xm+i= • • • =\m+p <\m+p+i, then the

equality sign holds if and only if eu[f]=0 for p>m+p. If we now define

Ym(x)=ym(x)em[f]+ ■ • • +ym+p(x)em+p[f], then <i>m=/— Ym is a vector of L

such that e^[4>m]=0, (ju = l> 2, ■ • •). Then, as above, it follows that .B'lv^O

on ab.

Theorem 7.3. If (2.1) is definitely self-adjoint and its characteristic values

are either bounded below or above, then without loss of generality this system may

be taken to be H-definitely self-adjoint; moreover, in this case BB = 0 on ab, and

the rank of B{x) does not exceed [n/2] at any point of this interval.

Suppose that the characteristic values are bounded below, and let Xo be a

number less than the smallest characteristic value, Xi. Then for an arbitrary

vector f of L the functional

H[f:\9] = j /2~ (£[/] - \oBf) dx = H[f] - X„ f fSf dx
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may be written, in view of (7.4), as

H[f:\0] = X (XM - \o)el[f].

Consequently, for / belonging to L we have H[f:\0] 0, and the equality sign

holds if and only if eu[f] = 0, (/x = 1, 2, • - - ). For a definitely self-adjoint sys-

tem, however, this condition implies Bf = 0 on ab in view of the second equa-

tion of (7.4) (see also Bliss [2, Corollary 2.2]). The replacement of H[f] by

i/[/:X0] is equivalent to a linear change of parameter in the boundary value

problem (2.1). Hence for a definitely self-adjoint problem whose characteris-

tic values are bounded below we may without loss of generality assume that

the functional H[y] satisfies the definiteness property (iii)'; that is, that the

system is iJ-definitely self-adjoint. By Theorem 4.3 it then follows that

BB=0 and the rank of this matrix does not exceed [n/2] on ab.

In case the characteristic values of (2.1) are bounded above then the re-

placement of X by —X, or the equivalent replacement of B(x) by — B(x),

transforms the given system into one whose characteristic values are bounded

below. The original system being definitely self-adjoint with T implies that

the new system is definitely self-adjoint with — T. Hence, by a linear change

of parameter and the replacement of T by — T the given system is reducible

to one which is iJ-definitely self-adjoint and the results of the theorem follow

from the preceding case.

In this connection, it is worthwhile to point out that certain specific repre-

sentations of "equivalent" boundary value problems may have individual

advantages. For example, consider the boundary value problem y"+Xy = 0,

-y(O) =0=y(ir). A maximal set of linearly independent characteristic functions

and associated characteristic values is {sin nx, n 2\, (n = l, 2, • • • ). If we

write this problem as y{ =y2, yl = —Xyi, yi(0) =0=yi(7r), then this system is

definitely self-adjoint and also //-definitely self-adjoint with the matrix

(5.13). On the other hand, y{ = py2, y{ = — pyi, yi(0) =0=yi(7r) is "equiva-

lent" to the given problem by setting X = p2. This latter system is definitely

self-adjoint with (5.13), but is clearly not //-definitely self-adjoint with this

or any other matrix T since the corresponding matrix B(x) is nonsingular.

The following result is an immediate consequence of Theorem 7.3.

Theorem 7.4. If (2.1) is definitely self-adjoint and B{x)B(x) ^0 on ab, then

this system has infinitely many negative, and also infinitely many positive, char-

acteristic values.

This theorem contains as a very special case the result of Theorem 4.3

of Reid [10]. To see this, suppose that B(x) has constant rank « — m on ab and

denote by 7T; = 7ria(x), (a = l, • • • , m), linearly independent solutions of the

equations B(x)ir = 0. From (2.4) it follows that f~lB = BT-1, and hence the

rank of |j7rs„(x) Tji1(x)Bjk(x)\\ is the same as the rank of || iria(x) Bu(x)T~jJ(x)\\,
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which in turn is equal to the rank of ||iria(a;) 5t,(x)|l- Now the rank of this

latter matrix is clearly equal to m if BB=0, and hence the hypotheses of

Theorem 4.3 of [10], which demand that the rank of this matrix exceed m at

some point x0 of ab, require that BB^O on ab. It is also to be noted that in

the above referred to theorem of [lO] it was not proved that the system had

infinitely many characteristic values of each algebraic sign, but simply that

the system had infinitely many characteristic values under the stronger hy-

potheses there stated.

In view of relations (7.4) we have the following result.

Theorem 7.5. A definitely self-adjoint system (2.1) has at least k characteris-

tic values if and only if JlfSf dx is positive definite on a linear subspace of L of

dimension k. Moreover, for a given constant Xo such a system has at least k char-

acteristic values greater [less] than Xo if and only if the functional H[f'.Xo] is

positive [negative] definite on a linear subspace of L of dimension k.

In the case of a definitely self-adjoint system for which the matrix B(x)

has constant rank on ab the first part of this theorem was deduced by Reid

[10, Theorem 4.1] from known results for an auxiliary problem associated

with the calculus of variations. Analogues of the above theorem for H-deü-

nitely self-adjoint systems are contained in Theorem 6.1 and Theorem 9.3.

8. A special definitely self-adjoint system. Suppose now that the bound-

ary value problem (2.1) satisfies conditions (i), (ii) and (iv) of §2 with a

matrix T(x). In this section we shall consider the associated system

(8.1) Cb].- XBi(*)y,      s[y] = 0,

where Bi(x) =B(x)T{x)B(x) =B(x)S(x). This problem is seen to be definitely

self-adjoint with the same matrix T(x). In the first place, in order to show that

(8.1) is self-adjoint with T it remains only to show that TBi-\-BiT = 0, and

this is true since TBTB+BTBT=(TB + BT)S = 0 by (2.3). If we set
Si(x) = f(x)Bi(x) =S(x)S(x), clearly conditions (ii) and (iii) are satisfied by

Si. Finally, since Biy = 0 implies yTBty =ySSy = 0, and hence 5y = 0 and

By = 0, condition (iv) for (2.1) implies the corresponding condition for (8.1).

Since a definitely self-adjoint problem has at most a denumerable infinity

of characteristic values, for the consideration of (8.1) one may assume without

loss of generality that X = 0 is not a characteristic value of this system. If

this condition is not true for the problem as written, it is attainable by a linear

change of parameter. We shall make this assumption in the following discussion.

If y is a characteristic solution of (8.1) corresponding to a value X, set

u(x) =S(x)y(x). In view of condition (iv) for (8.1) we have a^Oon ab. Then

jQjy] =\Bu, s[y] =0, and if G(x, t) denotes the Green's matrix for the incom-

patible system j£\y\ =0, s[y] =0, we have

y(x) = X f K(x, t)u(t) dt,
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where, as in §4, K(x, i)=G(x, t)B(t). In particular, it then follows that u(x)

is a characteristic solution, for this same value of X, of the linear vector in-

tegral equation

(8.2) u(x) = X f Ki(x, t)u(t) dt,

where, again as in §4, we have written K~i(x, t) = S(x)K(x, t). It also follows

from the comment after equation (4.4) that K~i(x, t)=Ki{t, x), and hence

(8.2) is of the type covered by the Hilbert-Schmidt theory of linear integral

equations. Conversely, if u is a characteristic solution of (8.2) for a value X,

and y is defined as the corresponding unique solution of «£[y ] = \Bu, s [y ] = 0,

it follows that u{x) =S(x)y(x) and y is a characteristic solution of (8.1) for

the same value of X. Hence, there is complete equivalence between the bound-

ary value problem (8.1) and the integral equation (8.2).

We shall denote by {y„, A„}, (<r= 1, 2, ■ • • ), a maximal set of linearly in-

dependent characteristic solutions and corresponding characteristic values of

(8.1), the former chosen orthonormal in the sense that

(8.3) I   y„5iyr dx = daT, a, t = \, 2, ■ ■ ■ .

Correspondingly, {u„ = Sy„ A,} is a maximal set of linearly independent char-

acteristic solutions and corresponding characteristic values of (8.2) satisfying

Jbau„uT dx = 8„T.

Finally, if g(x) is a vector whose components are continuous (or of Le-

besgue integrable square) on ab, and if / is defined by the system jQjf] =Bg,

s [/] = 0, it follows from (4.3) that

ff[/]=J  J* g(x)Ki(x, t)g(t) dx dt.

It is to be emphasized that the above defined vector / belongs to the linear

vector space L for the problem (2.1), but not necessarily to the"corresponding

space Li for the problem (8.1), since this latter space contains vectors/ which

satisfy with associated vectors g the differential system

(8.4) £[f] = BSg,      s[f] = 0.

In case the matrix B is nonsingular on ab the space Li is seen to be identical

with L. However, since in general L\ is a subspace of L and Biy = 0 on ab if

and only if By = 0 on this interval, the condition that (2.1) be //-definitely

self-adjoint clearly implies that (8.1) is also //-definitely self-adjoint.

The results of Bliss [2], and those of the preceding section, give properties

of the particular definitely self-adjoint system (8.1) on the space L\. We wish,

however, to go further and obtain properties of this system on the space L

corresponding to the boundary value problem (2.1). As pointed out above,
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one may always by a linear change of parameter, replacing X by a suit-

able X-j-Xo, insure for (8.1) that X = 0 is not a characteristic value of this

system. Now this change of parameter is equivalent to replacing A(x) by

A(x)+\nB(x)S(x).

Before proceeding further, it is to be emphasized that the space L, as

defined in §2, is invariant under this operation. This results from the

fact that for a given vector y whose components are of class C1 the

vector differential equation y'—Ay=Bg is equivalent to the equation

y'—Ay—\0BSy=Bgi by the transformation gi=g— X0Sy.

Corresponding to a given vector /, we set

/► & /• 6 /• b

fSiycdx, I   fSy,dx = I fu.dx,
a ■* a "a

a = 1, 2,

clearly these coefficients are well-defined if the components of /are integrable

on ab. Since the vectors u„ are orthonormal, the following result is an immedi-

ate consequence of Bessel's inequality.

Lemma 8.1. If the components of g{x) are of integrable square on ab, then

the series        [g] converges and

(8.5) g f ggdx.

Lemma 8.2. The series

(8.6) ±i—V, i-1,2,

converge on ab; moreover, if^cSl < + 00, the vector series

(8.V) E^ä.
A,

converges absolutely and uniformly on this interval.

Since

= f K(x, t)u.(t) dt,
J a

it follows that for a fixed value of x each row of K(x, t) is a vector satisfying

the conditions of Lemma 8.1. Hence the series (8.6) converges; moreover, in

view of (8.5), there clearly exists a constant k such that sum of the series (8.6)

does not exceed k in value on ab. If X<X<+ 00, the absolute and uniform

convergence of (8.7) on this interval is a consequence of the inequalities
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!-is[i{^}r-ris:f
r-N+h -11/2

Theorem 8.1. For an arbitrary vector f of L the series

(8.8) <b(x) = Z y.(*)d.[f]
a

converges absolutely and uniformly on ab; moreover, B{x) [f(x) —<f>{x) ]=0 on this

interval. For an arbitrary vector h(x) whose components are integrable on ab,

(8.9) f hSfdx= IX[Ak[/];
"a a

in particular,

fSifdx = E^l/J,
a c

(8.11) H[f] = Z Kdl[f}.
a

If £[/] = Bg, s[f] =0, it follows from  (8.1)  that A^Lf] =
(<r = l, 2, • • • ), and the absolute and uniform convergence of (8.8) is a con-

sequence of Lemmas 8.1 and 8.2. Clearly, yj/(x) =S(x) [f(x) — <f>(x) ] satisfies

[1/0 = 0, (<r = 1, 2, • • • ). We will now show that also

(8.12) j Kx{*i t)t{t) dt = 0.

Let/* be the solution of £[f*] =BJ, s[f*] =0. Then by Theorem 3.1 of Bliss

[2] the series ^>*(x) =Z„yir(x) d„[/*] converges absolutely and uniformly on

ab, and Bi[f*—<j>*]=0 on this interval. This latter condition, in view of the

first paragraph of this section, implies S[f* —</>*] =0. Consequently, since

AX[/*]=^[/], (a-1,2, ■ • • ), we have

0 - S(x) [/*(*) - E <U/]] = J " dt,

the latter relation being verified by direct computation. Finally, as

Hx) = f g(t)Kx(t, x) dt - ur(x)d.[f],
J a a

it follows from (8.12) and 5„[^]=0, (<r = l, 2, • ■ • ), that J"M dx = 0, and

hence ^0on ab. In particular, 0 = f^Stf-^] =B [f-</>].
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Equations (8.9) and (8.10) are ready consequences of the relation5f=5^>

and the uniform convergence of the series <t>. Relation (8.11) in turn results

from (8.9), the conditions AX[/] = 5„[g], and H[f}= fgSf dx.
In view of (8.10) we also have the following result.

Corollary 1. A vector/ of L satisfies fafSiy dx = Q with every characteristic

solution y of (8.1) if and only if Bf=Q on ab.

Corollary 2.2 of Bliss [2], when applied to the system (8.1), would imply

the result of the preceding corollary for vectors / belonging to L\, instead of

to the space L.

Corollary 2. If the vector f belongs to L, andf* in turn satisfies ■£[/*] = Bif,

s[f]=0, thenf*{x) =2>»(«)

In view of the uniform convergence of the series (8.8) associated with /,

and the relation Aedt\f]=d<r\f], (<r=l, 2, • • • ), we have

f{x) = f K(x,t)S(t)f(t)dt
" a

- E j f K(x, l)S(t)y,(t) dl\ d. l/j

= Ey,(iK[/*].

It is to be mentioned that the above relation Sf =^cua5c [Sf] =^_,aua d, [f]

for a vector / of L, and the subsequent proof of (8.10), (8.11), could have

been taken directly from the Hilbert-Schmidt theory of integral equations.

However, by the above treatment we have proved more; namely, the absolute

and uniform convergence of the series (8.8) involving the characteristic solu-

tions of the considered boundary value problem (8.1).

If the characteristic values of (8.1) are bounded below, for this particular

problem the result of Theorem 7.2 may be strengthened in that the space L

for the problem (2.1) may essentially be substituted for the space L\ belonging

to (8.1). For suppose that the characteristic values are bounded below and

that {y„, A,} are so ordered that Ai = A2 f= ■ ■ ■ . If T\ denote the totality of

vectors / of L satisfying ffSif dx = \ and Ti is nonvacuous, it follows from

(8.10), (8.11) that Ax is the minimum of H[f] in Ft; moreover, in view of Cor-

ollary 1, it follows by an argument similar to that used in the proof of Theorem

7.2 that this minimum is attained by a particular / if and only if/= Yi~\-$u

where Y\ is a characteristic solution of (8.1) for X=At and $i is a vector of L

such that B^\ = ^. In general, if Ai, • • • , Am-\ exist for (8.1), let rm de-
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note the totality of vectors f of L satisfying JlfSif dx=\, d,[f]=0,
(<r = l, • • • , m — 1). If this class is nonvacuous, we have by a correspond-

ing argument that Am exists and is the minimum of H[f] in Tm; moreover,

this minimum is attained by a particular / of Tm if and only if / is of the

form Ym + &m, where Ym is a characteristic solution for X=Am and 3>m is a

vector of L satisfying B$m = 0 on ab.

From the above Corollary 1 and equation (8.11) we deduce the following

theorem.

Theorem 8.2. A system (2.1) which satisfies conditions (i), (ii) and (iv) of §2

also satisfies condition (iii)', and is consequently H-definitely self-adjoint, if and

only if the corresponding system (8.1) has no characteristic values A satisfying

A = 0.

It is to be emphasized that there is no assurance under the conditions of

this theorem that the system (8.1) shall have any characteristic values. For

example, the system

y> = 0,      yi = - \yu      yi(0) = 0 = y2(l)

is not only definitely self-adjoint (Bliss [2, p. 427]), but also H-definitely

self-adjoint with the matrix (5.13), whereas this system has no characteristic

values. Moreover, the corresponding system (8.1) is identical with the given

system and thus possesses no characteristic values.

If an H-definitely self-adjoint system has k linearly independent charac-

teristic solutions it is a consequence of Theorem 6.1 and formula (8.11) that

the corresponding system (8.1) has at least k linearly independent character-

istic solutions. In general, however, when (2.1) is H-definitely self-adjoint

the corresponding system (8.1) may have more linearly independent charac-

teristic solutions than the original system. To illustrate this possibility, con-

sider the example (5.11) where, as in §5, it is supposed that PQb{t) dt = 0. The

corresponding system (8.1) is

yi = 0, yi = - Ab2(x)yi,

VM ~ y»(0) - 0,      yi(l) + y,(l) = 0,

and this system is seen to have the single characteristic value A = 2/J\bi{t) dt

of index one, whereas the original system (5.11) has no characteristic values.

Theorem 8.3. For an H-definitely 'self-adjoint system (2.1) there exists a

constant d>0 such that the inequality

(8.13) f fSifdx = dH[f]
" a

holds for arbitrary vectors f of L.
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If the corresponding system (8.1) admits of characteristic values, then in

view of Theorem 8.2 and the minimizing properties of the characteristic val-

ues, inequality (8.13) holds for d the reciprocal of the smallest characteristic

value. If (8.1) possesses no characteristic values, then Bf=0 on ab for every

vector/ of L, the two integrals appearing in (8.13) are individually zero, and

in this case d may be chosen as an arbitrary positive number.

Since for an //-definitely self-adjoint system (2.1) the elements of the

matrix Ki(x, t) are continuous on a fix, tfib, and the quadratic functional

(4.3) is positive semi-definite for arbitrary vectors g, we have the following

theorem of Mercer (Mercer [8]; also, for example, [3, p. 456]).

Theorem 8.4. If (2.1) is H-definitely self-adjoint the series

L ... ^ «*(*)«*(<) . .(8.14) 2-»- i, j = \,2, ■ ■ ■ , n,
, A„

converges absolutely and uniformly on a fix, tfib and has the sum Km(x, t).

9. Further results for //-definitely self-adjoint systems. The conclusions

of the previous section will now be used in the proof of additional results for

an //-definitely self-adjoint problem (2.1). For such a problem let Ci denote

the totality of vectors / of L satisfying the condition

fSfdx = 1.

Theorem 9.1. If for an H-definitely self-adjoint problem (2.1) the class G

is nonvacuous, then this system possesses positive characteristic values; moreover,

the smallest positive characteristic value is the minimum of H\f\ in the class C\.

If the class G is nonvacuous, let Xi denote the greatest lower bound of

H[f] in this class; it then follows that

H[f:Xi] as H[f] - 3ii f fSfdx = 0
J a

for arbitrary vectors / of L. In view of relation (2.5) for a characteristic solu-

tion, there is clearly no positive characteristic value of (2.1) less than Äi.

Hence we have only to prove that Xi is a characteristic value.

Theorem 9.1 will be established by indirect argument. Let fm = (Jim),

(m = i, 2, • • ■ ), be a sequence of vectors of G such that lim™^ H[fm]=0*i;

on the assumption that G is not empty such a sequence exists. Now suppose

thatX = Xi is not a characteristic value; then there exist unique corresponding

vectors hm(x) such that

(9.2) £[hm] - XxBhm = Bfm,      s[hm] = 0, m = 1, 2, • • • .
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Moreover, if G(x, f.Xi) denote the Green's matrix for the incompatible system

£[y]—\iBy = 0, s[y] = 0, we have

hm(x) = f H(x, t:X0S(fif»(t) dt, m = 1, 2, • • • ,
J a

where H(x, f.X\) = G(x, f.Xi)T~1(t). By an elementary vector inequality,

norm
/> b /% b

norm {S(t)fm(t)} dt = k I [fJS-f^dt,
a "a

for k a suitable constant depending only upon the bounds of the elements of

H(x, f.Xi) on afix, tf=b. By the use of Schwarz' inequality and Theorem 8.3

it then follows that

(9.3) norm {hm(x)\ ^ k{(6 - a)dH[fm]}1/2.

In particular, since \fm} is a minimizing sequence of G, the sequence {i/[/m]}

is uniformly bounded and there exists a constant Ki such that

(9.4) f   [norm {hm(x)}]2dx g ku m = 1,2,   • • .
j a

Now set gm{x) =fm(x)-\-c hm(x), (m = l,2, ■ ■ ■ ), where c is a real constant.

Then gm is a vector of L, and

k„:a.i] = ff[/*:3li] + 2cH[fm; k*:Xi] + cmlhm:^}

= H[fm:'Xi\ + 2c + c2 I   Ä^S'/m dx,

in view of (9.2) and the fact that/OT belongs to the class G. Now

I   hmSfm dx\ i~ I    [norm {/?„,}]■ [norm \Sfm\\dx
\j a I        j a

1 /•6
fk — I    [hmhm + fmSifm] dx

2 j a

^—(k1 + dH[fm]),

by (9.4) and Theorem 8.3. Consequently, since {i/[/m]} is uniformly bounded,

there exists a constant k2 such that

I hm>Sfm dx
I j a

m = 1, 2,

Now let c be a value such that 2c+c2k2<0; that is, 0>c>—2/k2. As
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limm,M H\fm'Xi] =0, for m sufficiently large it follows that H[gm:Xi] <0, con-

trary to the definition of Xi. Hence Xi is a characteristic value and the theorem

is proved.

Let C-i denote the totality of vectors / of L satisfying

If the matrix B(x) is replaced by — B(x), then the class C_i for the original

problem corresponds to the class G for the modified problem; clearly such a

substitution does not affect the //-definite self-adjointness of the problem.

Hence we have the following result.

Corollary. If for an H-definitely self-adjoint problem the class C_i is non-

vacuous, then this system possesses negative characteristic values; moreover, ifX-i

denote the largest negative characteristic value, then —X-i is the minimum of

//[/] in the class C_i.

For convenience, in the remainder of this section we shall denote the total-

ity of positive characteristic values of (2.1) by {xm}, (m = l, 2, • • • ), each

repeated a number of times equal to its multiplicity and ordered so that

XifiXifi ■ ■ ■ . Similarly, {X_m}, (m = l, 2, • • • ), denotes the totality of nega-

tive characteristic values, each repeated a number of times equal to its multi-

plicity and the set ordered so that Ä._i=ä._2= • • ■ . Corresponding to X

we shall associate characteristic solutions ym, y_m, respectively, such that

{ym, y-m), (m = l, 2, ■ • ■), is a maximal set of linearly independent solu-

tions orthonormal in the sense of (6.1). Clearly either one, or both, of the se-

quences \ym, Xm), {y-m, X-m} may be vacuous or consist of only a finite

number of characteristic values and associated characteristic solutions.

Using the above notation, if Xi, ■ • ■ , XB-i exist we shall denote by C„ the

totality of vectors/of / such that

Similarly, if X-i, • • • , J.-(s-d exist the class C_s is defined as the totality of

vectors / of / satisfying

m = 1, 2, ■ • ■ , s — 1.

i» = 1, 2 , • • • , s — 1.

Theorem 9.2. If for an H-definitely self-adjoint system the class C8 [C_s]

is nonvacuous, then the characteristic value Xs [X-s ] exists; moreover, Xs [ — X-s ] is

the minimum of H[f] in the class Cs [C_s].

In view of the artifice used in deducing the above corollary, it suffices to

restrict our attention to the case of positive characteristic values. The result
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of the theorem might be established by an argument similar to that utilized

by the author [7] in proving a corresponding result for special boundary value

problems associated with the calculus of variations. However, the following

method, which has also been used in considering accessory boundary problems

of the calculus of variations, seems more elegant.

Consider the auxiliary boundary problem involving n-\-2(s — 1) variables

(y, u, v) = (ji, ua, va), (*=1, 2, ■ • • , «; a=l, 2, • • • , 5 — 1), and consisting

of the differential equations and boundary conditions

y'i = Aij{x)yj + Bij(x)yiß(x)uß + \Bij(x)yh

W«   = 0,

Va — yia(x)Sij(x)y];

MiSyM + Nijyj{b) = 0,

va(o) = 0,

va(b) = 0,

where the indices a, ß range from 1 to s — l. If capital German letters denote

the matrices of (9.5) corresponding to A, B, M and N of the system (2.1),

we have

(9.5)

21 =

m =

A ii       Bijy,g 0,0

0aj 0aß 0aß

yiaSij   0aß 0aß

Ma Oiß 0iß

0aj 0aß Saß

0O)      0aß 0aß

=

Bfj Oiß Oiß

0«/ 0aß 0aß

0aj 0aß 0aß

Nij Oiß Oiß

Oai 0aß 0aß

0aj 0aß 5aß

This system is seen to be self-adjoint with the matrix

X =

Tij Oiß

0aj O«0

0aJ- daß

0iß

— Saß

0aß

where J' = ||r<,j| is the matrix with which (2.1) is //-definitely self-adjoint.

Condition (ii) of §2 is seen to be satisfied by this system. Since -C[y«] =XaBya,

s[ya] =0, (a= 1, • • • , s — 1), it also follows readily that if (y, u, v) is a charac-

teristic solution of (9.5), then w„ = 0, (a = l, • • • , J — 1); moreover, for such a

characteristic solution on ab. In particular, for X = 0 this result implies

that whenever condition (iv) is satisfied by (2.1) this condition also holds for

(9.5). Finally, if (y, u, v) belongs to the corresponding linear vector space 8

for (9.5), then y belongs to the space L for (2.1); also, for such (y, u, v) the

corresponding functional H[y, u, v] reduces simply to //[y]. Therefore, con-
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dition (iii)' for (2.1) implies the corresponding condition for (9.5), and if (2.1)

is H-definitely self-adjoint so also is the latter system.

Now if / belongs to the class C, for (2.1), the set {/*, «a=constant,

Va=JaTyM)S{t)f(t) dt] belongs to the corresponding class Si for (9.5); con-

versely, if (fi, ua, va) belongs to Si the vector / belongs to C8. In particular,

C„ is vacuous if and only if 6i is vacuous. If 6i is nonvacuous, then by Theo-

rem 9.1 the minimum of H[y, u, v] =H[y] in this class exists and is the small-

est positive characteristic value of (9.5). Since, as pointed out above, for a

characteristic solution of (9.5) we have u = 0, y^O, it follows that the smallest

positive characteristic value of (9.5) is a characteristic value for (2.1). It is

obvious that the characteristic value thus determined is equal to Xe according

to the previously introduced notation.

We are now in a position to derive a result which is complementary to

that of Theorem 6.1.

Theorem 9.3. A necessary and sufficient condition that an H-definitely self-

adjoint system have at least k positive [negative] characteristic values, where it is

to be understood that each such value is counted a number of times equal to its

multiplicity, is that the quadratic functional JafSf dx be positive [negative] defi-

nite on a linear subs pace of L of dimension k.

For suppose that positive characteristic values • ■ • • , Xu exist for such

a system (2.1), and thatyi, • • • , yk are corresponding orthonormal character-

istic solutions. Then for arbitrary constants (dj, ■ ■ • , dk)j^(0, • • ■ , 0) we

have for f=yid!+ ■ ■ ■ +yhdk that ftfSf dx = d\+ ■ ■ ■ +dl>0. On the other
hand, if fafSfdx is positive definite on a linear subspace of / of dimension

k, then the classes C\, • ■ • , C* as defined above are seen to be nonvacuous

and (2.1) has at least k positive characteristic values. Again, in view of the

possibility of replacing B by —B, the result for negative characteristic values

is a ready consequence of the result for positive characteristic values.

We shall now give a particular condition which is sufficient to insure that

an //-definitely self-adjoint system (2.1) has infinitely many characteristic

values of a given sign. We shall denote by (v+) the following hypothesis.

(v+) There is a subinterval a A, a <ai <bi <b, of ab such that if a{, b{ are

arbitrary values satisfying ai=öi <b{ S»6i, then there exists a vector g{x)

and associated/(x) satisfying =Bg for which/=0 outside a{b{, whereas

fabfSfdx>0.
The condition obtained by replacing in (v+) the relation "fafSf dx>0" by

"fafSfdx<0" will be referred to as (v_). Using the device of the proof of

Theorem 6.2, and the result of the above theorem, one obtains the following

conclusion.

Theorem 9.4. If an H-definitely self-adjoint system (2.1) satisfies hypothesis

(v+), then this system admits infinitely many positive characteristic values. Simi-
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larly, if such a system satisfies condition (v_), there exist infinitely many negative

characteristic values.

In agreement with our modified notation for the characteristic values and

solutions of an //-definitely self-adjoint system (2.1), we write

I X \ Cb
cß[f] = —— I   fSy, dx,   m = 1, - 1, 2, - 2, • • • .

Xß    J a

Theorem 9.5. For an arbitrary vector f of L,

(9.6) fbfSfdx=  £ i^-c*[/];

moreover, if f and h are vectors of L,

(9.7) f fShdx= £ ^-cß[f]Cll[h].
v a M=—w Xu

In view of Theorem 9.2, relation (9.6) is readily seen to be true if (2.1)

admits only a finite number of characteristic values. We shall prove this rela-

tion for the case in which this system has infinitely many positive, and also

infinitely many negative, characteristic values; the modification in the proof

whenever the system has only a finite number of characteristic values of one

sign is obvious.

Corresponding to a vector / of L and a given positive integer k, set

fh=f— HI—ky*(x) cf.Lfl- Then c„[/*] = (), (ji = —k, ■ ■ • , k), and by the mini-
mizing properties of the characteristic values of (2.1) we have

H[fk] = Xk+i f ftSfkdx = 0
" a

if JafkSfk dx^O; whereas

H[fk] = X-k-i f fkSfkdx ^ 0
" a

if JafkSfk dx = 0. Consequently,

If*     ,   < B[fth
I   fkSfkdx   :£ max <->-> .

\J a V Xk+1 X—k—l)

Moreover, since

0 fk H[fk] = H[f\- £ I A,|c*[/] ^ H[f],
V-*

it follows that
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fhSfkdx = I   fSfdx — lim £ —~cf[/]-
a «Ja *->«> M=-t ^

Since the series involved in (9.6) clearly converges absolutely, this relation

is established. Relation (9.7) is then immediate since if / and h are vectors

of L, so also are/+Ä and/ — h, and

f fShdx = ^f (/ + h)S(J + h)dx - f (/ - h)S(f - h)dx

c„[/± h] = Cß[f] + c,[h].

Corollary 1. If f is a vector of L2 then the equality sign holds in (6.2),

that is

(9.8) H[f] = £ \^\cl[f].
U=*—00

Let h be a vector of L such that =Bh, s[f] = 0. Since 3lmc„[/] =c„[ä],

(ju = 1, — 1, 2, — 2, • • • ), this corollary is a consequence of (9.7) and the rela-

tion H[f] = /^/5ä ax.
It is to be noted that in general we do not have relation (9.8) for arbitrary

vectors / of the space L. This fact is shown by the example (5.11), in view of

the comment immediately preceding Theorem 8.3. We do have, however, the

following result.

Corollary 2. If the class Cs, (s= 1, — 1, 2, — 2, ■ • • ), is nonvacuous for an

H-definitely self-adjoint system (2.1), then the minimum of H[f] in this class

is attained by a particular f of C„ if and only if f= Ys{x) + $s(x), where Y,(x)

is a characteristic solution for X = 3.„ and <3>s is a vector of L satisfying B$, = 0

on ab.

By the use of inequality (6.2), relation (9.6), and an argument similar to

that employed in the proof of Theorem 7.2, we have that if / is a vector of a

nonvacuous class C„ which renders H[j] its minimum value in this class,

then/= F.+ ^s, where F.is a characteristic solution of (2.1) for X = ^.„ and

is a vector of L such that cM[<l>s] =0, (m = L —1,2, —2, • • • ). It then follows

from Corollary 1 to Theorem 5.4 that ffäsSy dx = 0 for every vector y of L

and thus, in particular, /*$85$s dx = 0. Then

0 = H[f; Xs] = H[YS:XS] + 2//[$s; F.: ls] + H[$s:ls]

= #[*8::xs] = ff[$8],

and hence B(x)$,(x) =0 on ab by condition (iii)'.

Theorem 9.6. If (2.1) is H-definitely self-adjoint and we write vu(x)

= S(x)yß(x), (ft = l, —1, 2, — 2, • • • ), then each of the series
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(9.9) E     I    ,J , i- 1,2, ■••,»,
1^1

converges and its sum does not exceed K~ui(x, x) on ab. For fixed values of one of

the variables x, t, each of the series

(9.10) Z     ,   :   , t,y- 1,2,..;
M=—00 I ^f I

converges absolutely and uniformly in the other variable on ab. Finally, for an

arbitrary vector f of L the vector series

(9.11) £
f=>—«3

converges absolutely and uniformly on ab.

Corresponding to an arbitrary vector g(x), define / by =Bg, s[/]=0.

Then for an arbitrary integer k,

o = #[/- £jw,rj]l
L      \„\s» J

/'b  Cb        ( v- (x)v ■ (i)}
gi(x) \ KuAxt o - Z    u I   r <**

If IS*

(9.12)

Applying the argument of Lemma 4.2 to the double integral of (9.12), it fol-

lows in particular that

2^ -i-j— = Kmix, x)

for each integer Hence the series (9.9) converges and its sum does not ex-

ceed K~ui(x, x). Since the sum of this series is uniformly bounded on ab,

Cauchy's inequality insures that each of the series (9.10) converges absolutely

and uniformly in each of the variables on ab for fixed values of the other vari-

able. In particular, each of these series defines a function which is continuous

in each of the variables x, t separately on ab. Since for an arbitrary / of L the

series £f I ̂ -f I c£[/] converges, the absolute and uniform convergence of (9.11)

is a consequence of the uniform boundedness of the sum of the series (9.9) on

ab and Cauchy's inequality.

The proof of the above convergence properties of (9.9), (9.10) parallels

that of corresponding results (see, for example, [3, p. 456]) used in establish-

ing Theorem 8.4 for the boundary problem (8.1). We are unable to prove for

(2.1) a result as general in character as Theorem 8.4 gives for system (8.1),

however, since for an i7-definite self-adjoint system we do not in general
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have that relation (9.8) is valid for arbitrary vectors / of L. When this latter

condition is fulfilled for a particular H-definite self-adjoint problem it then

follows that the sum of the series (9.10) is Kuj{x, t); in particular, the sum

of (9.9) is K~ui(x, x), by Dini's theorem the convergence of this latter series

is uniform on ab, and it then follows that the series (9.10) converges absolutely

and uniformly in (x, t) jointly.

Theorem 9.7. For a vector f of L relation (9.8) holds if and only if

00 , 00

(9.13) S(x)f(x) = X S(x)yß(x)c[f] m £ vu(*)c„[/].
U=—GO fi~—0O

From the above theorem we know that the right-hand member of (9.13)

converges absolutely and uniformly on ab, and hence defines a vector whose

components are continuous on this interval. If j£[f]=Bg, s[f]=0, and rela-

tion (9.13) holds for/, then

B[f] = f gSfdx = £ c„[/] C gSyßdx = jt M4\f],

since cu[g] = ^vc(1[/]. On the other hand, if we define fk{x) = f{x)

~H\f\Sky„(x) c„[/], relation (9.8) is equivalent to the condition \imk^„ H[fk\

= 0, whereas (9.13) is equivalent to F{x)=\\mk^x S(x)fk(x) =0. In view of

relation (8.13) for/* it then follows that if (9.8) holds for a vector/then the

associated vector Fis identically zero, that is, relation (9.13) is also valid.

Since the matrix T is nonsingular, it is clear that relation (9.13) holds for

a particular / if and only if the series Z«-®(a:)jrf (*OC0 [/] converges absolutely

and uniformly on ab, and

00

(9.14) B(x)f(x) = £ B(x)yß(x)cAf}.
U=—00

Corollary. If f is a vector of L2, then the series <f>(x) =Hny>'(x) c„[/] con-

verges absolutely and uniformly on ab, and B(x) [fix) —<p(x) ] =0.

Corollary 1 to Theorem 9.5 and Theorem 9.7 implies that relation (9.13),

and hence (9.14), holds for such an/. We have, therefore, only to prove the

absolute and uniform convergence of the series 0. Let h{x) be a vector

of L such that £[f]=Bh, s[f]=0. Now since h belongs to L, the series

Hn'B(x)yß(x)cil[h] =HßB(x)y^(x)^-i' cc[/] converges absolutely and uniformly

on ab. Hence the corresponding convergence of <f> is a consequence of

*(*) = Z { f G(x, t)B(t)yß(t) <f*j W/]

= f G(x,t)\ £ B(t)yß{t)cß[h][dt.
J a Vu=—oo /
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In conclusion, we shall prove the following general expansion theorem.

Theorem 9.8. If for an arbitrary vector f the series X^M-k^x) ccLf] con~

verges uniformly and satisfies relation (9.14) on ab, then for f*(x) defined by the

system £[f*]=Bf, s[f*]=0, the series Ze^eM ceLf*] converges uniformly on

this interval tof*(x).

This result is an immediate consequence of the relations

f*(x) = f G(x, t)B(t)f(t) dt
J a

= e I f^^, t)B(t)y,(t) dtlcAf]
H=—oo   \ J a )

H=— 00      "M jU= -oo

10. A boundary problem of the calculus of variations. We shall now con-

sider a system of the form (2.1) associated with the problem of Bolza in the

calculus of variations. The symbols v = (rji), r)' = (?;/) will denote the func-

tions [t7i(x), • • • , ?7»(x)] and the set of their derivatives, respectively. Let

(10.1) /[„] = 2Q[v(a),v(b)] + fbMx,ri,T,')dx,

where <o and Q are quadratic forms in the In variables r),, jj/ and 77,(0), r}i(b),

respectively. The functional J[rj] is of the form of the second variation of a

problem of Bolza. The boundary value problem to be considered consists of

the Euler-Lagrange differential equations and transversality conditions for

the problem of minimizing J[t]] in a class of arcs r} = r}{x) which satisfy a set

of ordinary linear differential equations of the first order

(10.2) $„(x, t), 7;') = ^ari(x)vi + $a,i(x)'7.- =0, a = 1, • • ■ , m < n,

the linear homogeneous end conditions

(10.3) ¥Tfo(a), v(b)] = Vy.ia-nAa) + = 0, y = 1, ■ ■ ■ , p fk 2n,

and which render a fixed constant value to the integral

(10.4) f 7U^ii(x)Vidx.
J a

For the general problem of Bolza the second variation may be written as

(10.1) if one includes in the set i) not only the variations of the dependent

functions in the original problem of Bolza, but also two additional functions

representing the variations of the end values; these latter two functions are

further restricted by including in (10.2) two additional differential equations

which require them to be constant on ab.
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(10.5)

Throughout the present section the following subscripts have the ranges in-

dicated k = l, ■ • ■ , n;a, ß = l, ■ ■ ■ ,m;a, r=l, • • • , 2n;y, v = \, • ■ • , p;

6, 0 = 1, • • • , In —p. Partial derivatives of co(x, 77, tt), $a(x, 77, tt) with respect

to the variables rji, iTi will be denoted by writing these variables as subscripts;

correspondingly, derivatives of Q and ^y with respect to the arguments 17.(0),

17,(0) will be denoted by (?,<,, ~^y-ia, Qa, ^y-ib, respectively.

The analysis of this section is based on the following hypotheses.

(Hi) The coefficients of the quadratic form u>{x, 77, tt) and the linear forms

$a(x, ?7, 7r) are real single-valued functions of x on ab. The functions

wTiXj., Wx;,,., $axy are of class C1, while the functions jt„,„ Ä,-,-=Ä,-i are

continuous on this interval. Finally, the matrix ||4>ax,-(a;)|l is of rank m on ab,

the coefficients of the quadratic form Q and the linear forms ^7 are real con-

stants, and the matrix |J 1Jr-)..,-a^Err.y&jJ has rank p.

(H2) The matrix

is nonsingular on ab.

An arc 77 will be termed differentially admissible if its components rn(x) are

of class D1 on ab, and satisfy 3>a = 0 on this interval. An arc whose end values

at a and 6 satisfy <&y = 0 will be called terminally admissible; finally, an arc

which is both differentially and terminally admissible will be said to be ad-

missible.

(H3) There exist p differentially admissible arcs 77,-= 77^, such that the de-

terminant I ̂  [t7„(o), rjv(b)} I is different from zero.

For arbitrary constants pa define

(10.6) Q(X, 77, 7T, /i)  = u(X, 7?, TT) + Ha$a(x, 7?, t) .

Under the hypotheses (H^, (H2), (H3) it follows from the theory of the prob-

lem of Bolza that if 77(x) is a minimizing arc for the above defined calculus of

variations problem, then there exist multipliers X = constant, pa=fia(x) such

that the set [t7,(x), pa(x), X] satisfies the differential equations

(10 7)       (d/dx)QT((x> V, 77', aO - Üf{(x, 77,77', m) + XÄi/(*)t7i = 0,

3>a(x, 77, 77') = 0;

moreover, there exist constants dy satisfying

Qiaiv] + dy^r,ia - 0,,(x, 77, 77'. p) T   = 0,

(10.8) Qib[v] + <MV.« + M*. V, 77', m) I*""' = 0,

*T [77(a), 77(6)] = 0.

As (10.5) is nonsingular, the set of m-\-n equations

(10.9) fi =  üx{{x, 77, tt, ß),      $a{x, 7J, 7r)  = 0,      « =  1, ■  ■ •  , OT% =   1, •  ■  •  , m,
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has unique solutions

(10.10) TT, = 2Ii3(a:)i73- + S3 ,■,•(*)? j, ßa = lai(x)Vi + wOJ(x)f j

Substituting these values in &Vi(x< V>    m)> we obtain

(10.11) Q,4(x, r,, tt, p) = (EiAxhi - %ds)th

where in view of the above hypotheses the functions ! hi, Ei» are continu-

ous on ab; moreover, the matrices and  6,7 are symmetric and is

of rank n — m on this interval. Consequently, the differential equations (10.7)

are equivalent to the system

(10.7')
■Ofo, f] - Vl - %i,{xhj - »i/(*)fy = o,

Now if Ci = de, di=die, (0=1, • • • , 2n — p), are linearly independent solutions

of the equations se^,-,, Cj + ^./j dj = 0, (7=1, • • • , p), the boundary condi-

tions (10.8) are equivalent to the linearly independent set

(10  8') 'Tl*f]-*Tk«).

spH[v, f] - c«{Qi«fo] - Ua)} + dit{Qib[r,] + Ub)} = 0.

The system (10.7'), (10.8'), which is clearly of the form (2.1) in y = (v>, f<),

may be shown under the above hypotheses to satisfy conditions (i), (ii) and

(iv) of §2 with the matrix

0,-j 5,7

-5,7 0,7

For this system we have

31 ,■ j    S3, j

<£<i -21 a
A = B =

On

0,7

0,7' 0,7
, ii

0,7' h ii Ojj

We now wish to consider the condition (iii)' for such a system. The linear

vector space L for this problem consists of sets (77, f) which satisfy with a cor-

responding w = (wi) the system

(10.12) nt =        + »«fr,   ti = &uVi ~        ~ SttfWf,   s,h, f ] = 0..

It is readily seen from (10.8) that if s,[rj, f] = 0, then

vtA* = ~ 2Q[v]. ■

Evaluating H = H[v, f ] for such a set (77, f) we find

H = — viU I* + J (77'f< + 77,2,777- nMtfi) dx = /[tjJ,
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in view of (10.9) and (10.11). Consequently, (iii)' for this system reduces to

the condition that J[y] >0for every set (77, f) which satisfies with an associated

vector w the system (10.12), and for which (S,-^,) ^ (0.) on ab. If (77, f) is a solu-

tion of (10.12) for a given vector w, then clearly 17 is an admissible arc. Hence

(iii)' is certainly satisfied if the following condition holds.

(H4) /[j7]>0 for arbitrary nonidentically vanishing admissible arcs 77.

We thus see that a system of the form treated by Reid [9] for which,

using the notation of that paper, the quadratic form G[r\{a), 77(6)] is identi-

cally zero, is H-definitely self-adjoint.

Theorem 10.1. Suppose that a problem of the above sort is H-definitely self-

adjoint. If the matrix ®(x) is positive [negative] definite at a point x0 of ab, then

this system has infinitely many positive [negative] characteristic values.

On the assumption that $(xo) is positive definite, there clearly exists a

subinterval aA, a<ai<bi<b, throughout which $(x) remains positive defi-

nite. Corresponding to an arbitrary subinterval a{b{ of a-i>\, denote by

f = (f,-p), (p = l, • • • , w + 1), a set of re+1 vectors whose components are of

class Cl on ab, are identically zero outside the subinterval a{b{, and such

that the vectors (23,-,-f ,>), (p = 1, ■ ■ • ,«+l), are linearly independent on a{ b{.

Such vectors clearly exist since 93 is of rank n — m on ab; in fact, all that is nec-

essary to insure the existence of such vectors is that S3 ̂ 0 on a{ b{. Now define

77p as the solution of 7jJp = 2fi)(x)773p+93,)(x)f)p(x), 77,^(0) =0. Clearly the vec-

tors ?7p are linearly independent on ab; moreover, there exist constants

(di, • • • , dn+x) not all zero such that if we set 77 = 17x^1 -J- • • • + Vn+idn+i, then

rii(b)=0. This vector satisfies with f = f](fi+ • • • +f»+iö'n+i the system

77/ =2Ii,-77J-r-93jjf,- on ab; furthermore, as £"< = 0i outside a{ b{, it follows from

the conditions 77,(0) =0 = 77i(o) that 77^ = 0,- outside this subinterval. Since $

is nonsingular on a{b{ there clearly exists a corresponding w such that the

differential equations of (10.12) are satisfied by (77, f, w); the boundary con-

ditions are also satisfied by (77, f) since this set vanishes at x = a and x = b.

Consequently, since on a{b{ we have that 77^0 and the matrix $ is positive

definite, while 77 = 0 outside this subinterval, it follows that the thus deter-

mined solution y = (77, f) of (10.12) satisfies the conditions described in hy-

pothesis (v+) of §9. Hence by Theorem 9.4 the considered system has

infinitely many positive characteristic values. The corresponding result for

negative characteristic values is readily deducible from the above by consider-

ing the related boundary value problem obtained by replacing the matrix

f(x) by -$(x).
11. A particular differential system. Krein [7] and Kamke [6] have con-

sidered a self-adjoint boundary problem of the form

(11.1) .£[«] = \k(x)u,      Ua[u] = 0, a = 1, • • • , In,

where J^[u] is a differential operator of the form
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•CM = Z [U*W*}*'K

ln(x)9£0 and /y(x), (f =1, •••,»), of class C(,,) on ao, while the Ua[u] arc in-

dependent linear forms in the end values of u, u', • • • , m(2"_1) at x = a and

# =   Each of these authors has assumed that the functional

(11.2) f ujQ\u]dx
J a

possesses certain properties of definiteness.

Krein has supposed that (11.2) is non-negative for every function u which

is of class C(2n) on ab and such that u, u', ■ ■ ■ , «(n_1) all vanish at a and b;

moreover, that the continuous function k(x) occurring in (11.1) is non-nega-

tive throughout ab. Kamke [6, I] has assumed that (11.2) is non-negative

for every function u of class Ci2n) which satisfies the boundary conditions

U<r[u] = 0; moreover, that X = 0 is not a characteristic value of (11.1). In ad-

dition, Kamke has also treated the case in which the continuous function

k(x) changes sign on ab.

It will now be shown that a system (11.1) may be written as one of the

type considered in the preceding section. Now jQ\u\ is the Euler expression

for the integral

(11.3)        f  {lB(x)u2 - h(x)u'2+ •■•+(- l)Hn(x)[u^]2\ dx.

This integral, by a device familiar in the calculus of variations, is equivalent

under the substitution tji = m to the integral

J> 6{Jo(*)iji - h(x)vl +••+(- lfAI + (- DY2} dx,
a

together with the auxiliary linear differential equations

(11.5) 3>a = TJa   — Va+l =0, « = 1,' •••,«— 1.

Suppose u is of class C(2n) and satisfies the nonhomogeneous differential

equation

(n.6) -CM+/(*) = o.

If we set

Vl = u, V2 = «', • • ■  , Vn = m("_1),

fi - (~ 1)'{ [M*)«(i>] + [li+i(x)u«+»]' + • • ■ + [!»(*)«{»)](«-«},

i = 1, • • • , n,

it is readily seen that (»ji, f,•) satisfy the first order system
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Va    — Va+li

(11.8) *       ln(x) fn'

r»' = h(«ht + fix),
fl'+o =  (—  l)ala(x)vi+a — fa, « =  1, •••,»— 1.

Conversely, if (rji, f,-) is a solution of (11.8) it follows that « = 771 satisfies

(11.6); moreover, u and its first 2n — 1 derivatives are related to (77^ f,-) by

the equations (11.7). Hence there is complete equivalence between the single

linear equation (11.6) of order 2n and the system (11.8) of 2n linear differ-

ential equations of the first order. For/(x) =0 this latter system is the canoni-

cal form of the Euler-Lagrange equations for the integral (11.4) subject to

the auxiliary differential equations (11.5).

Now the Z7„[w] are supposed to be 2n independent linear forms in the

end values of u, u', ■ ■ • , w(2n-1) at x = a and x = b. In view of the assumption

that ln(x) 9*0 on ab it follows that they may equally well be considered as in-

dependent linear forms in the end values of the corresponding 77,-, f < at a and b;

consequently, the set U,[u\ = 0 may be written as

(11.9) 5J7,, f] s alim(a) - blii{a) + + bl^j(b) = 0,

<j — 1, • • • , 2n.

If u and u* are of class C(2n) on ab, it follows from the self-adjoint character

of £[u] that (see, for example [5, p. 123])

«*-CM - <[«*] - T Pi-U< "*)>
ax

where P(u; u*) is bilinear in the sets (u, u', ■ ■ ■ , u<-2n~1)) and (u*, u*', • • • ,

M*(2»-i))i an(j ;s the so-called bilinear concomitant. In particular, if (?;i, f<) and

('?>*. f *) are defined by (11.7) for u and «*, respectively, it may be readily

verified that

P{u; «*) = »>{(*)??(*) - f,(x)77,*(x).

The self-adjoint character of the boundary conditions implies that for arbitrary

functions u, u* whose end values satisfy Uc[u] = 0= £/,[«*], (<r= 1, • • • , 2n),

we have P(u; u*) \ * = 0. Consequently, if (77,-, fi) and (rj?, f,*) are arbitrary sets

of functions satisfying sa[rj, £]=0 = s„[ri*, f*] we must have

(li• 10) m(x)t?(x) - UxhHx) \ba = 0.

Now the general solution of s,[77, f] = 0, (<r = l, • ■ • , 2n), is of the form
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...    ... Vi(a)  = trclj, ff(fl)  = ^rdrj,
(11 . 11) 2 2

Vi(b)   = %rCTj, f,(0)   =   — irdTj,

where (c), d), c2, d2) = (c\j, dlTj, c2Tj, d2Tj), (t=1, • • • , 2n), are 2n linearly inde-

pendent solutions of the system

1    1 1    1 2   2 2 2
a,jCj — b„jdj + a„jCj — b„jdj = 0, a = 1, • • • , In.

Corresponding to £=.(£„), £* = (£,*), determine the end values of (r?i, f») and

(v*> fi*) by equations (11.11). Because of the arbitrariness of £ and £* relation

(11.10) then implies

1111 2   2 2 2

(11.12) dgjCrj — C,jd,j + d„frj — Cff/OVj =0, <T, T =   1, •  • •  , 2w,

whence it follows that there is a nonsingular matrix ||£»T|| such that

1 11 12 22 2

de] ~ EsrQ>7 j, Caj —  Eirrbr jt da j ~  EffTdT j, Caj        EffTbr j.

Consequently, writing f,£„ = eT, a set (77;, f.) is seen to satisfy (11.9) if and

only if there are constants (eT) such that

... Vi(a) = erbrj,      f,(a) = eTari,
(11.11) 2 2

77,(0) = eTbT„      f,(6) = — eTari.

Either from (11.12), or from substitution of (11.11') in (11.10), it follows that

the 2nX2n matrix

(11.13) I) k,T\\ = \\aljbl; + a,,6rj||

is symmetric. Now if the 2wX2w matrix \\blaj b2aj\\ is of rank 2n — p, denote by

* — (ft) = (>v) > (7=1. • • ■ . P), a set of p linearly independent solutions of the

equations

1 2 ,
r,b,j = 0,      r„b„j = 0, j = 1, ■ ■ ■ , n.

If (v<< TO satisfies (11.9), then rjj(a), 77,(0) must satisfy

(11-14) ♦» ■ *t»mX«) + -'ft       7=1, ••,/>,

where ^r7;JO = rr,a^, ^T.)6 = rT,a^. Since 5, [77, f ] are independent linear forms,

the p conditions (11.14) are seen to be also linearly independent.

If p = 2n, the problem (11.1) is then seen to be equivalent to one of the

sort studied in §10 with 2co defined as the integrand of (11.4), the auxiliary

differential equations $„ = 0 and boundary conditions determined by (11.5)

and (11.14), respectively, the quadratic form <2 = 0, while the matrix ®(x) is

defined as

k(x) On

0a 0aß
(11.15) Jt(x) = a, ß = 1,   • • , n — 1.
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In general, it is to be noted that o*/^7;Ja-ho^/J*7.ji, = 0, (<r = l, • • ■ , 2«;

7 = 1, ■ ■ • , p), and since the linear forms of (11.14) are independent and

b2aJ\\ is of rank 2n—p it follows that if b\jWja-\-b2rjWjb = 0, (o" = l, • • • , 2«),

then there must exist constants dy such that Wja = dy^y.ja, Wji=dy^y-jb,

(j = 1, •••,«). Moreover, for (eT) related to the end values of (r;,-, f;) by

(11.11') we have

1 s
(11.16) aaP)i{a) + a<rj7)j(6) = Krer-

Since r = {ry„), (7 = 1, • • ■ , p), satisfies kCTrT = 0, the rank of does not ex-

ceed In —p. If this matrix is of rank 2n — q, denote by p = (pr) = {prT),

(v — i, ■ • •, q), sets orthonormal in the sense that p^px^ = (v,X = l> ■ • • , <z)>

and satisfying £„xpT = 0, (<r=l, ■ • • , 2n). Then the matrix

k„T Pxn

Pvr 0vX

is nonsingular, and its reciprocal is a symmetric matrix of the form

h„r pxo

Pvr 0»x

If now (jjj, fi) satisfies (11.9), and (eT) is determined by (11.11'), it follows

from (11.16) that there exist constants tPt (j> = 1, • • • , g), such that

(11.17) e„ = Krlalj-rijia) + ö*,-t?,(o)] + t,p„.

Writing

(11.18) 2Q[r)] = [alini(a) + al{tii(b)]h„[aTj7ij(a) + al ft i(b)\,

it then follows from (11.11') and (11.17) that

Qia[v] + tvpv,a,i — fi(a) = 0,

(11.19) 2
Qib[v] + tvpVTari + U{b) = 0, i = 1, ■ • • , n.

On the other hand, since

112 2
bCj{tvp,ra-rj) + b„j{typVTaTj) = tp{pV7kT^) = 0,

there exist constants dy such that ^p„a^ = (i7^fT.3a, tvpVTa2.j = dy^y.jo. It thus

follows that (11.1) is equivalent to a boundary value problem of the type

treated in the preceding section with 2w defined as the integrand of (11.4),

the auxiliary differential equations and end conditions defined by (11.5) and

(11.14) , respectively, the quadratic form Q of (11.18), and R(x) given in

(11.15) .
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Finally, if u is of class C(2n) on ab and (m, f,-) are denned by (11.7), it is

readily seen that s2co(x, rj, r)') — (r]i f,-)' and

/m£[m] dx = I   2<o(x, v, v') dx — v£i\l = I   2u(x, % r\') dx + 2Q[ri\
a Ja Ja

whenever Z7„[w]=0. In particular, the hypotheses of Kamke on (11.1) are

seen to imply that the above defined equivalent problem is i7-definitely self-

adjoint in the sense of §2. Actually, a self-adjoint system (11.1) is H-definitely

self-adjoint if X = 0 is not a characteristic value, and the functional (11.2) is

non-negative for arbitrary functions u of class C(2n) satisfying with a continu-

ous function g{x) the system L[u] = &(x)g(x), Z7„[m] =0. In case k(x) vanishes

or changes sign on ab this condition is slightly weaker than that used by

Kamke.

In conclusion, it is to be remarked that once the symmetry of \\krT\\ is es-

tablished, the existence of linear forms ^y and a quadratic form Q such that

the boundary conditions sa [17, f ] = 0 reduce to (11.14), (11.19) has been proved

by Hu [4, pp. 380-382]. The above presentation, however, determines more

explicitly the form of the tyy and Q in terms of the coefficients of the forms

12. iJ-definitely self-conjugate adjoint systems. In the preceding sections

we have been concerned with a system (2.1) involving real-valued coefficients.

However, the notion of H-definite self-adjointness may be extended to a sys-

tem (2.1) whose coefficients are complex-valued in a manner previously pre-

sented by Reid [ll] for extending the notion of definite self-adjointness to

such a system.

In the following we shall therefore suppose that the elements of A(x),

B(x) are complex-valued continuous functions of the real variable x on ab,

and that the coefficient matrices M and N of the linearly independent bound-

ary conditions Si[y] = 0 have complex-valued elements. If .rv =j|i£,)j|, then we

shall denote by K the matrix ||^»;|| whose elements are the complex con-

jugates of the corresponding elements of K; moreover, K* shall denote the

conjugate transpose matrix As in Reid [ll] we shall also consider the

system

(12.1) «' + ÜÄ = - \uB,      i[u] = u(a)P + u(b)Q = 0,

where P and Q are the matrices occurring in the boundary conditions of the

adjoint system (2.2). System (12.1) is termed the conjugate adjoint of (2.1).

The system (2.1) is said to be self-conjugate adjoint with the matrix T if it is

equivalent to (12.1) under the transformation w = 7\x)y, where the elements

of T(x) are complex-valued functions which are of class C1 on ab, and T is non-

singular on this interval. It follows (Reid [ll, Theorem 2.1]) that (2.1) is

self-conjugate adjoint with T(x) if and only if
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TA + A*T + r = 0,      TB + B*T = 0   on ab,
(12.2)

MT~\a)M* = NT-\b)N*.

We shall now .say that (2.1) is H-definitely self-conjugate adjoint with the

matrix T, or merely H-definitely self-conjugate adjoint if:

(i) The system is self-conjugate adjoint with T.

(ii) The matrix S(x) = T*(x)B(x) is hermitian.

(iii) If the linear vector space L be defined as in §2, with the understand-

ing now that the components of y and g are complex-valued, then the func-

tional

H[y] - f  y T*£[y) dx,
" a

which is readily seen to be real-valued on this space L, is positive for arbitrary

vectors y of L such that By^O on ab.

(iv) There exists no nonidentically vanishing solution y of ^[y]=0,

5 [y ] = 0 such that By = 0 on ab.

Theorem 12.1. All the characteristic values of an H-definitely self-conjugate

adjoint system (2.1) are real.

For if y were a characteristic solution of an H-definitely self-conjugate

adjoint system corresponding to a non-real characteristic value X, it would

follow as in the proof of Theorem 3.1 of Reid [ll] that JZySy dx = 0. Since

for such a characteristic solution we have H[y}=\fajSy dx, it then ensues

that H[y] = 0. Because of the above condition (iii) it would then follow that

By = 0 on ab, which is impossible for a characteristic solution by condition

(iv). Hence all the characteristic values of such a system are real.

Once this result is obtained, the consideration of the existence of charac-

teristic values and related expansion theorems for an H-definitely self-con-

jugate adjoint system (2.1) is reducible to the same consideration for an

associated H-definitely self-adjoint system with real coefficients. Since this

reduction is attained by the same device of separating real and pure imagi-

nary parts of (2.1) for real values of X as used in Reid [ll ], the details of the

reduction will be left to the reader.

In a general discussion of boundary value problems one might very well

start with a system of the form (2.1) whose coefficients are complex-valued,

which satisfies the above conditions (i), (ii), (iv) and the following alternative

to the above condition (iii):

(iii)* If the linear vector space L be defined as in §2, with the understand-

ing that the components of y and g are complex-valued, then there exist real

constants a and ß not both zero and such that the functional

(12.3)

• 6

y T*(aL[y] + ßBy) dx,
a
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which is readily seen to be real on L, is positive for arbitrary vectors y of L

such that Byf^O on ab.

If a system (2.1) satisfies (i), (ii), (iii)* and (iv), and has a?*Q in (12.3),

this system may be reduced to an i7-definitely self-conjugate adjoint system

by a linear change of parameter and the possibly needed change of replacing T

by — T. If for such a system we have a = 0, then the system obtained is some-

what more general than a definitely self-conjugate adjoint system; for such

a problem, however, one is still able by the usual method of proof to establish

the reality of characteristic values, the equality of index and multiplicity of

its characteristic values, and a completeness property of the totality of char-

acteristic solutions similar to that proved by Bliss for definitely self-adjoint

systems (see Bliss [2, Theorem 2.3 and its Corollaries]). In a recent course

on boundary value problems the author has followed this order of presenta-

tion. For the purpose of publication of new results, however, the above sepa-

rate treatment of iJ-definitely self-adjoint systems seems desirable, since by

this procedure one is able on various occasions to utilize readily certain results

that have previously been established by Bliss and the author.
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